RU2434065C1 - Способ переработки сульфидных медно-никелевых сплавов - Google Patents

Способ переработки сульфидных медно-никелевых сплавов Download PDF

Info

Publication number
RU2434065C1
RU2434065C1 RU2010136601/02A RU2010136601A RU2434065C1 RU 2434065 C1 RU2434065 C1 RU 2434065C1 RU 2010136601/02 A RU2010136601/02 A RU 2010136601/02A RU 2010136601 A RU2010136601 A RU 2010136601A RU 2434065 C1 RU2434065 C1 RU 2434065C1
Authority
RU
Russia
Prior art keywords
nickel
copper
anode
alloy
sulfide
Prior art date
Application number
RU2010136601/02A
Other languages
English (en)
Inventor
Евгений Николаевич Селиванов (RU)
Евгений Николаевич Селиванов
Ольга Владимировна Нечвоглод (RU)
Ольга Владимировна Нечвоглод
Людмила Юрьевна Удоева (RU)
Людмила Юрьевна Удоева
Владимир Михайлович Чумарёв (RU)
Владимир Михайлович Чумарёв
Сергей Владимирович Мамяченков (RU)
Сергей Владимирович Мамяченков
Владимир Геннадьевич Лобанов (RU)
Владимир Геннадьевич Лобанов
Original Assignee
УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН) filed Critical УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МЕТАЛЛУРГИИ УРАЛЬСКОГО ОТДЕЛЕНИЯ РАН (ИМЕТ УрО РАН)
Priority to RU2010136601/02A priority Critical patent/RU2434065C1/ru
Application granted granted Critical
Publication of RU2434065C1 publication Critical patent/RU2434065C1/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к способу переработки сульфидных медно-никелевых сплавов. Способ включает получение медного порошка в виде катодного осадка, никелевого раствора и нерастворимого шлама, концентрирующего серу и благородные металлы. Для этого проводят электрохимическое анодное растворение сплава в водном растворе. При этом анодному растворению подвергают сульфидный медно-никелевый сплав в виде гранул размером 0.5-5.0 мм, используемый в качестве насыпного анода. Электролиз ведут при анодной плотности тока 20.0-40.0 А/м2. В качестве исходного сплава используют никелевый, медно-никелевый файнштейн или белый матт. В качестве неорганической кислоты используют серную кислоту. Техническим результатом является повышение полноты растворения сплавов и перевода серы в элементное состояние. 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к металлургии цветных металлов и может быть использовано для электрохимической переработки сульфидных медно-никелевых сплавов, например медно-никелевых штейнов и файнштейнов, а также других сульфидных промежуточных продуктов, получаемых из медных и никелевых руд.
Известен способ электролитической переработки сульфидного медно-никелевого материала с получением катодного никеля в ваннах с нерастворимыми анодами. Медно-никелевый штейн, содержащий 10-15% железа, или медно-никелевый файнштейн с 1,5-5% железа, непосредственно из конвертера разливают в изложницы и охлаждают в определенном температурном режиме. Аноды подвергают электрохимическому растворению в сернокислом растворе при плотности тока 600-1000 А/м2. Содержащиеся в сульфидном сплаве медь, никель, железо и кобальт переходят в раствор и затем выделяются на катоде меди в виде металлического порошка. В анодном шламе остаются элементная сера и драгоценные металлы.
Электролит является общим для обеих групп ванн и циркулирует в замкнутом цикле по направлению из катодного пространства никелевых ванн в анодное и далее в медные ванны, откуда его направляют в очистное отделение и затем возвращается в катодное пространство никелевых ванн. Возможность электрохимического разделения меди и никеля определяется разностью потенциалов выделения меди и никеля, а также величиной перенапряжения водорода в условиях проведения процесса. Для получения медного порошка с минимальным содержанием никеля необходимо поддерживать в прикатодном пространстве концентрацию свободной серной кислоты порядка 10-12 г/дм3. В результате растворения анодов получают три продукта: медный порошок, осаждаемый на катоде, никелевый раствор и анодный шлам, в котором остаются элементарная сера и драгоценные металлы (Чижиков Д.М., Гурович Н.А., Устинский Б.З., Гуляницкая З.Ф. и др. Авт. свид. №158074. - Бюл. изобр., 1963, №20).
Способ не нашел широкого применения, так как является трудоемким и требует большого расхода электроэнергии: для получения анодов расплав медно-никелевого штейна перегревают до температуры 1200-1300°С, разливают в изложницы и охлаждают со скоростью 50-75°С в час; при электролизе сульфидных анодов возможно их разрушение и замыкание; после электролиза количество анодных остатков достигает 10% от массы исходных электродов, что ведет к снижению прямого извлечения металлов в раствор и серы в элементное состояние до 90%.
