RU2431883C1 - Вихревой регулятор давления - Google Patents

Вихревой регулятор давления Download PDF

Info

Publication number
RU2431883C1
RU2431883C1 RU2010119141/28A RU2010119141A RU2431883C1 RU 2431883 C1 RU2431883 C1 RU 2431883C1 RU 2010119141/28 A RU2010119141/28 A RU 2010119141/28A RU 2010119141 A RU2010119141 A RU 2010119141A RU 2431883 C1 RU2431883 C1 RU 2431883C1
Authority
RU
Russia
Prior art keywords
gas
hot
cylinder
channel
outlet
Prior art date
Application number
RU2010119141/28A
Other languages
English (en)
Inventor
Юрий Мавлютович Ахметов (RU)
Юрий Мавлютович Ахметов
Сергей Владимирович Гурин (RU)
Сергей Владимирович Гурин
Радик Рифкатович Калимуллин (RU)
Радик Рифкатович Калимуллин
Антон Вячеславович Свистунов (RU)
Антон Вячеславович Свистунов
Алексей Андреевич Ситников (RU)
Алексей Андреевич Ситников
Владимир Александрович Целищев (RU)
Владимир Александрович Целищев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет"
Priority to RU2010119141/28A priority Critical patent/RU2431883C1/ru
Application granted granted Critical
Publication of RU2431883C1 publication Critical patent/RU2431883C1/ru

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Использование: изобретение относится к газовой промышленности и может использоваться в системах транспортировки газа для редуцирования давления природного газа на газораспределительных станциях, газораспределительных пунктах, в системах подготовки топливного и пускового газа компрессорных газоперекачивающих станций. Вихревой регулятор давления газа с положительной обратной связью содержит подводящий трубопровод, соединенный каналом через узел регулирования потока газа с цилиндром температурного разделения и через диафрагму - с отводящим трубопроводом, соединенным с пилотным устройством. Причем положительная обратная связь обеспечивается по "горячему" контуру каналом между трубопроводом и цилиндром температурного разделения, который содержит крестовину с плавно выпрямляющими поток газа профилированными лопатками и устройство перепуска "горячего" газа после крестовины в центр "холодного" вихря на оси цилиндра. При этом узел регулирования входного потока содержит как минимум два сопла, равномерно расположенных по окружности, и соответствующие им профилированные сопловые заслонки, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения каждого сопла. На «горячем» конце цилиндра температурного разделения установлена оребренная головка, содержащая в стенках каналы перепуска «горячего» газа, соединенные с трубками расположенными в канале вокруг цилиндра температурного разделения для обеспечения выхода перепускаемой части «горячего» газа из цилиндра в газовый эжектор, выходом соединенный с отводящим трубопроводом. Вихревой регулятор давления газа дополнительно содержит узел регулирования выходного потока, который содержит как минимум две «шторки», равномерно расположенные по окружности, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения диафрагмы. При этом ребра на головке выполнены винтовыми, а трубки, соединенные с каналами перепуска «горячего» газа, выполнены в виде спиральных оребренных трубок. Технический результат изобретения - улучшение эксплуатационных характеристик регулятора, а также повышение эффекта температурного разделения. 3 ил.

