RU2433564C2 - Конструктивный элемент на основе керамической массы - Google Patents

Конструктивный элемент на основе керамической массы Download PDF

Info

Publication number
RU2433564C2
RU2433564C2 RU2009139283/07A RU2009139283A RU2433564C2 RU 2433564 C2 RU2433564 C2 RU 2433564C2 RU 2009139283/07 A RU2009139283/07 A RU 2009139283/07A RU 2009139283 A RU2009139283 A RU 2009139283A RU 2433564 C2 RU2433564 C2 RU 2433564C2
Authority
RU
Russia
Prior art keywords
structural element
sensor
element according
radio
antenna
Prior art date
Application number
RU2009139283/07A
Other languages
English (en)
Other versions
RU2009139283A (ru
Inventor
Штефан ПИШЕК (AT)
Штефан Пишек
Штефан ПИРКЕР (AT)
Штефан Пиркер
Артур ЭРЛАХЕР (AT)
Артур Эрлахер
Рене ФАХБЕРГЕР (AT)
Рене ФАХБЕРГЕР
Михаэль РЕССМАНН (AT)
Михаэль Рессманн
Original Assignee
Рифрэктори Интеллектуал Проперти Гмбх Унд Ко. Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рифрэктори Интеллектуал Проперти Гмбх Унд Ко. Кг filed Critical Рифрэктори Интеллектуал Проперти Гмбх Унд Ко. Кг
Publication of RU2009139283A publication Critical patent/RU2009139283A/ru
Application granted granted Critical
Publication of RU2433564C2 publication Critical patent/RU2433564C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/10Arrangements in telecontrol or telemetry systems using a centralized architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Cookers (AREA)

Abstract

Изобретение относится к конструктивному элементу на основе керамической массы, которая является в значительной степени стабильной при повышенных температурах, в частности выше 800°С. Это означает, что конструктивный элемент при такой температуре может выполнять свою обусловленную применением задачу. Технический результат состоит в обеспечении возможности идентификации и суждений о состоянии или же сроке службы конструктивного элемента до, во время и после эксплуатации. Конструктивный элемент на основе керамической массы при рабочих температурах свыше 800°С находится в контакте с горячим расплавом или продуктом обжига и при этом является в значительной мере стабильным. В нем интегрирован по меньшей мере один датчик (10), с помощью которого во время его эксплуатации обеспечена возможность осуществления в зависимости от времени регистрации и передачи на устройство (70) обработки данных по меньшей мере одного из информационных параметров: идентификация конструктивного элемента (26, 30), его физические свойства, перемещение, срок использования, место, для обработки этого параметра. 2 н. и 14 з.п. ф-лы, 4 ил.