Известен способ электролитического рафинирования никелевого файнштейна. Сульфидные аноды на заводе Томпсон содержат 76% Ni; 2,6% Cu; 0,5% Со; 0,5% Fe и 20% S. Подготовка сульфидных анодов перед электролизом включает разливку файнштейна непосредственно из конвертера в чугунные изложницы, помещенные в теплоизолируемые формы для медленного охлаждения и уменьшения растрескивания отливок. Электролиз ведут в сульфат-хлоридном электролите (60-65 и 40-50 г/л Ni соответственно) с добавлением хлористого натрия (100 г/л) и борной кислоты (20 г/л) при рН в пределах 3,5-4,5 и температуре 50-60°. Анодная плотность тока 200 и 135 А/м2, а напряжение на ванне 3-5 и 3,7 В. Из получаемого анодного шлама извлекают элементарную серу, а остаток направляют на получение концентрата платиноидов. (L.S.Renzoni. W.V.Barker. Canad. Patent, 1958, N 556649; W.W.Spence, W.R.Cook. Canad. Mining and Metallurg. Bull., 1964, 57, N 631, 1181; W.W.Spence, W.R.Cook. Trans. Canad. Inst. Mining and Metallurgy, 1964, 67, 257.)
Недостатками способа является то, что подготовка к электролизу литых сульфидных анодов требует специальных режимов охлаждения, ведущих к увеличению энергетических затрат. Ограничения по составу анодов (содержание меди до 3,5%) сдерживает распространение способа на другие предприятия. Как и в предыдущем случае, количество анодных остатков после электролиза достигает 10% от массы исходных электродов, что ведет к снижению прямого извлечения металлов в раствор и серы в элементное состояние до 90% и ниже.
Известен способ переработки медно-никелевого файнштейна, согласно которому отлитый в аноды файнштейн, содержаший 50% меди, 25% никеля, 22% серы, 2,5% железа и 0,7% кобальта, подвергают электрохимическому растворению в двух группах электролизных ванн - медной и никелевой - с применением водного сульфатного хлорсодержащего электролита (40-60 г/дм3 Cl-), при этом состав электролита на протяжении всего цикла переработки поддерживают постоянным независимо от состава перерабатываемого сырья. Анодная плотность тока в никелевых ваннах составляет 290 А/м2, в медных - 670 А/м2. В результате действия постоянного электрического тока в никелевой ванне на катоде осаждается электролитный никель, а на аноде происходит растворение содержащихся в файнштейне металлов и образование анодного шлама, содержащего 50-60% серы. В медной группе ванн анодом служит также файнштейн, а в качестве катодов используют медную основу, при этом перешедшая в раствор медь вместе с той, которая накопилась в анолите никелевых ванн, осаждается на катоде в виде медного порошка (Чижиков Д.М., Плигинская Л.В., Гуляницкая З.Ф и др. Авт. свид. №280858, МПК C22d 1/00, опубл. 03.09.1970).
Недостатком способа является то, что процесс связан с образованием большого количества оборотных продуктов в виде остатков от электролиза, обломков, литейных приливов и т.д. Способ не нашел широкого применения, так как низкая механическая прочность крупных анодов приводит к нарушению технологического режима процесса. Разрушение сульфидных анодов, направляемых на электролиз, связано с неравномерностью их структуры, флюктуациями по размеру и составу фаз, а также особенностями распределения тока и напряжения как в ванне, так и внутри анода. Другими недостатками способа являются высокий расход электроэнергии и низкие выходы по току, связанные с пассивацией анодов и их неполным растворением.
Техническим результатом заявляемого способа является повышение полноты растворения анодов и перевода серы в элементное состояние, сокращение расхода электроэнергии за счет уменьшения затрат на переработку анодных остатков, образующихся из-за неполного растворения литых анодов, и перенапряжения на анодах, зависящего от толщины пассивирующего слоя на частицах сульфидов.
Указанный технический результат достигается тем, что в способе переработки сульфидных медно-никелевых сплавов, включающем электрохимическое анодное растворение с получением медного порошка в виде катодного осадка, никелевого раствора и нерастворимого шлама, концентрирующего серу и благородные металлы, согласно изобретению анодному растворению подвергают сульфидный медно-никелевый сплав в виде гранул размером 0,5-5,0 мм, используемый в качестве насыпного анода, а процесс ведут при анодной плотности тока 20,0-40,0 А/м2.
При этом в качестве исходного сплава используют никелевый, медно-никелевый файнштейн или белый матт, которые предварительно подвергают водной грануляции из расплавленного состояния. В качестве неорганической кислоты используют серную кислоту.
