RU2431686C1 - Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали - Google Patents

Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали Download PDF

Info

Publication number
RU2431686C1
RU2431686C1 RU2010118943/02A RU2010118943A RU2431686C1 RU 2431686 C1 RU2431686 C1 RU 2431686C1 RU 2010118943/02 A RU2010118943/02 A RU 2010118943/02A RU 2010118943 A RU2010118943 A RU 2010118943A RU 2431686 C1 RU2431686 C1 RU 2431686C1
Authority
RU
Russia
Prior art keywords
temperature
molybdenum
chromium
austenization
heat treatment
Prior art date
Application number
RU2010118943/02A
Other languages
English (en)
Inventor
Татьяна Ивановна Титова (RU)
Татьяна Ивановна Титова
Наталья Алексеевна Шульган (RU)
Наталья Алексеевна Шульган
Ирина Федоровна Семернина (RU)
Ирина Федоровна Семернина
Яна Юрьевна Беньяминова (RU)
Яна Юрьевна Беньяминова
Ирина Владимировна Теплухина (RU)
Ирина Владимировна Теплухина
Сергей Юрьевич Баландин (RU)
Сергей Юрьевич Баландин
Юрий Степанович Гордиенков (RU)
Юрий Степанович Гордиенков
Николай Анатольевич Чугунов (RU)
Николай Анатольевич Чугунов
Original Assignee
Открытое акционерное общество "Ижорские заводы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ижорские заводы" filed Critical Открытое акционерное общество "Ижорские заводы"
Priority to RU2010118943/02A priority Critical patent/RU2431686C1/ru
Application granted granted Critical
Publication of RU2431686C1 publication Critical patent/RU2431686C1/ru

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области черной металлургии, а именно к термической обработке крупногабаритных кованых заготовок типа обечаек для корпусов нефтехимических реакторов глубокой переработки нефти и другого крупногабаритного нефтехимического оборудования. Для обеспечения требуемого комплекса механических свойств заготовок из хромомолибденованадиевой стали за счет получения равномерной мелкозернистой структуры отпущенного бейнита с равномерным выделением стабильных мелкодисперсных карбидов осуществляют копеж заготовок при температуре AC1-(150÷200°C), аустенитизацию - при температуре АC3+(70÷90°С), изотермическую выдержку - при температуре AC1-(70÷120°C) продолжительностью 40 часов, высокий отпуск - при температуре AC1-(90÷110°C), вторую аустенитизацию - при температуре АC3+(110÷150°С) со скоростью нагрева 60-100°С/ч, а высокий отпуск выполняют при температуре AC1-(60÷120°C). 2 табл.