Description

Изобретение относится к конструктивному элементу на основе керамической массы, которая является в значительной степени стабильной при повышенных температурах, прежде всего при температурах выше 800°С (это означает, что конструктивный элемент при такой температуре может выполнять свою обусловленную применением задачу). Конструктивный элемент может быть необожженным. Химические/керамические реакции для достижения термостойкости (вплоть до огнеупорности) проистекают затем, например, лишь при применении конструктивного элемента. Таким образом, изобретение включает в себя конструктивные элементы с термостойкостью также более 900°С, >1000°С, но также и >1100°С, >1200°С, >1300°С и, наконец, продукты для высокотемпературных применений свыше 1400°С. Конструктивный элемент может также быть отожженным или обожженным. Названная последней группа включает в себя конструктивные элементы, которые имеют термостойкость (огнеупорность) в вышеуказанной области.
Конструктивный элемент может состоять из монолитной массы: прежде всего, речь идет о формованном конструктивном элементе. Примерами для формованного огнеупорного конструктивного элемента указанного типа являются:
- кирпичи любой формы и размера, например, для огнеупорной футеровки промышленной печи, например литейного ковша, промежуточного разливочного устройства, стекловаренной ванной печи, конвертера, вращающейся трубчатой цементной печи, шахтной печи, мусоросжигательной установки или подобного,
- плиты, включая шиберные плиты для шиберных затворов, такие как применяются для регулировки/управления выпуском расплава металла на металлургических тигелях,
- конусы и усеченные конусы, включая конусы для подачи и диспергирования продуваемого газа (пористые керамические плиты для подачи и диспергирования продуваемого газа), такие как применяются для подвода газов, в основном инертных газов, в расплавы металлов. К этой группе также относятся пористые керамические плиты для подачи и диспергирования продуваемого газа с другой геометрией,
- другие формы, например, желоба, по которым направляется расплав металла, пробки для регулирования количества вытекающего расплава из металлургического тигеля, гильзы, фасонные кирпичи с отверстием для выпуска металла (well nozzle, well block) и многие другие.
Указанные конструктивные элементы могут быть изготовлены из различных материалов, например, из щелочной смеси на основе MgO или нещелочного материала на основе Al2O3, TiO2, ZrO2 и/или SiO2. Изобретение может быть применено для всех систем материалов. Конструктивные элементы могут отливаться, набиваться, прессоваться или обрабатываться как-либо иначе. Их система связей не подлежит ограничениям. Вследствие этого изобретение включает в себя, например, керамически или гидравлически связанные конструктивные элементы.
Все конструктивные элементы подвергаются износу. Как из технологических, так и из финансовых соображений существует желание оптимизировать долговечность (срок использования) конструктивного элемента. Однако зачастую это невозможно, так как отсутствует информация о состоянии (степени износа) конструктивного элемента. Это действительно, прежде всего, во время эксплуатации, так как высокие рабочие температуры затрудняют или делают невозможным контроль.
В WO 03/080274 А1 предлагается способ для эксплуатации шиберного затвора, у которого в области огнеупорных шиберных плит определяются и обрабатываются один или несколько из следующих параметров: размеры системы шиберного затвора, температуры в области шиберного затвора, давления цилиндров и пружин, которые воздействуют на шиберные плиты. Все это является косвенными величинами, которые не дают надежного представления о степени износа конструктивного элемента.
Задача изобретения заключается в осуществлении возможности идентификации и суждений о состоянии или же сроке службы конструктивного элемента до, во время и после эксплуатации.
В основе изобретения лежит следующее утверждение: регистрация различных характеристических величин вокруг собственного конструктивного элемента, как в уровне техники, не способствуют достижению цели. Так, плита шиберного затвора собирается в основном в механике из металла. Пористая керамическая плита для подачи и диспергирования продуваемого газа часто расположена в фасонном кирпиче с отверстием для выпуска металла или сливное отверстие (наконечник) окружено огнеупорными кирпичами или огнеупорной массой. Зачастую конструктивный элемент находится в контакте с горячим расплавом или продуктом обжига. Проверен должен быть, напротив, сам конструктивный элемент. Непосредственные оптические способы распознавания исключаются. Это относится также для непосредственного (физического) подключения измерительных и контрольных устройств.
Изобретение идет совершенно другим путем. Оно предлагает интегрировать в конструктивный элемент один или несколько датчиков (например, 1, 2, 3, 4 или более), чтобы таким образом регистрировать по меньшей мере один из следующих информационных параметров (также) во время эксплуатации конструктивного элемента и переносить ее на устройство обработки данных:
- информация по идентификации конструктивного элемента. К этому относятся, например, следующие данные: тип продукта, сорта материалов, реквизиты изготовителя, дата изготовления, поставки и ввода в эксплуатацию и т.д.,
- данные о физических свойствах конструктивного элемента. К этому относится, например, температура конструктивного элемента, механические (термомеханические) напряжения в конструктивном элементе и т.д.,
- данные о месте и перемещениях конструктивного элемента. Эта информация имеет, прежде всего, значение для конструктивных элементов, которые перемещаются во время эксплуатации, например шиберные плиты, заглушки, а также перемещаемые по высоте пористые керамические плиты для подачи и диспергирования продуваемого газа, трубки для ввода кислорода или подобное. Также может определяться место, на котором конструктивный элемент находится в устройстве.
- данные о сроке службы конструктивного элемента: при этом, например, регистрируется измерение температуры, как долго шиберная плита была «в работе», то есть как долго расплав металла протекал через отверстие шиберной плиты.
«Интегрировать» означает, что датчик расположен в конструктивном элементе или на конструктивном элементе.
Вышеназванная информация (данные) могут быть существенны как отдельности, так и в любых сочетаниях для определения состояния, например степени износа конструктивного элемента. При этом информационные параметры регулярно регистрируется и обрабатывается не дискретно, а в зависимости от времени. При наличии нескольких датчиков данные могу регистрироваться на различных местах конструктивного элемента. Тем самым возможно, например, определение температурного градиента в конструктивном элементе. Точно также могут быть предусмотрены несколько датчиков в нескольких элементах. Тем самым могут быть получены и обработаны информационные параметры с различных мест. На примере шиберной плиты это должно быть пояснено более подробно:
До настоящего времени обслуживающий персонал эмпирическим путем решал, может ли использованная шиберная пластина быть использована еще раз или нет. Данные о длительности и температурной нагрузке шиберной плиты при существовавшей до сих пор эксплуатации отсутствуют. Обслуживающий персонал не имеет надежной информации о том, возникали ли в прошлом механические напряжения на продукте или нет. Если шиберная плита используется вновь, существует риск, что она больше не выдержит без повреждения необходимый дальнейший срок использования. В экстремальном случае это может привести к прорывам расплава металла с катастрофическими последствиями.
Этих недостатков можно избежать с помощью конструктивного элемента согласно изобретению. Переданные датчиком данные регистрируются и обрабатываются в устройстве обработки данных. Фактические данные или выводимые из них характеристические величины сравниваются с заданными данными. Если затем следует, например, что шиберная плита уже достигла 90% своего расчетного максимального срока эксплуатации или при предыдущем использовании в плите появились механические напряжения выше заданного предельного значения, то плита заменяется. Для предотвращения большего ущерба датчики могут заранее извещать посредством измерения температуры и/или напряжения о выходе металла.
Следующие примеры применения: встраивание датчика или конструктивного элемента с датчиком в дно или стенку литейного ковша или другого металлургического плавильного сосуда для контроля высыхания керамической огнеупорной массы для футеровки. Например, масса должна нагреваться до минимальной температуры, чтобы достичь полного высыхания.
