RU2432557C2 - Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов - Google Patents

Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов Download PDF

Info

Publication number
RU2432557C2
RU2432557C2 RU2009148380/28A RU2009148380A RU2432557C2 RU 2432557 C2 RU2432557 C2 RU 2432557C2 RU 2009148380/28 A RU2009148380/28 A RU 2009148380/28A RU 2009148380 A RU2009148380 A RU 2009148380A RU 2432557 C2 RU2432557 C2 RU 2432557C2
Authority
RU
Russia
Prior art keywords
product
basing
stand
bed
torsion bar
Prior art date
Application number
RU2009148380/28A
Other languages
English (en)
Other versions
RU2009148380A (ru
Inventor
Виктор Борисович Федоров (RU)
Виктор Борисович Федоров
Иван Федорович Юрин (RU)
Иван Федорович Юрин
Илья Вячеславович Шишкоедов (RU)
Илья Вячеславович Шишкоедов
Артем Викторович Козлов (RU)
Артем Викторович Козлов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет"
Priority to RU2009148380/28A priority Critical patent/RU2432557C2/ru
Publication of RU2009148380A publication Critical patent/RU2009148380A/ru
Application granted granted Critical
Publication of RU2432557C2 publication Critical patent/RU2432557C2/ru

Links

Images

Landscapes

  • Testing Of Balance (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Изобретение относится к области динамических средств определения массовых и инерционных характеристик, а именно к балансировочным стендам с вертикальной осью вращения. Стенд содержит станину, базирующее устройство в виде соосных конических газостатических подшипников, установленных в корпусе, упругую подвеску, систему датчиков, причем упругая подвеска содержит блок упругих пластин и два торсиона. Один торсион выполнен с возможностью фиксации одним концом за базирующее устройство, а другим за изделие. Второй торсион выполнен с возможностью изменения жесткости и одним концом консольно соединен со станиной, а другим с базирующим устройством. При этом со стороны базирующего устройства второй торсион установлен на блок подшипников, которые соединяются посредством упругих пластин со станиной. При этом упругая подвеска и базирующее устройство обеспечивают изделию три степени свободы: две вращательные и одну поступательную. Система измерительных преобразователей регистрирует перемещения, положение и форму изделия в базирующем устройстве, и перемещения базирующего устройства по доступным ему двум степеням свободы. Технический результат заключается в возможности повышения производительности и точности измерений. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к области динамических средств определения массовых и инерционных характеристик, а именно к балансировочным стендам с вертикальной осью вращения.
Из уровня техники известен балансировочный стенд с вертикальной осью вращения (патент RU 2292533 С2 от 27.01.2007 МПК 6 G01M 1/02), состоящий из станины, базирующего устройства в виде соосных конических газостатических подшипников, установленных в корпусе, упругой колебательной подвески, выполненной в виде упругих консольных пластин с массивным основанием и соединяющей базирующее устройство со станиной, силоизмерительных датчиков, установленных в подвесах. Стенд позволяет определять дисбаланс и момент дисбаланса роторов различной конфигурации.
Основным недостатком данного стенда является невозможность определения полного комплекса массово-инерционных характеристик (девять массово-инерционных характеристик, исключая массу изделия). Совмещение функции несущего элемента и элемента жесткости существенно снижает диапазон возможных частот и амплитуд колебания по степеням свободы, реализуемым упругой подвеской. Газоподводящая арматура к газостатическим подшипникам является присоединенной массой и дополнительной жесткостью, которые затруднительно правильно учитывать, что ведет к увеличению погрешности стенда.
Из уровня техники известен стенд для динамической балансировки изделий (Тверской М.М. Автоматизированные стенды для контроля и расчета коррекции распределения масс летательных аппаратов: // журнал Динамика, прочность и износостойкость машин, выпуск 1, 1995 г., с.71-72), состоящий из станины, рамы, установленной на динамометрических опорах, прикрепленных к станине, базирующего устройства в виде соосных конических газостатических подшипников, установленных в корпусе, упругой колебательной подвески, выполненной в виде пластин, установленных в двух взаимно перпендикулярных плоскостях и соединяющих базирующее устройство с рамой, и торсиона, который одним концом жестко соединен со станиной, а другим может присоединяться к изделию. Упругая подвеска обеспечивает базирующему устройству три степени свободы. Стенд позволяет определять девять массово-инерционных характеристик изделия.
Основным недостатком данного стенда является использование в упругой подвеске пластин, обеспечивающих вращательную и поступательную степени свободы базирующему устройству, что приводит к нелинейному закону изменения жесткости при вращательном движении и существенным трудностям в определении оси вращения, кроме того, совмещение функции несущего элемента и элемента жесткости существенно снижает диапазон возможных частот и амплитуд колебания по степеням свободы, реализуемым упругой подвеской. Газоподводящая арматура к газостатическим подшипникам является присоединенной массой и дополнительной жесткостью, которые весьма затруднительно правильно учесть, что ведет к увеличению погрешности стенда.