Использование в качестве анода гранулированного сульфидного медно-никелевого сплава повышает его реакционную способность и способствует интенсификации электрохимических реакций, это связано с тем, что при высоких скоростях охлаждения сульфидного расплава предотвращается выделение металла в отдельную фазу, а крупность сульфидных фаз в гранулах размером 0,5-5,0 мм не превышает 0,01 мм. Экспериментально установленный оптимальный размер направляемых на электролиз гранул сплава определен в пределах 0,5-5,0 мм. Выход за указанные пределы ведет к снижению показателей электролиза сульфидного сплава. Так, при использовании гранул размером менее 0,5 мм повышается вероятность химического взаимодействия сульфида с кислотой. Верхний предел обусловлен формированием на поверхности гранул пассивирующей пленки, большая толщина которой приводит к дополнительному падению напряжения в ней и росту энергозатрат на процесс. В обоих случаях снижается содержание серы в шламе и повышается цветных металлов, что отрицательно влияет на прямое извлечение металлов в раствор и перевод серы в элементное состояние.
Оптимальная плотность анодного тока для предлагаемого процесса установлена в интервале 20-40 А/м2. При меньшей плотности тока снижается производительность процесса, а при большей - происходит пассивация анода, снижаются показатели выхода по току и увеличивается расход электроэнергии.
Согласно экспериментально установленным данным, электролиз гранулированного сульфидного сплава сопровождается насыщением раствора ионами металлов, выделением меди на катоде и шламообразованием. Анодный выход по току (ηа) определяется из затрат на окисление металлических и сульфидных составляющих файнштейна с образованием элементной серы, а также кислорода:
ηаCuNiSO=100%.
Эффективный анодный выход по току принят как:
ηэфCuNiS.
В интервале плотностей тока 20-40 А/м2 электролиз идет без значительных диффузионных затруднений, вызываемых пассивацией поверхности и градиентом концентраций, поэтому скорость электрохимического растворения сульфидов не изменяется в ходе эксперимента, а плотность тока прямо пропорциональна скорости электрохимической реакции.
Наличие развитой реакционной поверхности у гранулированного сульфидного сплава дает возможность вести электролиз при низких плотностях тока (менее 40 А/м2) с достижением анодного выхода по току по сере до 70%. При плотности тока менее 40 А/м2 скорость окисления исходных фаз сплава сопоставима со скоростью растворения промежуточных продуктов, формирующих пассивирующий слой. При таких условиях электролиз гранулированного сплава протекает без накопления в шламе промежуточных фаз, что повышает содержание в нем серы и драгоценных металлов.
Увеличение плотности тока выше 40 А/м2 не только повышает скорость анодного окисления сульфидов цветных металлов, но и напряжение на электродах. При повышенном напряжении интенсифицируется побочный процесс разложения воды. В связи с этим, анодные выходы по току по меди, никелю, а также ηэф, проходя через максимум, снижаются.
При плотностях тока менее 20 А/м2 снижается скорость окисления гранулированного сплава, что снижает производительность электролизера.
Так при среднем размере гранул 2,5 мм и плотности тока 40 А/м2, на 1 кг сульфидного сплава подается ток, равный 23 А. Для сравнения: при использовании литых анодов при плотности тока 1000 А/м2 на 1 кг сплава подается ток, равный 1,5 А. Увеличение крупности гранул сульфидного сплава до 5 мм ведет к снижению токовой нагрузки на 1 кг сплава в 2,3 раз. При снижении плотности тока до 20 А/м2 при электролизе гранул размером 5 мм на каждый килограмм сульфидного сплава будет подаваться ток, близкий к рассчитанному для литых анодов. Поэтому при электролизе сульфидных гранул размером более 5 мм при плотности тока менее 20 А/м2 преимущества предлагаемого способа теряются.
Примеры осуществления способа по данным испытаний
Пример 1.
Медно-никелевый сульфидный сплав, в качестве которого взят файнштейн, содержащий (мас.%): 25,5 Ni, 48,0 Cu, 0,7 Со, 3,2 Fe, 20,8 S, расплавляли при температуре 1200°С и гранулировали на установке для водной грануляции. Гранулы (масса mн от 100 до 400 г) размером 0,5-2,5 мм загружали в электролизер. Подвод тока к гранулированному файнштейну осуществлен через пластину из платинированного титана (анод). Катодом служила пластина нержавеющей стали. Анодное пространство отделено от катодного мешочным фильтром. Анодная плотность тока определена как отношение подводимого тока к поверхности загружаемых гранул. При определении анодной плотности тока принято, что все гранулы имеют сферическую форму. Эксперименты проведены при варьировании анодной плотности тока (ia) от 10 до 85 А/м2, катодной (iк) - 300÷600 А/м2 и напряжении на электродах 1,4÷3,8 В. Значения ia варьировали изменением силы тока и массы навески (mн). В качестве исходного электролита взят 1М водный раствор серной кислоты. Эксперименты проведены без циркуляции и без очистки электролита. Результаты экспериментов приведены в таблице.