У конструктивных элементов с продувкой газом в случае измерения температуры посредством датчиков можно делать вывод о степени износа конструктивного элемента. Точно также посредством измерения температуры можно получать информацию о количестве расхода газа. Чем холоднее протекающий газ, тем ниже измеренная температура.
Датчики могут служить также для того, чтобы определять или показывать местные перегревы в конструктивном элементе при достижении уровня температуры, при котором можно ожидать физической/химической реакции, такой как фазовое превращение.
В своей самой общей форме осуществления изобретение относится к конструктивному элементу на основе керамической массы, которая является в значительной степени стабильной при температурах свыше 800°С, при этом в конструктивном элементе интегрирован по меньшей мере один датчик, с помощью которого во время эксплуатации конструктивного элемента предусмотрена возможность регистрации и передачи на устройство обработки данных по меньшей мере одного из следующих информационных параметров: идентификация конструктивного элемента, физические свойства конструктивного элемента, перемещения конструктивного элемента, срок использования конструктивного элемента, место конструктивного элемента.
Обычно датчик изготавливается в оболочке, чтобы защитить его от чрезмерной температурной нагрузки, загрязнения и поломки. Оболочка может состоять, например, из стеклокерамики.
Для целей изобретения принципиально подходит любой датчик, который может регистрировать и передавать данные вышеуказанного типа. Например, могут применяться полупроводниковые приемопередатчики, на которые ток через индуктивную связь подается от блока обработки результатов.
Согласно одной форме осуществления датчик является пассивным датчиком. Этот пассивный датчик соединяется посредством радиосвязи с передающим и принимающим устройством. Опрашивающий сигнал посылается по радиолинии на пассивный датчик. Посредством взаимодействия с датчиком вырабатывается ответный сигнал, который посылается обратно на устройство опроса, которое теперь служит в качестве приемного устройства.
Чтобы в приемном устройстве отделить сигнал, посылаемый обратно датчиком от сигнала, выдаваемого на датчик, требуется разделительный механизм. Это происходит, например, посредством того, что выдаваемый датчиком сигнал имеет другую частоту, чем подаваемый на датчик сигнал. Дополнительно или альтернативно к изменению частоты, может быть принято во внимание временное смещение между сигналами.
Если конструктивный элемент находится в состоянии покоя, то обратно посылается специфический, воспроизводимый сигнал. Посредством давления, температуры, напряжения и т.д., которые действуют на конструктивный элемент или в конструктивном элементе, сигнал изменяется снова с возможностью воспроизводства.
Поэтому согласно одной форме осуществления датчик содержит устройство для преобразования электромагнитных волн в механические волны и наоборот. Для этого датчик может быть выполнен с антенной для беспроводного приема и для беспроводной передачи радиосигналов. В одном варианте датчик посредством кабеля соединен с антенной, которая передает сигналы непосредственно на приемное устройство или наоборот принимает их от него. Для предотвращения негативных эффектов при передаче данных, которые могут возникнуть, например, вследствие воздействия экранирования от металлических частей на радиолинии, соотнесенная с датчиком антенна располагается таким образом, что на радиолинии к передающему/приемному устройству отсутствуют какие-либо металлические части.
Одна форма осуществления изобретения предусматривает, что датчик выполнен в виде ПАВ-конструктивного элемента (ПАВ - surface accoustic waves (SAW)). На датчике происходит возбуждение механических поверхностных волн, поведение которых изменяется посредством воздействия таких физических величин, как давление, температура, напряжение. Это разъясняется на примере:
ПАВ-конструктивный элемент состоит из пьезоэлектрического кристалла-подложки, на который наносятся металлические структуры (рефлекторы). ПАВ-датчик посредством антенны соединяется по радиосвязи с передающим и считывающим устройством. Передающее и считывающее устройство посылает электромагнитный сигнал, который принимается датчиком-антенной. Этот сигнал посредством специального преобразователя, находящегося на ПАВ-датчике, преобразуется в механические колебания. Получающиеся в результате волны распространяются на поверхности пьезоэлектрического кристалла. На вышеназванных рефлекторах поверхностные волны частично отражаются. Затем эти поверхностные волны снова преобразуется в электромагнитные волны. Так как в зависимости от таких физических величин, как, например, температура, давление, напряжение, кристалл расширяется или сжимается, это приводит к изменению времени пробега сигнала.
Из радиоцентра к датчику посылается электромагнитный высокочастотный импульс. Этот импульс принимается антенной датчика и с помощью преобразователя (например, встречно-штыревого преобразователя) преобразовывается в распространяющуюся механическую поверхностную волну. В ходе лучей этих механических волн на поверхности датчика лежат отражательные (частично отражательные) структуры, которые сконструированы там в индивидуальной, характерной последовательности. Из отдельного посылаемого импульса возникает множество специфических импульсов, которые отражаются обратно к преобразователю. Там они снова преобразовываются в электромагнитные волны и посылаются антенной датчика в качестве ответного сигнала обратно к радиоцентру. Ответный сигнал содержит желаемые информационные параметры о количестве и положении рефлекторов, их отражающего коэффициента, а также скорости распространения акустической волны. Эта информационные параметры является непосредственными информационными параметрами для идентификации конструктивного элемента, физических свойств конструктивного элемента, места и перемещений конструктивного элемента и/или срока использования конструктивного элемента. Посредством соответствующей калибровки в соотнесенном устройстве обработки данных можно вычислить желаемые данные.
Скорость распространения акустических волн обычно составляет лишь несколько 1000 м/с, например 3500 м/с. Таким образом, создается возможность сохранения высокочастотного импульса на маленьком чипе (датчике) так долго, пока электромагнитные эхо-сигналы от окружающих предметов не затухнут. Датчик может состоять из пьезоэлектрического кристалла или пьезоэлектрической системы слоев. Названные структуры наносятся путем осаждения пара или иным путем.
Конструктивные элементы указанного типа частично собираются в металлической оболочке или имеют металлический кожух. Например, шиберные плиты расположены в металлических кассетах и размещены в металлическом шиберном механизме. Металлические элементы вызывают экранирование по отношению к электромагнитным лучам. В этом случае при радиопередаче данных от датчика к антенне изобретение предусматривает выполнение соответствующей металлической части (металлического кожуха), смежной с антенной датчика, с выемкой для пропускания радиосигналов. Следующая особенность заключается в расположении датчика в краевой области конструктивного элемента для того, чтобы сделать возможным оптимальную передачу по радио. «Краевая область» означает, например, «холодная сторона конструктивного элемента». Под этим понимается участок конструктивного элемента, который при эксплуатации нагревается меньше всего. Например, у шиберной плиты это краевая область плиты, в то время как вокруг области сливного отверстия преобладают наивысшие температуры.
У футеровочного кирпича для ковша это будет сторона кирпича, смежная с наружной стороной металлической оболочки. У пористых керамических плит для подачи и диспергирования продуваемого газа датчик расположен, предпочтительно, на конце со стороны подачи газа.
В вышеуказанном варианте с кабельным соединением между датчиком и антенной количество конструктивных элементов сокращается, так как становится возможным прямая передача данных от антенны с датчиком к приемно-передающей станции, поскольку антенна расположена на месте, которое позволяет осуществлять передачу без помех на приемно-передающую станцию. Кабель может быть гибким высокочастотным кабелем, например, из меди (Cu) с политетрафторэтиленом (PTFE) или керамики в качестве диэлектрика, вследствие чего улучшается термостойкость.
Датчик по меньшей мере частично может состоять из антикоррозионной стали, например, стали марки 1.4845. Уплотнения для указанных применений состоят из жаропрочных материалов, например фтороэластомера.