Description

Изобретение относится к газовой промышленности и может использоваться в системах транспортного газа для редуцирования давления природного газа на газораспределительных станциях (ГРС), газораспределительных пунктах (ГРП), в системах подготовки топливного и пускового газа компрессорных газоперекачивающих станций.
Известен вихревой регулятор давления газа с положительной обратной связью, содержащий подводящий трубопровод, соединенный с регулируемым тангенциальным соплом, соединенным с цилиндром температурного разделения и через диафрагму - с отводящим трубопроводом, соединенным с пилотным устройством. Между подводящим трубопроводом и цилиндром температурного разделения регулятор содержит винтовой канал, обеспечивающий положительную обратную связь по «горячему» контуру. Винтовой канал соединен с регулируемым по высоте тангенциальным соплом, обеспечивающим критическую скорость газа на срезе сопла. Цилиндр температурного разделения закрыт камерой торможения и содержит крестовину с плавно выпрямляющими поток газа профилированными лопатками и устройство перепуска «горячего» газа после крестовины в центр «холодного» вихря на оси цилиндра температурного разделения. Для более интенсивного перемешивания «горячего» и «холодного» потоков на оси цилиндра температурного разделения внутренняя поверхность устройства перепуска может быть выполнена в виде винтового канала. Положительная обратная связь по «горячему» контуру обеспечивается винтовым каналом между подводящим трубопроводом и цилиндром температурного разделения и позволяет нагревать входной газ от «горячей» стенки последнего, тем самым повышая температуру газа на выходе из регулятора [Патент РФ №2237918, МПК G05D 16/00, опубл. 10.10.2004].
Недостатком известного регулятора является невозможность поддержания минимальной разницы температур на входе и выходе регулятора, необходимой для предотвращения образования кристаллогидратов.
Наиболее близким по технической сущности и достижимому результату к заявляемому является вихревой регулятор давления газа с положительной обратной связью, содержащий подводящий трубопровод, соединенный каналом через узел регулирования потока газа с цилиндром температурного разделения и через диафрагму - с отводящим трубопроводом, соединенным с пилотным устройством, причем положительная обратная связь обеспечивается по «горячему» контуру каналом между трубопроводом и цилиндром температурного разделения, который содержит крестовину с плавно выпрямляющими поток газа профилированными лопатками и устройство перепуска «горячего» газа после крестовины в центр «холодного» вихря на оси цилиндра, узел регулирования потока газа содержит как минимум два сопла, равномерно расположенных по окружности и соответствующие им профилированные сопловые заслонки, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения каждого сопла, а на «горячем» конце цилиндра температурного разделения установлена оребренная головка, содержащая в стенках каналы перепуска «горячего» газа, соединенные с трубками, расположенными в канале вокруг цилиндра температурного разделения для обеспечения выхода перепускаемой части «горячего» газа из цилиндра в газовый эжектор, выходом соединенный с отводящим трубопроводом [Патент РФ №2282885, МПК G05D 16/00, опубл. 27.08.2006].
Недостатком известного регулятора является невозможность поддержания необходимой температуры на входе из регулятора, необходимой для предотвращения образования кристаллогидратов и создания условий изотермического дросселирования.
Задачей изобретения является улучшение эксплуатационных характеристик регулятора за счет поддержания задаваемой температуры газа на выходе из регулятора, необходимой для предотвращения образования кристаллогидратов и создания условий изотермического дросселирования.
Поставленная задача решается вихревым регулятором давления газа с положительной обратной связью, содержащий подводящий трубопровод, соединенный каналом через узел регулирования потока газа с цилиндром температурного разделения и через диафрагму - с отводящим трубопроводом, соединенным с пилотным устройством, причем положительная обратная связь обеспечивается по "горячему" контуру каналом между трубопроводом и цилиндром температурного разделения, который содержит крестовину с плавно выпрямляющими поток газа профилированными лопатками и устройство перепуска "горячего" газа после крестовины в центр "холодного" вихря на оси цилиндра, узел регулирования входного потока содержит как минимум два сопла, равномерно расположенных по окружности, и соответствующие им профилированные сопловые заслонки, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения каждого сопла, а на «горячем» конце цилиндра температурного разделения установлена оребренная головка, содержащая в стенках каналы перепуска «горячего» газа, соединенные с трубками, расположенными в канале вокруг цилиндра температурного разделения для обеспечения выхода перепускаемой части «горячего» газа из цилиндра в газовый эжектор, выходом соединенный с отводящим трубопроводом, в котором в отличие от прототипа введен узел регулирования выходного потока, который содержит как минимум две «шторки», равномерно расположенные по окружности, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения диафрагмы, при этом ребра на головке выполнены винтовыми, а трубки, соединенные с каналами перепуска «горячего» газа, выполнены в виде спиральных оребренных трубок.