Согласно проведенным экспериментам, электролиз гранулированного файнштейна сопровождается насыщением раствора ионами металлов, выделением меди на катоде и шламообразованием. Величина эффективного анодного выхода по току колеблется в пределах 14,5-115,2%. Пояснить расчетное значение анодного выхода по току свыше 100% можно основываясь на данных о переходе в раствор меди в одновалентном состоянии. При плотности тока 40 А/м2 и напряжении на электродах 3,0 В (опыт 3) отмечено снижение значений ηэф. Существенное снижение ηэф имеет место при плотности тока 85 А/м2 и напряжении 3,8 В (опыт 4), что отвечает большей доле электричества, расходуемого на разложение воды.
Катодный выход по току для меди находится в пределах от 4,2 до 53,4% в зависимости от условий электролиза. Низкие значения катодного выхода по току также обусловлены повышенными плотностью тока и напряжением на электролизере. В результате электролиза выделены: медный порошок, содержащий не менее 99,5% Cu и не более 0,29% Ni; 0,008% Fe; 0,001% Co; 0,008% S и раствор с 28,9 г/дм3 Ni; 1,88 Cu; 4,15 Fe; 0,71 Co; 24,5 г/дм3 S. Для поддержания постоянного состава электролита необходима его очистка от примесных металлов с последующим никелевым электролизом и получением катодного никеля.
Анодный шлам электролиза содержал, %: 80,9 S, 9,7 Ni, 2,8 Cu. Отгонку элементной серы из шлама осуществляли его нагревом до 300°С.
Пример 2.
Медно-никелевый сульфидный сплав, в качестве которого взят файнштейн, содержащий цветные металлы %: 25,5 Ni, 48,0 Cu, 0,7 Со, 3,2 Fe, 20,8 S, а также благородные, г/т: 495 Pt, 2380 Pd, 380 Ag; 68 Au, плавили при температуре 1200°С и гранулировали на установке для водной грануляции. Гранулы размером 2,5-5,0 мм загружали в электролизер в количестве 400 г. Методика эксперимента аналогична примеру 1. Эксперимент проведен при анодной (ia) плотности тока 20 А/м2, катодной (iк) - 500 А/м2 и напряжении на электродах 2,5 В.
В результате электролиза получены: медный порошок, содержащий, %: не менее 99, 3 Cu и не более 0,53 Ni, 0,044 Fe, 0,015 Co, 0,091 S; раствор, содержащий, г/дм3: 28,9 Ni, 1,88 Cu, 4,15 Fe, 0,71 Co, 24,5 S. Анодный шлам электролиза содержал, %: 80,9 S; 9,7 Ni; 2,6 Cu. Благородные металлы на 95% перешли в шлам. Выделение элементной серы из шлама осуществлено путем ее избирательного растворения в органическом растворителе. Выделенная из растворителя сера содержала не менее 99,5% S. После отделения из шлама элементной серы получен концентрат драгоценных металлов, пригодный для переработки известными способами. Расход электроэнергии на электролиз составил 2250 кВт-час на 1 тонну файнштейна.
Пример 3.
Никелевый сульфидный сплав, в качестве которого взят файнштейн, содержащий цветные металлы %: 74,3 Ni, 3,2 Cu, 0,3 Со, 0,1 Fe плавили при температуре 1200°С и гранулировали на установке для водной грануляции. Гранулы размером 2,5-5,0 мм загружали в электролизер в количестве 200 г. Методика эксперимента аналогична примеру 1. Эксперимент проведен при анодной (ia) плотности тока 20 А/м2, катодной (iк) - 500 А/м2 и напряжении на электродах 2,2 В.
В результате электролиза получены: никелевый катодный осадок, содержащий, %: 26,95 Cu и 72,6 Ni; раствор, содержащий, г/дм3: 77,62 Ni, 0,023 Cu, 0,09 Fe, 0, 17 Со, 50,8 S. Анодный шлам электролиза содержал, %: 53,3 Ni; 1,2 Cu; 0,14 Fe; 0,2 Co; 39,1 S. Расход электроэнергии на электролиз составил 6 кВт-час на 1 тонну файнштейна.
Во всех приведенных примерах достигнуто практически полное растворение сульфидных сплавов, без образования остатков анодов, характерных при проведении процесса по представленным аналогам. В связи с тем, что достигнуто практически полное растворение сульфидного сплава, степень перехода серы в элементное состояние достигает 98%.
Предлагаемый способ электролиза сульфидного медно-никелевого сплава с использованием его в качестве насыпного анода позволяет перерабатывать сульфидные никелевые и медно-никелевые файнштейны, штейны и белый матт с широким колебанием составов Cu/Ni от 0,05 до 2,5; обеспечивает получение медного порошка в виде катодного осадка, раствора никеля и анодного шлама, концентрирующего драгоценные металлы и элементную серу. Способ обеспечивает переработку гранулированного сульфидного сплава без образования анодных остатков, сколов и побочных продуктов, связанных с неполным растворением и хрупкостью электродов из литых сульфидных сплавов. Средний расход электроэнергии на растворение 1 т файнштейна при электролизе литых анодов составляет 3720 кВт-час, а при электролизе гранулированного файнштейна - 2250 кВт-час.
Результаты электролиза гранулированного медно-никелевого файнштейна
№ опыта mн, г ia, А/м2 iк, А/м2 U, B ηas, % ηaCu, % ηaNi, % ηкCu, %
1 400 10,0 300 1,4 68,8 22,3 19,7 37,7
2 400 20,0 600 2,4 54,3 23,8 12,9 42,3
3 200 40,0 450 3,0 46,9 27,0 8,1 41,5
4 100 85,0 500 3,8 8,24 5,42 0,8 4,2