Изготовитель огнеупорного конструктивного элемента располагает данными калибровки, из которых можно рассчитать, какая температура на определенном месте конструктивного элемента соответствует какой температуре на других местах конструктивного элемента. Так, например, для определенного материала при измеренной температуре Х°С в краевой области шиберной плиты можно сделать вывод о температуре Y°C в области протекания.
Отраженные механические волны или же возникающие из них ответные сигналы делают возможным, как описано, оценку желаемых информационных параметров, включая такие физические данные, как напряжения в конструктивном элементе, а также время эксплуатации при тепловой нагрузке и т.д.
Посредством плавающего («незакрепленного») монтажа датчика возможно точное измерение температуры. Посредством монтажа датчика с жестким соединением в конструктивном элементе (то есть, конструктивный элемент и датчик жестко соединены) можно регистрировать другие характеристические величины, такие как механические напряжения. Измеряемые величины могут быть установлены раздельно.
Относящийся к этому способ контроля имеет в самой общей форме осуществления следующие этапы:
- посылка из радиоцентра на датчик радиосигнала,
- получение радиосигнала посредством датчика,
- обработка, преобразование и/или кодирование сигнала посредством датчика или в датчике,
- посылка ответного радиосигнала от датчика в радиоцентр,
- обработка радиосигналов и переданных с ними информационных параметров, а также согласование полученных из этого характеристических величин с заданными данными в устройстве обработки данных.
Другие признаки способа были описаны ранее на основании задачи и принципа действия датчика и вытекают из признаков зависимых признаков формулы изобретения и нижеследующих примеров. Описанные в них признаки могут быть существенными для применения изобретения по отдельности или в различных комбинациях.
Далее изобретение поясняется с помощью различных примеров осуществления, при этом фигуры изображены очень схематично. При этом показано на:
Фиг.1: вид в перспективе пьезоэлектрического кристалла-датчика,
Фиг.2: вид в перспективе огнеупорного конструктивного элемента в форме кирпича,
Фиг.3: вид сверху на собранную в металлической оболочке шиберную плиту,
Фиг.4: вид шиберного механизма с установленной шиберной плитой внутри системы наблюдения и контроля.
Одинаковые или же одинаковые по функциональному назначению детали представлены на фигурах одними и теми же ссылочными обозначениями.
На фиг.1 показан прямоугольный пьезоэлектрический кристалл (изображен без своей стеклокерамической оболочки). На одной его поверхности нанесены частично отражающие структуры 12, а именно, с характерным (специфическим для датчика) расположением. Далее можно распознать встречно-штыревой преобразователь 14. Электрические контакты выведены из кристалла для соединения, таким образом, сборных шины встречно-штыревого преобразователя с антенной 16. Кристалл со своими структурами 12 и преобразователем 14 образует датчик 10.
Посылаемый устройством управления (60 на фиг.4) электромагнитный высокочастотный импульс (изображен схематически стрелкой 18) достигает датчика 10, принимается антенной 16 и посредством преобразователя 14 преобразовывается в распространяющуюся механическую поверхностную волну. Из опрашивающего сигнала возникает множество поверхностных волн, которые в соответствие с расположением структур 12 к моменту измерения отражаются обратно в преобразователь 14 и через преобразователь 14 преобразуются обратно в электромагнитный сигнал (стрелка 20). Этот сигнал принимается устройством 60 управления с предвключенной антенной 50 и передается далее на устройство 70 обработки данных (фиг.4) и там обрабатывается.
Датчик 10 согласно фиг.1 может, например, быть установлен в углубление 25 прямоугольного огнеупорного магнезитового кирпича 26 (фиг.2) и быть залит там строительным раствором.
На фиг.3 показано расположение датчика 10 в шиберной плите 30, которая зацементирована в подвижную металлическую оболочку 32 (заполненный раствором шов 31). Литник шиберной плиты 30 обозначен позицией 34. На краю 36 шиберной плиты 30 в керамический материал шиберной плиты 30 вмонтирован (зацементирован) датчик 10. С помощью датчика 10 в данном случае должен идентифицироваться конструктивный элемент (специальная шиберная плита) и его температура. Для защиты датчик 10 расположен в оболочке из стеклокерамики. Антенна 16 выступает над кристаллом. Соседний соответствующий участок металлической оболочки 32 (изображен на фиг.3 углом α) имеет напротив антенны 16 (неразличимую) выполненную в форме прорези выемку для возможности подвода электромагнитных волн 18, 20 снаружи к антенне 16 и отвода их от нее.
На фиг.4 показана соответствующая часть шиберного механизма 40 для приема кассеты 32 и шиберной плиты 30. Шиберная система регулирует поток стали от ковша в расположенное далее промежуточное разливочное устройство.
Датчик 10 с антенной 16 изображен схематично. Выполненное в форме прорези отверстие в кассете 32 обозначено позицией 38. Непосредственно напротив антенны 16 датчика (чипа) 10 находится следующая антенна 42, которая посредством термостойкого коаксиального кабеля 44 соединена с третьей антенной 46, которая по линии радиосвязи 48 находится в соединении с вышеуказанной антенной 50. Передача сигналов (высокочастотный сигнал) происходит от управляющего устройства 60 через антенну 50 к антенне 46 (беспроводно) и оттуда (по проводам) к антенне 42 и снова беспроводно к антенне 16 датчика 10. На обратном пути отраженный датчиком 10 сигнал попадает в устройство 60 управления. Датчик 10 способен посылать сигнал, который содержит информацию о фактической температуре, а также заранее присвоенную идентификационную кодировку. При этом датчик 10 получает электромагнитный импульс (в гигагерцевом диапазоне частот), обрабатывает его и посылает назад серию характеристических электромагнитных импульсов. Из временных интервалов этих импульсов можно декодировать идентификацию и температуру. Датчик базируется на ПАВ-технологии и оснащен антенной для 16 для передачи по радио.
Шиберный механизм 40 состоит из металла. Поэтому необходимо электромагнитный сигнал из шиберного механизма 40 выводить по кабелю. Для этого напротив антенны 16 неподвижно (жестко) устанавливается антенна 42. Подключенная по кабелю 44 антенна 46 устанавливается снаружи на шиберном механизме 40.
При эксплуатации устройство 60 управления посылает электромагнитные сигналы (импульсы) от антенны 50 на антенну 46. От антенны 46 каждый сигнал передается по коаксиальному кабелю 44 на антенну 42, которая через антенну 16 передает сигнал по радио на датчик 10. Датчик 10 преобразовывает сигнал в поверхностную волну, которая после отражения на структурах 12 содержит информационные параметры о температуре датчика или же идентификацию конструктивного элемента 30. Эта серия импульсов передается датчиком 10 по антеннам на устройство 60 управления. Устройство 60 управления вычисляет идентификацию и температуру из количества импульсов и их временных интервалов. Вычисленные данные передаются на устройство 70 обработки данных.
Устройство 70 обработки данных может извлекать или же рассчитывать из отправленных датчиком данных следующие информационные параметры:
Функция идентификации:
- Идентификация шиберной плиты 30 перед эксплуатацией.
- Идентификация шиберной плиты 30 во время эксплуатации.
- Идентификация шиберной плиты 30 после эксплуатации.
На основе идентификации состояние шиберной плиты 30 может быть соотнесено с данными сталеплавильного завода.
Измерение температуры:
- Определение продолжительности литья и срока службы посредством оценки температур в определенные моменты времени.
- Количество тепловых ударов посредством измерения температур в определенные моменты времени.
- Превышение, падение или достижение критических диапазонов температур, например, температуры фазового превращения оксида циркония в шиберной плите 30 при температуре 1050°С до 950°С.
- Раннее выявление неполадок, например пробоев.
Все посланные/полученные сигналы регистрируются и обрабатываются посредством подключенного устройства 70 обработки данных.
Пример согласно фиг.4 может быть изменен следующим образом. Вместо датчика 10 с радиосвязью с антенной 3 применяется стержневой датчик, который соединен с антенной по кабелю. При этом датчик находится в шиберной плите, то есть на «горячей стороне», антенна - на расстоянии от него, в области, где преобладают более низкие температуры. Шунтирование металлической кассеты шиберной пластины происходит с помощью кабеля. Антенна расположена так, что возникает работающая без помех радиосвязь с антенной 50 устройства 60 управления. При такой форме осуществления антенны, обозначенные на фиг.4 позициями 42 и 46, являются излишними.