В качестве прототипа выбран стенд для комплексного определения массогеометрических характеристик (Федоров В.Б. Контроль и коррекция массогеометрических характеристик летательных аппаратов: // текст лекций // часть III -Челябинск, Изд.-во ЮУрГУ, 2004 г. с.39-42), содержащий систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненном в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенном упругой подвеской со станиной, причем упругая подвеска содержит два торсиона, один из которых выполнен с возможностью соединения одним концом за базирующее устройство, а другим за изделие. Упругая подвеска обеспечивает базирующему устройству две степени подвижности. Стенд позволяет определять девять массово-инерционных характеристик изделий.
Основным недостатком данного стенда является наличие присоединенной массы в виде рамы, что ведет к увеличению погрешности измерения, а также газоподводящая арматура к газостатическим подшипникам является присоединенной массой и дополнительной жесткостью, которые затруднительно правильно учитывать, что ведет к увеличению погрешности стенда.
Задачей предлагаемого технического решения является создание автоматизированного стенда, обладающего высокой скоростью и точностью измерений, для определения полного комплекса массово-инерционных характеристик роторов и осесимметричных баллистических летательных аппаратов, а также для калибровки систем управления и навигации баллистических летательных аппаратов.
Поставленная задача достигается тем, что в стенде комплексного определения массово-инерционных характеристик, содержащем систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненном в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенном упругой подвеской со станиной, причем упругая подвеска содержит два торсиона, один из которых выполнен с возможностью соединения одним концом за базирующее устройство, а другим за изделие, согласно изобретению второй торсион выполнен с возможностью изменения жесткости и одним концом консольно соединен со станиной, а другим с базирующим устройством, при этом со стороны базирующего устройства торсион установлен на блок подшипников, которые соединяются посредством упругих пластин со станиной.
Также поставленная задача достигается тем, что второй торсион выполнен с переменным внешним диаметром, причем одним концом он закреплен на станине, а другим концом с увеличенным внешним диаметром соединен с базирующим устройством и установлен на блок подшипников таким образом, что момент инерции сечения торсиона в области с увеличенным внешним диаметром на несколько порядков выше момента инерции сечения торсиона в его рабочей части.
Также поставленная задача достигается тем, что первый торсион выполнен в виде упругой пластины, которая выполнена с возможностью закрепления серединой на изделии, а концами на базирующем устройстве.
Другой особенностью стенда является то, что в корпусе базирующего устройства соосно газовым подшипникам установлена турбина для разгона и торможения изделия.
Также поставленная задача достигается тем, что базирующее устройство выполнено с возможностью регулирования параметров газостатических подшипников.
Также поставленная задача достигается тем, что система измерительных преобразователей выполнена с возможностью регистрации перемещения, скорости, ускорения, положение и формы изделия в базирующем устройстве, и перемещения, скорости, ускорения базирующего устройства по доступным ему степеням свободы.
Применение в качестве базирующего устройства соосных конических газовых подшипников позволяет повысить точность и однозначность базирования изделия, обеспечить необходимую вращательную степень свободы изделию с минимальным трением, кроме того, применение конических газовых подшипников позволяет косвенным путем определить пространственное положение действительной аэродинамической оси изделия.
Применение в упругой подвеске торсиона позволяет реализовать необходимую вращательную степень свободы базирующему устройству, получить по направлению данной степени свободы практически линейный закон изменения жесткости, точно определить ось поворота, а также подводить газ, питающий газовые подшипники, через полый торсион, что исключает наличие трудно учитываемых дополнительных массы и жесткости подводящей арматуры.
Выполнение второго торсиона установленным на блок подшипников со стороны базирующего устройства позволяет свести к минимуму влияние изгиба торсиона на его крутильную жесткость, а применение газовых подшипников позволяет свести к минимуму потери на трение.
Выполнение второго торсиона с областью с увеличенным внешним диаметром в месте крепления к базирующему устройству и месте установки на блок подшипников позволяет повысить несущую способность блока газостатических подшипников за счет увеличения площади опорной поверхности и исключить влияние изгибных напряжений на крутильную жесткость торсиона.
Применение упругих пластин для соединения станины и блока подшипников, на которые устанавливается торсион, позволяет реализовать необходимую поступательную степень свободы базирующему устройству и получить по направлению данной степени свободы практически линейный закон изменения жесткости.
Применение турбины разгона и торможения изделия, установленной в корпусе базирующего устройства, позволит повысить эффективность разгона и торможения изделия, устранить необходимость во внешних подключаемых устройствах разгона-торможения, использование которых приводит к возникновению «вредных» колебаний по причине несоосности оси вращения изделия в подшипнике и оси вращения приводного вала устройства.
Применение измерительных преобразователей, регистрирующих перемещения, позволяет повысить точность и стабильность измерения в сравнении с применением измерителей преобразователей регистрирующих усилия за счет более высокой чувствительности измерительных систем, исключения лишних преобразований физических величин, меньшей чувствительности к условиям внешней среды и меньшего изменения параметров измерительной системы с течением времени.