Claims (4)

1. Способ переработки сульфидных медно-никелевых сплавов, включающий электрохимическое анодное растворение сплава в водном растворе неорганической кислоты с получением медного порошка в виде катодного осадка, никелевого раствора и нерастворимого шлама, концентрирующего серу и благородные металлы, отличающийся тем, что анодному растворению подвергают сульфидный медно-никелевый сплав в виде гранул размером 0,5-5,0 мм, используемый в качестве насыпного анода, а процесс ведут при анодной плотности тока 20,0-40,0 А/м2.
2. Способ по п.1, отличающийся тем, что в качестве сульфидного медно-никелевый сплава используют никелевый, медно-никелевый файнштейн или белый матт.
3. Способ по п.1, отличающийся тем, что сульфидный медно-никелевый сплав предварительно расплавляют и подвергают водной грануляции.
4. Способ по п.1, отличающийся тем, что в качестве неорганической кислоты используют серную кислоту.
RU2010136601/02A 2010-08-31 2010-08-31 Способ переработки сульфидных медно-никелевых сплавов RU2434065C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010136601/02A RU2434065C1 (ru) 2010-08-31 2010-08-31 Способ переработки сульфидных медно-никелевых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010136601/02A RU2434065C1 (ru) 2010-08-31 2010-08-31 Способ переработки сульфидных медно-никелевых сплавов