Claims (21)

1. Конструктивный элемент на основе керамической массы, который при рабочих температурах свыше 800°С находится в контакте с горячим расплавом или продуктом обжига и при этом является в значительной мере стабильным, при этом в конструктивном элементе (26, 30) интегрирован по меньшей мере один датчик (10), с помощью которого во время эксплуатации конструктивного элемента (26, 30) предусмотрена возможность осуществляемой в зависимости от времени регистрации и передачи на устройство (70) обработки данных по меньшей мере одного из следующих информационных параметров: идентификация конструктивного элемента (26, 30), физические свойства конструктивного элемента (26, 30), перемещения конструктивного элемента (30), срок использования конструктивного элемента (26, 30), место конструктивного элемента (26, 30), для обработки этого параметра.
2. Конструктивный элемент по п.1, датчик (10) которого изготовлен в оболочке.
3. Конструктивный элемент по п.2, оболочка которого состоит из стеклокерамики.
4. Конструктивный элемент по п.2, оболочка которого не экранирует электромагнитные волны.
5. Конструктивный элемент по п.1, датчик (10) которого является пассивным датчиком.
6. Конструктивный элемент по п.1, датчик (10) которого выполнен с антенной (16) для беспроводного приема и беспроводной передачи радиосигналов.
7. Конструктивный элемент по п.1, датчик (10) которого по кабелю соединен с антенной (16) для передачи радиосигналов.
8. Конструктивный элемент по п.1, датчик (10) которого имеет устройство (14) для преобразования электромагнитных волн в механические волны и наоборот.
9. Конструктивный элемент по п.1, датчик (10) которого имеет поверхностные структуры (12), которые отражают поверхностные волны.
10. Конструктивный элемент по п.1, датчик (10) которого имеет устройство для приема и передачи высокочастотных сигналов.
11. Конструктивный элемент по п.1, датчик (10) которого содержит пьезоэлектрический кристалл.
12. Конструктивный элемент по п.6, который имеет смежную с датчиком (10) металлическую оболочку (32), при этом оболочка (32), которая является смежной с антенной (16) датчика (10), имеет выемку (28) для пропускания радиосигналов.
13. Способ контроля конструктивного элемента по одному из пп.1-12, который при рабочих температурах свыше 800°С находится в контакте с горячим расплавом или продуктом обжига, со следующими этапами:
13.1 посылка из радиоцентра на датчик радиосигнала,
13.2 получение радиосигнала посредством датчика,
13.3 обработка, преобразование и/или кодирование сигнала посредством датчика или в датчике,
13.4 посылка ответного радиосигнала от датчика в радиоцентр,
13.5 обработка радиосигналов и переданных с ними информационных параметров, а также согласование полученных из этого характеристических величин с заданными данными в устройстве обработки данных.
14. Способ по п.13, в котором отправленные и принятые радиоцентром радиосигналы являются электромагнитными волнами.
15. Способ по п.14, в котором датчик посредством преобразователя преобразовывает полученные электромагнитные волны в механические поверхностные волны и направляет их далее по поверхности датчика, который выполнен с отражающими поверхностными структурами, которые по меньшей мере частично отражают механические поверхностные волны обратно на преобразователь, который заново преобразовывает эти механические поверхностные волны в электромагнитные волны и посылает их обратно в радиоцентр.
16. Способ по п.13, в котором посланные и полученные радиоцентром сигналы обрабатываются устройством обработки данных, сравниваются с заданными значениями и отображаются.
RU2009139283/07A 2007-05-05 2008-04-12 Конструктивный элемент на основе керамической массы RU2433564C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007021172A DE102007021172B4 (de) 2007-05-05 2007-05-05 Verwendung eines Sensors
DE102007021172.6 2007-05-05