Выполнение на входе цилиндра температурного разделения узла регулирования потока газа с как минимум двухсопловым вводом позволяет добиться равномерного распределения вихревого потока в цилиндре, что повышает эффект температурного разделения в нем. Выполнение на выходе из регулирующих задвижек с как минимум двумя «шторками» позволяет добиться равномерного распределения перепадов давления в проточной части регулятора, что повышает эффект температурного разделения и коэффициент положительной обратной связи в нем. Кроме того, наличие вокруг цилиндра температурного разделения оребренных трубок для обеспечения перепуска части «горячего» газа из цилиндра на выход регулятора, увеличивает площадь теплообменной поверхности, что в свою очередь обеспечивает дополнительный подогрев входного газа, а также позволяет добиться оптимального соотношения расходов «горячего» и «холодного» потоков газа в регуляторе для обеспечения их максимально возможной смесевой температуры. Таким образом, удается поддерживать необходимую разницу температур газа на входе и выходе регулятора, предотвращая образование кристаллогидратов и тем самым улучшая его эксплуатационные характеристики.
Сущность изобретения поясняется чертежами, где на фиг.1 изображена принципиальная схема вихревого регулятора давления газа; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - принципиальная схема узла регулирования потока газа.
Вихревой регулятор давления газа (фиг.1) содержит подводящий трубопровод 1, соединенный каналом 2 через узел регулирования потока газа 3 с цилиндром температурного разделения 4 и через диафрагму 5 - с отводящим трубопроводом 6, соединенным с пилотным устройством 7. Положительная обратная связь обеспечивается по «горячему» контуру каналом 2 между трубопроводом 1 и цилиндром температурного разделения 4, который содержит крестовину 8 с плавно выпрямляющими поток газа профилированными лопатками и устройство перепуска 9 «горячего» газа после крестовины 8 в центр «холодного» вихря на оси цилиндра 4. На «горячем» конце цилиндра температурного разделения 4 установлена оребренная головка 10, содержащая в стенках каналы 11 (фиг.2) перепуска «горячего» газа, соединенные с трубками 12, расположенными в канале 2 вокруг цилиндра температурного разделения 4 для обеспечения выхода перепускаемой части «горячего» газа из цилиндра 4 в газовый эжектор 13, выходом соединенный с отводящим трубопроводом 6.
Узел регулирования входного потока газа 3 (фиг.3) содержит как минимум два криволинейных сопла 14, равномерно расположенных по окружности, и соответствующие им профилированные сопловые заслонки 15, с устройством регулирования 16, установленные с возможностью поворота вокруг осей крепления 17 для регулирования проходного сечения каждого сопла.
Устройство регулирования выходного потока газа (фиг.1) содержит как минимум две криволинейные «шторки» 18, равномерно расположенные по окружности, и соответствующее им пилотное устройство 7 для регулирования проходного сечения. Под «шторками» по аналогии со «шторками» фотоаппарата понимается устройство регулирования проходного сечения.
Регулятор работает следующим образом. Из подводящего трубопровода 1 газ поступает в канал 2, где по мере движения к узлу регулирования потока 3 нагревается от оребренной головки 10, наружной стенки цилиндра температурного разделения 4 и оребренных трубок 12. Далее газ через равномерно расположенные сопла 14 узла регулирования потока газа 3, обеспечивающие вихревую закрутку потока, поступает в цилиндр температурного разделения 4, где происходит его разделение на «горячий», двигающийся по периферии цилиндра 4 к крестовине 8 поток, и «холодный» поток, двигающийся по оси цилиндра 4 от крестовины 8 к диафрагме 5. Наличие в узле регулирования потока газа нескольких сопел обеспечивает равномерный ввод потока в цилиндр температурного разделения и тем самым увеличивает эффект температурного разделения в нем. «Горячий» поток, пройдя крестовину 8, плавно выпрямляется на профилированных лопатках и разделяется на два потока. Первый поток (80-95% по массовому расходу) через устройство перепуска «горячего» газа направляется в центр «холодного» потока, смешиваясь с ним, тем самым повышая температуру газа на выходе из диафрагмы 5. Второй поток поступает в каналы перепуска 11 «горячего» газа оребренной головки 10, проходит по трубкам 12, при этом отдавая часть тепла входному газу, и далее направляется в газовый эжектор 13, откуда попадает в отводящий трубопровод 6, где «шторки» регулируют поток, создавая перепады давления в цилиндре энергоразделения и на сопловом вводе, обеспечивая интенсивное перемешивание, повышая температуру газа на выходе из регулятора.
Таким образом обеспечивается необходимая температура газа на входе и выходе регулятора. Устройство регулирования 16 управляет профилированными сопловыми заслонками 15, обеспечивая регулирование величины проходного сечения сопел в зависимости от давления выходного потока для поддержания его на определенном уровне. Устройство регулирования 16 управляет профилированными сопловыми заслонками 15, обеспечивая регулирование величины проходного сечения в зависимости от перепадов давления регулятора для поддержания расход. А устройство регулирования 17 управляет профилированными «шторками» 18, обеспечивая регулирование величины проходного сечения диафрагмы в зависимости от перепадов давления в проточной части регулятора для поддержания температуры на определенном уровне.