Publications (1)

Publication Number Publication Date
RU2434065C1 true RU2434065C1 (ru) 2011-11-20

Family

ID=45316697

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010136601/02A RU2434065C1 (ru) 2010-08-31 2010-08-31 Способ переработки сульфидных медно-никелевых сплавов

Country Status (1)

Country Link
RU (1) RU2434065C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693576C2 (ru) * 2017-11-23 2019-07-03 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Способ электролитического рафинирования меди

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693576C2 (ru) * 2017-11-23 2019-07-03 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Способ электролитического рафинирования меди

Similar Documents

Publication Publication Date Title
Fornari et al. Copper and nickel selective recovery by electrowinning from electronic and galvanic industrial solutions
AU2011339119A1 (en) Electrorecovery of gold and silver from thiosulphate solutions
RU2357012C1 (ru) Способ извлечения благородных металлов из отходов радиоэлектронной промышленности
CN106757179A (zh) 一种铜电解尾液净化脱铜除杂的工艺方法
CN101392388B (zh) 一种多金属粗铜的电解方法
CN101054686A (zh) 一种熔铸锌渣提纯锌的工艺
PL111879B1 (en) Method of recovery of copper from diluted acid solutions
RU2434065C1 (ru) Способ переработки сульфидных медно-никелевых сплавов
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
RO132597A2 (ro) Procedeu de recuperare a metalelor preţioase din deşeuri electrice şi electronice prin dizolvare anodică în lichide ionice
Jiricny et al. Copper electrowinning using spouted-bed electrodes: part I. Experiments with oxygen evolution or matte oxidation at the anode
US775597A (en) Process of extracting gold from ores.
Agrawal et al. Recovery of copper powder from copper bleed electrolyte of an Indian copper smelter by electrolysis
Burzyńska et al. Mechanism of the anodic dissolution of Cu70–Co4–Fe14–Pb7 alloy originated from reduced copper converter slag in an ammoniacal solution: Recovery of copper and cobalt
RU2361967C1 (ru) Способ электроизвлечения компактного никеля
RU2770160C1 (ru) Способ электрохимической переработки медного штейна
RU2366763C2 (ru) Способ электролитического рафинирования меди в блок-сериях ванн ящичного типа
RU2693576C2 (ru) Способ электролитического рафинирования меди
RU2516180C1 (ru) Способ переработки сплава лигатурного золота
RU2326950C1 (ru) Способ серно-кислотного выщелачивания металлической меди
JP2014105345A (ja) ガリウムの回収方法
RU2678627C1 (ru) Способ переработки отработанных катализаторов, содержащих благородные металлы и рений
CN109778230B (zh) 一种高铅冰铜电解分离铅和铜的方法
RU2731950C2 (ru) Способ получения микроструктурных порошков титана
RU2667927C1 (ru) Способ получения меди высокой чистоты

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160901