Publications (2)

Publication Number Publication Date
RU2009139283A RU2009139283A (ru) 2011-06-20
RU2433564C2 true RU2433564C2 (ru) 2011-11-10

Family

ID=39809695

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009139283/07A RU2433564C2 (ru) 2007-05-05 2008-04-12 Конструктивный элемент на основе керамической массы

Country Status (21)

Country Link
US (1) US20100127832A1 (ru)
EP (3) EP2302946A3 (ru)
JP (1) JP2010526306A (ru)
KR (1) KR101278735B1 (ru)
CN (1) CN101690252B (ru)
AR (1) AR066351A1 (ru)
AT (1) ATE551843T1 (ru)
AU (1) AU2008248990B2 (ru)
BR (1) BRPI0810465A2 (ru)
CA (1) CA2684390A1 (ru)
CL (1) CL2008001298A1 (ru)
DE (1) DE102007021172B4 (ru)
ES (1) ES2382785T3 (ru)
MX (1) MX2009011648A (ru)
PL (1) PL2145501T3 (ru)
PT (1) PT2145501E (ru)
RU (1) RU2433564C2 (ru)
TW (1) TW200907319A (ru)
UA (1) UA92121C2 (ru)
WO (1) WO2008135135A2 (ru)
ZA (1) ZA200907741B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125197A1 (ru) * 2017-12-19 2019-06-27 Научно-Технический Центр "Радиотехнических Устройств И Систем" С Ограниченной Ответственностью Способ и система автоматического контроля контактного провода электротранспорта