Claims (1)

  1. Вихревой регулятор давления газа с положительной обратной связью, содержащий подводящий трубопровод, соединенный каналом через узел регулирования потока газа с цилиндром температурного разделения и через диафрагму - с отводящим трубопроводом, соединенным с пилотным устройством, причем положительная обратная связь обеспечивается по "горячему" контуру каналом между трубопроводом и цилиндром температурного разделения, который содержит крестовину с плавно выпрямляющими поток газа профилированными лопатками и устройство перепуска "горячего" газа после крестовины в центр "холодного" вихря на оси цилиндра, узел регулирования входного потока содержит, как минимум, два сопла, равномерно расположенных по окружности, и соответствующие им профилированные сопловые заслонки, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения каждого сопла, а на «горячем» конце цилиндра температурного разделения установлена оребренная головка, содержащая в стенках каналы перепуска «горячего» газа, соединенные с трубками, расположенными в канале вокруг цилиндра температурного разделения для обеспечения выхода перепускаемой части «горячего» газа из цилиндра в газовый эжектор, выходом соединенный с отводящим трубопроводом, отличающийся тем, что введен узел регулирования выходного потока, который содержит, как минимум, две «шторки», равномерно расположенных по окружности, установленные с возможностью поворота вокруг осей крепления для регулирования проходного сечения диафрагмы, при этом ребра на головке выполнены винтовыми, а трубки, соединенные с каналами перепуска «горячего» газа, выполнены в виде спиральных оребренных трубок.
RU2010119141/28A 2010-05-12 2010-05-12 Вихревой регулятор давления RU2431883C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010119141/28A RU2431883C1 (ru) 2010-05-12 2010-05-12 Вихревой регулятор давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010119141/28A RU2431883C1 (ru) 2010-05-12 2010-05-12 Вихревой регулятор давления

Publications (1)

Publication Number Publication Date
RU2431883C1 true RU2431883C1 (ru) 2011-10-20

Family

ID=44999288

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010119141/28A RU2431883C1 (ru) 2010-05-12 2010-05-12 Вихревой регулятор давления

Country Status (1)

Country Link
RU (1) RU2431883C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486573C1 (ru) * 2011-11-07 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Вихревой регулятор давления
RU2569473C2 (ru) * 2013-11-26 2015-11-27 Вячеслав Александрович Смирнов Способ вихревого редуцирования давления газа
CN113859487A (zh) * 2021-09-30 2021-12-31 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种全海深自适应管道及深海设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486573C1 (ru) * 2011-11-07 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Вихревой регулятор давления
RU2569473C2 (ru) * 2013-11-26 2015-11-27 Вячеслав Александрович Смирнов Способ вихревого редуцирования давления газа
CN113859487A (zh) * 2021-09-30 2021-12-31 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种全海深自适应管道及深海设备
CN113859487B (zh) * 2021-09-30 2024-05-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种全海深自适应管道及深海设备

Similar Documents

Publication Publication Date Title
JP2617680B2 (ja) 低NOxバーナ
RU97109527A (ru) Рециркуляционный диффузор
CN102086941B (zh) 一种混水阀门
RU2431883C1 (ru) Вихревой регулятор давления
CN104075319B (zh) 一种用于工业锅炉的生物质燃气燃烧装置
JP6194489B2 (ja) ガス混合気を調整するための装置
RU2282885C1 (ru) Вихревой регулятор давления газа
RU2486573C1 (ru) Вихревой регулятор давления
RU2617856C1 (ru) Термостабилизирующий регулятор давления
CN201386111Y (zh) 一种管道风温调节混风结构
CN103759263A (zh) 一种纯氧工艺气燃烧器
CN104121716A (zh) 涡流管
CN105546569A (zh) 一种可调节风速及煤粉浓度的煤粉分配器
US8863404B1 (en) Apparatus and method for dryer performance optimization system
CN106796025B (zh) 燃烧器
RU153284U1 (ru) Вихревой регулятор давления
CN108386240B (zh) 一种汽轮机用雾化喷头
RU2520789C2 (ru) Горелка для получения ацетилена
CN106268404B (zh) 蒸汽混合器
RU2516331C2 (ru) Устройство для регулирования температуры газа в магистральном трубопроводе горячего газа
RU2237918C1 (ru) Регулятор давления газа с положительной обратной связью (варианты)
CN211290043U (zh) 用于旋转式动态加热炉窑的超低氮燃气燃烧器
RU2655565C1 (ru) Вихревой регулятор давления газа
RU2569473C2 (ru) Способ вихревого редуцирования давления газа
RU2586232C2 (ru) Способ вихревого редуцирования давления газа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140513