Применение измерительных преобразователей, регистрирующих положение и форму изделия в базирующем устройстве, а также выполнение базирующего устройства в виде соосных конических газостатических подшипников, установленных в корпусе с возможностью регулирования параметров газостатических подшипников, таких как расход газа и давление газа, позволяет проводить контроль положения аэродинамической оси и геометрии поверхности баллистических летательных аппаратов.
Применение измерительных преобразователей, регистрирующих перемещения, скорости, ускорения, положение изделия в базирующем устройстве, а также перемещения, скорости, ускорения базирующего устройства по доступным ему степеням свободы, позволяет проводить калибровку инерциальных навигационных систем баллистических летательных аппаратов.
Изобретение направлено на определения массово-инерционных характеристик роторов различной конфигурации на докритических режимах, осесимметричных баллистических летательных аппаратов и осесимметричных баллистических летательных аппаратов с изменяемыми массово-инерционными характеристиками, а также на калибровку системы навигации и управления баллистических летательных аппаратов.
Сущность предлагаемого технического решения поясняется чертежами, где на фиг.1 изображен стенд с упругой подвеской на основе двух торсионов и внешним разгонно-тормозящим устройством, на фиг.2 изображен стенд, где второй торсион выполнен с областью увеличенного внешнего диаметра в месте установки на блок подшипников, на фиг.3 изображен стенд с турбиной разгона-торможения изделия, установленной в корпусе базирующего устройства, вместо внешнего устройства разгона-торможения.
Согласно заявляемому техническому решению стенд (фиг.1) содержит: станину (на чертежах не показано), систему измерительных преобразователей (на чертежах не показано), базирующее устройство 1 в виде соосных конических газостатических подшипников 2, установленных в корпусе 3, упругую подвеску, состоящую из блока упругих пластин 4 и двух торсионов. Первый торсион 5 выполнен с возможностью фиксации одним концом за базирующее устройство 1, а другим за изделие 6. Второй торсион 7 выполнен с возможностью изменения жесткости и одним концом консольно соединен со станиной, а другим с базирующим устройством 1. Со стороны базирующего устройства 1 второй торсион 7 установлен на блок подшипников 8, которые соединяются посредством упругих пластин 4 со станиной. Внешнее устройство разгона и торможения изделия 9 фиксируется за станину и может присоединяться к носку изделия 6.
На фиг.2 изображен стенд, где второй торсион 7 выполнен с областью 11 с увеличенным внешним диаметром в месте установки на блок подшипников 8.
На фиг.3 изображен стенд с турбиной 10 разгона-торможения изделия, установленной в корпусе базирующего устройства, вместо внешнего устройства разгона-торможения.
Технический результат достигается тем, что на предлагаемом стенде производится комплексное определение девяти массово-инерционных характеристик за один установ изделия в базирующее устройство 1. Изделие 6 помещается в базирующее устройство 1, затем в газостатические подшипники 2 подается газ под давлением и с расходом, необходимыми для «всплытия» изделия 6. Далее системой измерительных преобразователей регистрируются параметры движения изделия 6 на стенде в различных режимах. Стенд позволяет реализовать три режима измерения. В первом режиме производится определение момента инерции Jx1x1. В этом режиме подключен первый торсион 5, изделие 6 отклоняется на определенный угол и совершает свободные колебания вокруг оси своего вращения в базирующем устройстве 1, производится регистрация амплитуды и периода колебаний изделия 6 по данной степени свободы, по полученным значениям автоматически вычисляется момент инерции. Таким образом, производится определение моментов инерции методом крутильных колебаний. Частота колебаний изделия порядка 3 Гц.
Во втором режиме производится измерение центральных моментов инерции Jx1y1, Jx1z1 и поперечных координат центра масс Z и Y. Это по сути балансировочный режим. Происходит движение изделия 6 по всем трем степеням свободы, вращение в базирующем устройстве 1 с угловой скоростью 3-4 об./с, колебание вокруг оси второго торсиона 7 и колебание в горизонтальной плоскости на блоке упругих пластин 4. При этом происходит измерение амплитуды и периода колебаний и по полученным значениям автоматически вычисляются инерционные характеристики.
В третьем режиме производится определение осевых моментов инерции Jz1z1, Jy1y1, Jy1z1 и координаты X центра масс. Базирующее устройство 1 с изделием 6 поворачивается на определенный угол вокруг оси второго торсиона 7, затем отпускается, и изделие 6 совместно с базирующим устройством 1 совершают свободные колебания. Регистрируются амплитуды и период колебаний. Затем изделие 6 поворачивается в базирующем устройстве 1 на 45 градусов и производится повторное измерение, затем производят еще одно измерение с поворотом изделия на 45 градусов. По полученным результатам автоматически вычисляются оставшиеся инерционные характеристики.
Таким образом, предлагаемое техническое решение - стенд комплексного определения массовых, центровочных и инерционных характеристик осесимметричных роторов - позволяет повысить эффективность процесса балансировки и соответствует требованию промышленной применимости, так как может быть многократно воспроизведено и реализовано на основе современных технологий с использованием высокой степени автоматизации процесса посредством компьютерной обработки результатов измерений и управления параметрами движения изделия на стенде. Конструкция экспериментально опробована в лабораториях кафедр «Автоматизация механосборочного производства» и «Двигатели летательных аппаратов» Южно-Уральского государственного университета (г.Челябинск).