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017935A1 (de) * 2009-04-17 2010-10-21 Man Turbo Ag Turbomaschinenkomponente und damit ausgerüstete Turbomaschine
EP2296219B1 (de) * 2009-09-04 2011-08-24 Refractory Intellectual Property GmbH & Co. KG Verwendung eines Hohlleiters
DE102013227051B4 (de) * 2013-12-20 2017-03-30 Leoni Kabel Holding Gmbh Messanordnung und Verfahren zur Temperaturmessung sowie Sensorkabel für eine derartige Messanordnung
DE102015122553A1 (de) 2015-12-22 2017-06-22 Endress+Hauser Flowtec Ag Wandlervorrichtung sowie mittels einer solchen Wandlervorrichtung gebildetes Meßsystem
WO2018063779A1 (en) 2016-09-30 2018-04-05 Mountain Vector Energy, Llc Systems for real-time analysis and reporting of utility usage and spend
US10436661B2 (en) * 2016-12-19 2019-10-08 Sporian Microsystems, Inc. Heat resistant sensors for very high temperature conditions
US11346698B2 (en) 2019-06-21 2022-05-31 Sporian Microsystems, Inc. Compact pressure and flow sensors for very high temperature and corrosive fluids
US11940336B2 (en) 2021-03-26 2024-03-26 Sporian Microsystems, Inc. Driven-shield capacitive pressure sensor
DE102021118719B3 (de) 2021-07-20 2022-08-04 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. (IFW Dresden e.V.) Vorrichtung und verfahren zur elektrischen charakterisierung von eigenschaften von stoffen, baugruppen und/oder bauteilen in einer umgebung mit hoher temperatur
DE102022120180A1 (de) * 2022-08-10 2024-02-15 Refratechnik Holding Gmbh Sortierverfahren und Verfahren zum Recycling von feuerfesten geformten Erzeugnissen, vorzugsweise von Steinen, sowie deren Verwendung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961290A (en) * 1975-02-07 1976-06-01 Texas Instruments Incorporated Programmable phase coded surface wave device
US5369327A (en) * 1993-03-04 1994-11-29 AVL Gesellschaft Fur Verbrennungskraftmaschinen und Messtechnik m.b.H Prof.Dr.Dr.h.c. Hans List Piezoelectric crystal element
RU2126980C1 (ru) * 1997-07-02 1999-02-27 Научно-исследовательский институт измерительных систем Способ обнаружения и идентификации объекта
US6806808B1 (en) * 1999-02-26 2004-10-19 Sri International Wireless event-recording device with identification codes

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481809A (en) * 1983-08-29 1984-11-13 Labate M D Method and apparatus for monitoring erosion in gas stirring devices in molten metal ladles
DE3503221A1 (de) * 1985-01-31 1986-08-14 Didier-Werke Ag, 6200 Wiesbaden Feuerfester gasdurchlaessiger stein
DE3526391A1 (de) * 1985-07-24 1987-02-05 Werner Fischer Verfahren und vorrichtung zur feststellung des verschleisses von feuerfest-steinen
JP2744853B2 (ja) * 1991-03-29 1998-04-28 品川白煉瓦株式会社 スライドバルブ装置用プレート煉瓦カートリッジ及び該カートリッジを用いたスライドバルブ装置
EP0664456B1 (en) * 1994-01-20 1999-07-07 Honda Giken Kogyo Kabushiki Kaisha Acceleration sensor
JP2905094B2 (ja) * 1994-07-01 1999-06-14 富士通株式会社 分波器パッケージ
DE59604482D1 (de) * 1995-08-10 2000-03-30 Siemens Ag Vorrichtung zur Überwachung des Vakuums eines Vakuumschalters
DE19542038A1 (de) * 1995-11-10 1997-05-15 Roth Technik Gmbh Katalysator
DE19805584C2 (de) * 1998-02-12 2000-04-13 Daimler Chrysler Ag System und Verfahren zur Materialüberprüfung von Werkstoffen, sowie Werkstoff und Verfahren zu seiner Herstellung
GB2340226A (en) * 1998-08-05 2000-02-16 British Steel Plc Refractory brick comprising condition measuring device
DE19850959A1 (de) * 1998-11-05 2000-05-11 Bosch Gmbh Robert Meßfühler und Verfahren zu seiner Herstellung
JP2001004283A (ja) * 1999-06-23 2001-01-12 Sumitomo Heavy Ind Ltd ロータリーキルンの監視方法
AT410041B (de) * 2000-04-17 2003-01-27 Voest Alpine Ind Anlagen Verfahren und einrichtung zur aufnahme von messdaten in einem hüttenwerk
DE10102288C2 (de) * 2001-01-19 2003-10-30 Reinz Dichtungs Gmbh & Co Kg Metallische Flachdichtung
US6642720B2 (en) * 2001-07-25 2003-11-04 General Electric Company Wireless sensor assembly for circumferential monitoring of gas stream properties
EP1485219B1 (de) * 2002-03-25 2009-12-02 Stopinc Aktiengesellschaft Verfahren zum betrieb eines schiebeverschlusses sowie schiebeverschluss
DE10231340B3 (de) * 2002-07-09 2004-01-29 Hf-Elektronik Systeme Gmbh Transponderschaltung
US7582359B2 (en) * 2002-09-23 2009-09-01 Siemens Energy, Inc. Apparatus and method of monitoring operating parameters of a gas turbine
JP4175085B2 (ja) * 2002-10-29 2008-11-05 三菱マテリアル株式会社 ワイヤレス温度計測モジュール
DE10307360A1 (de) * 2003-02-21 2004-10-07 Ceramics Gmbh & Co. Kg Dehnungssensor, insbesondere für einen piezokeramischen Biegewandler
EP1654083B1 (fr) * 2003-07-22 2006-12-13 Vesuvius Group S.A Methode de decision de reutilisation ou de rejet d'une plaque refractaire d'une fermeture a tiroir et dispositif prevu a cet effet
DE10347216A1 (de) * 2003-10-10 2005-05-12 Bosch Gmbh Robert Glühstiftkerze mit integriertem Drucksensor
DE102004012364A1 (de) * 2004-03-13 2005-09-29 Robert Bosch Gmbh Keramische Glühstiftkerze mit in Glühstift integriertem Drucksensor
DE102005024636B3 (de) * 2005-05-30 2006-10-19 Siemens Ag Temperatursensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961290A (en) * 1975-02-07 1976-06-01 Texas Instruments Incorporated Programmable phase coded surface wave device
US5369327A (en) * 1993-03-04 1994-11-29 AVL Gesellschaft Fur Verbrennungskraftmaschinen und Messtechnik m.b.H Prof.Dr.Dr.h.c. Hans List Piezoelectric crystal element
RU2126980C1 (ru) * 1997-07-02 1999-02-27 Научно-исследовательский институт измерительных систем Способ обнаружения и идентификации объекта
US6806808B1 (en) * 1999-02-26 2004-10-19 Sri International Wireless event-recording device with identification codes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125197A1 (ru) * 2017-12-19 2019-06-27 Научно-Технический Центр "Радиотехнических Устройств И Систем" С Ограниченной Ответственностью Способ и система автоматического контроля контактного провода электротранспорта
RU2750823C1 (ru) * 2017-12-19 2021-07-05 Научно-Технический Центр "Радиотехнических Устройств И Систем" С Ограниченной Ответственностью Способ и система автоматического контроля контактного провода электротранспорта

Also Published As

Publication number Publication date
JP2010526306A (ja) 2010-07-29
EP2145501A2 (de) 2010-01-20
ES2382785T3 (es) 2012-06-13
AR066351A1 (es) 2009-08-12
PL2145501T3 (pl) 2012-07-31
EP2302946A3 (de) 2011-07-20
CN101690252B (zh) 2012-11-14
DE102007021172A1 (de) 2008-11-06
CL2008001298A1 (es) 2009-10-23
TW200907319A (en) 2009-02-16
EP3379839B1 (de) 2020-07-15
WO2008135135A2 (de) 2008-11-13
RU2009139283A (ru) 2011-06-20
ATE551843T1 (de) 2012-04-15
UA92121C2 (ru) 2010-09-27
MX2009011648A (es) 2009-11-10
CN101690252A (zh) 2010-03-31
KR101278735B1 (ko) 2013-06-25
EP2302946A2 (de) 2011-03-30
KR20100015626A (ko) 2010-02-12
PT2145501E (pt) 2012-05-30
AU2008248990B2 (en) 2011-12-08
BRPI0810465A2 (pt) 2014-11-11
WO2008135135A3 (de) 2008-12-31
AU2008248990A1 (en) 2008-11-13
ZA200907741B (en) 2010-08-25
EP2145501B1 (de) 2012-03-28
DE102007021172B4 (de) 2010-11-18
CA2684390A1 (en) 2008-11-13
US20100127832A1 (en) 2010-05-27
EP3379839A1 (de) 2018-09-26

Similar Documents

Publication Publication Date Title
RU2433564C2 (ru) Конструктивный элемент на основе керамической массы
AU2011323008B2 (en) Wireless lance
KR20120109556A (ko) 재료 프로세싱 어셈블리들을 위한 열 감지
US9546909B2 (en) Apparatus and methods for continuous temperature measurement of molten metals
WO2021207044A1 (en) Method and apparatus for evaluation of a status of a material in metallurgical vessels
RU2770207C1 (ru) Стекловаренная печь, оснащенная оптическими волокнами
EP1438553B1 (en) Pyrometer
US11712818B2 (en) Wear detector for glass furnace
RU2000871C1 (ru) Термозонд дл сталеплавильных печей
Hopf, M.* & Rossouw New opportunities-exhaustive monitored copper coolers for submerged arc furnaces
GB2340226A (en) Refractory brick comprising condition measuring device
KR100361760B1 (ko) 레들용 슬래그 검출장치의 암,수콘넥터
CA1076264A (en) Self-healing thermocouple
JP5082035B2 (ja) 溶融金属の温度測定装置及び温度測定方法
JP2021188895A (ja) 耐火物ライニング構造体
JP2023099941A (ja) 連続測温プローブ及び連続測温プローブの固定構造
CN2122698U (zh) 漂浮式钢水连续测温装置
GB1586015A (en) Thermocouple devices for measurement of temperature
KR20050070383A (ko) 소성로의 온도 측정장치
AU2002362435A1 (en) Pyrometer

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180413