Claims (5)

1. Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов, содержащий систему измерительных преобразователей, размещенную на станине и базирующем устройстве, выполненном в виде соосных конических газостатических подшипников, установленных в корпусе, и соединенном упругой подвеской со станиной, причем упругая подвеска содержит два торсиона, один из которых выполнен с возможностью соединения одним концом за базирующее устройство, а другим за изделие, отличающийся тем, что второй торсион выполнен с возможностью изменения жесткости и одним концом консольно соединен со станиной, а другим с базирующим устройством, при этом со стороны базирующего устройства торсион установлен на блок подшипников, которые соединяются посредством упругих пластин со станиной.
2. Стенд по п.1, отличающийся тем, что второй торсион выполнен с переменным внешним диаметром, причем одним концом он закреплен на станине, а другим концом с увеличенным внешним диаметром соединен с базирующим устройством и установлен на блок подшипников.
3. Стенд по п.1, отличающийся тем, что в корпусе базирующего устройства соосно газовым подшипникам установлена турбина для разгона и торможения изделия.
4. Стенд по п.1, отличающийся тем, что базирующее устройство выполнено с возможностью регулирования параметров газостатических подшипников.
5. Стенд по п.1, отличающийся тем, что система измерительных преобразователей выполнена с возможностью регистрации перемещения, скорости, ускорения, положения и формы изделия в базирующем устройстве, а также перемещения, скорости, ускорения базирующего устройства по доступным ему степеням свободы.
RU2009148380/28A 2009-12-24 2009-12-24 Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов RU2432557C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009148380/28A RU2432557C2 (ru) 2009-12-24 2009-12-24 Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009148380/28A RU2432557C2 (ru) 2009-12-24 2009-12-24 Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов

Publications (2)

Publication Number Publication Date
RU2009148380A RU2009148380A (ru) 2011-06-27
RU2432557C2 true RU2432557C2 (ru) 2011-10-27

Family

ID=44738849

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009148380/28A RU2432557C2 (ru) 2009-12-24 2009-12-24 Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов

Country Status (1)

Country Link
RU (1) RU2432557C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2492424C1 (ru) * 2012-04-13 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ коррекции главной центральной оси инерции баллистического объекта
RU2698536C1 (ru) * 2018-10-09 2019-08-28 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Устройство для определения положения центра масс и моментов инерции объектов
RU2805249C1 (ru) * 2022-07-12 2023-10-12 Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования "Самарский Национальный Исследовательский Университет Имени Академика С.П. Королева" (Самарский Университет) Устройство для определения положения центра масс и моментов инерции объектов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ТВЕРСКОЙ М.М. Автоматизированные стенды для контроля и расчета коррекции распределения масс летательных аппаратов: // журнал Динамика, прочность и износостойкость машин, выпуск 1, 1995, с.71-72. *
ФЕДОРОВ В.Б. Контроль и коррекция массогеометрических характеристик летательных аппаратов: // текст лекций // часть 1. - Челябинск.: Изд.-во ЮУрГУ, 2004, с.39-42. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2492424C1 (ru) * 2012-04-13 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ коррекции главной центральной оси инерции баллистического объекта
RU2698536C1 (ru) * 2018-10-09 2019-08-28 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Устройство для определения положения центра масс и моментов инерции объектов
RU2805249C1 (ru) * 2022-07-12 2023-10-12 Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования "Самарский Национальный Исследовательский Университет Имени Академика С.П. Королева" (Самарский Университет) Устройство для определения положения центра масс и моментов инерции объектов

Also Published As

Publication number Publication date
RU2009148380A (ru) 2011-06-27

Similar Documents

Publication Publication Date Title
Rodrigues et al. Experimental investigation of a single-plane automatic balancing mechanism for a rigid rotor
CN103115726B (zh) 一种基于应变的旋转零部件动平衡方法
US20190242774A1 (en) Method for measuring the unbalance of flexible rotors by means of position-measuring sensors
CN113740042B (zh) 燃气轮机叶片阻尼器系统振动接触特性实验测试装置及方法
CN102928222A (zh) 一种滑动轴承动力特性系数试验识别方法
PL225215B1 (pl) Wyważarka wałów przegubowych i sposób wyważania wałów przegubowych
EP2280264B1 (en) Standard exciter
JP2022542551A (ja) 不平衡及び/又は不整合を検出するための方法及び駆動列試験台
EP1806570A2 (en) Rotor balancing method and device
CN103105266A (zh) 一种旋转机械转子双平面弯矩动平衡方法
KR100905397B1 (ko) 주기적 회전진동을 이용한 동적 발란싱 장치 및 방법
RU2432557C2 (ru) Стенд комплексного определения массово-инерционных характеристик осесимметричных роторов
CN201138270Y (zh) 一种适用于光纤陀螺惯测系统的质心测量装置
RU2426976C2 (ru) Способ и устройство для автоматической балансировки ротора
RU113356U1 (ru) Стенд для комплексного контроля массогеометрических характеристик
Jungblut et al. A new active balancing device utilizing rotating piezo actuators
Schiavi et al. Simultaneous 3-axis MEMS accelerometer primary calibration: description of the test-rig and measurements
JP5697149B2 (ja) 加速度センサ特性評価方法及びプログラム
CN203705121U (zh) 一种车轮动平衡机用一体化轴系
Vázquez et al. Simplified modal analysis for the plant machinery engineer
RU2539810C1 (ru) Способ вертикальной динамической балансировки изделия и устройство для его осуществления
CN113125072A (zh) 一种扭矩传感器校准用标准惯量装置及其使用方法
CN113418591A (zh) 五轴机床工作台轴向振动双位非接触检测装置及预测方法
Grim et al. The Basics of Balancing 202
JP3736687B2 (ja) エアテーブル式低周波微小擾乱測定装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20121225