Description

Изобретение относится к области черной металлургии, а именно к способу термической обработки крупногабаритных кованых заготовок типа обечаек (толщиной под термообработку до 450 мм) для корпусов нефтехимических реакторов глубокой переработки нефти нового поколения и другого крупногабаритного нефтехимического оборудования, изготавливаемого из хромомолибденованадиевой стали 2,25Cr-1Мо-0,25V-композиции типа 15Х2МФА(А).
Современные процессы глубокой переработки нефти осуществляются при высоких параметрах рабочей среды (рабочая температура до 482°С, парциальное давление водорода до 13,79 МПа) и при температуре наружной стенки до минус 35°С. Типовая расчетная температура составляет 454°С. Для изготовления таких сосудов используется легированная ванадием сталь композиции 2,25Cr-1Mo-0,25V, изготавливаемая в соответствии с требованиями кода ASME секция II. Работоспособность реактора обеспечивается высоким уровнем кратковременной прочности при нормальной и повышенной температурах, длительной прочности и хладостойкости и минимальной степенью охрупчивания в процессе длительной высокотемпературной эксплуатации. Высокий комплекс технологических и эксплуатационных свойств обеспечивается равномерной мелкозернистой структурой отпущенного бейнита с равномерным выделением стабильных мелкодисперсных карбидов. Полная бейнитная прокаливаемость и получение оптимальной мелкодисперсной структуры отпущенного бейнита достигается за счет оптимизации легирования (внутри марочного состава), параметрами ковки и способом термической обработки.
Известен применяемый в настоящее время способ термической обработки крупногабаритных заготовок энергетического машиностроения из стали 15Х2МФА (А), включающий на этапе предварительной термообработки копеж в течение 4 ч при температуре 600-700°С, охлаждение с печью до температуры 250-300°С, нормализацию от температуры 920-970°С с охлаждением на выдвинутой подине до 250-300°С и высокий отпуск при температуре 710-760°С, а на этапе окончательной термообработки - закалку в воде от температуры 990-1010°С и высокий отпуск при температуре 680-720°С. Данный способ направлен на обеспечение удаления водорода, предотвращение трещинообразования, создание однородной мелкозернистой структуры и удовлетворение требований по механическим свойствам применительно к заготовкам энергетического машиностроения. Однако недостатком этого режима является разнозернистость по сечению заготовки и невозможность обеспечения эксплуатационных свойств сосудов глубокой переработки нефти нового поколения - «горячей» прочности при 454°С в состоянии после послесварочных отпусков и стойкости к тепловому охрупчиванию.
Также известен способ термической обработки крупногабаритных заготовок энергетического машиностроения из стали 15Х2НМФА (А, Кл.1), включающий на этапе предварительной термообработки копеж при температуре 600-650°С, охлаждение с печью до температуры 250-300°С, нормализацию от температуры 910-950°С с охлаждением на выдвинутой подине до 250-300°С и высокий отпуск при температуре 640-680°С, а на этапе окончательной термообработки - двойную закалку в воде от температур 950-1000°С и 920-950°С и высокий отпуск при температуре 640-680°С. Данный способ также направлен на обеспечение удаления водорода, предотвращение трещинообразования, создание однородной мелкозернистой структуры металла и обеспечение требований механических свойств применительно к заготовкам энергетического машиностроения. Однако недостатком этого режима также является крупнозернистость и разнозернистость по сечению заготовки и невозможность обеспечения эксплуатационных свойств сосудов глубокой переработки нефти нового поколения.
Прототипом заявляемого изобретения является способ комплексной термической обработки крупногабаритных поковок и заготовок для корпусов реакторов атомных энергетических установок водо-водяного типа, нефтехимических реакторов и другого оборудования из стали Cr-(Ni)-Mo-V композиции (патент РФ на изобретение №2235791 С1, опубликовано 10.09.2004). В способе-прототипе этап предварительной термообработки включает копеж при температуре 620-680°С, что соответствует AC1-(20÷50°C), охлаждение с печью до температуры 250-300°С, первую аустенизацию при температуре ≈1000°С, что соответствует AC3+(130÷160°С), далее на стадии охлаждения на выдвинутой подине до 250-300°С изотермическую выдержку при температуре 620-680°С, что соответствует AC1-(20÷50°C), последующий высокий отпуск при температуре 620-680°С, что соответствует AC1-(20÷50°С) и охлаждение с печью до 150°С. Этап окончательной термообработки включает вторую аустенизацию при температуре ≈1000°С, что соответствует АС3+(130÷160°С), охлаждение с печью до температуры 620-680°С, изотермическую выдержку при температуре 620-680°С, что соответствует AC1-(20÷50°C) в течение 12-20 часов, третью аустенизацию при температуре 950-980°С, что соответствует AC3+(110÷140°С), закалку в воде с последующим высоким отпуском при температуре 580-590°С, что соответствует AC1-(110÷120°C). Способ направлен на предотвращение дефектообразования, получение мелкозернистой однородной структуры по сечению поковки, устранение разнозернистости по сечению и высоте поковки, снижение уровня ТКО и уменьшение сдвига критической температуры хрупкости в результате облучения.
Недостатком этого режима является его длительность и недостаточный уровень отпускоустойчивости металла, обработанного по этому режиму. Требуемые характеристики механических свойств обеспечены после послесварочных отпусков, температура которых не превышает 660°С, а продолжительность - до 22 часов.
Задачей изобретения является обеспечение требуемого комплекса свойств металла после послесварочных отпусков при температуре 695÷725°С продолжительностью до 32 часов. Повышение отпускоустойчивости металла крупногабаритных кованых заготовок для обечаек корпусов нефтехимических реакторов достигается за счет обеспечения равномерной мелкозернистой структуры отпущенного бейнита с равномерным выделением стабильных мелкодисперсных карбидов в теле матрицы.
Заявляемый комплексный режим термообработки поковок и заготовок типа обечаек из хромомолибденованадиевой стали на этапе предварительной термообработки включает копеж при температуре 600-650°С, что соответствует AC1-(150÷200°C), охлаждение с печью до температуры 250-300°С, аустенизацию при температуре 960-980°С, что соответствует AC3+(70÷90°С), далее на стадии охлаждения с печью до 250-300°С изотермическую выдержку при температуре 680-730°С, что соответствует AC1-(70÷120°С), в течение 40 часов, последующий высокий отпуск при температуре 690-710°С, что соответствует AC1-(90÷110°С), и охлаждение до 400°С. Этап окончательной термообработки включает аустенизацию при температуре 1000-1040°С, что соответствует AC3+(110÷150°С), охлаждение заготовки в воде и высокий отпуск при температуре 680-740°С, что соответствует AC1-(60÷120°С), охлаждение на воздухе.
Сущность изобретения заключается в том, что при комплексной термической обработке крупногабаритных поковок и кованых заготовок обечаек корпусов нефтехимических реакторов из хромомолибденованадиевой стали выполняются следующие операции, необходимые для качественных заготовок (таблица I):
- копеж (1) производят при температуре 600-650°С, что соответствует AC1-(150÷200°С) для реализации превращения аустенита в феррито-перлитную смесь и для эффективного удаления диффузионно-подвижного водорода;
- после переохлаждения до температуры 250-300°С кованую заготовку нагревают до температуры первой аустенизации (2) 960-980°С, что соответствует AC3+(70÷90°С), с целью рекристаллизации крупно- и разнозернистой структуры, сформировавшейся в процессе ковки, что приводит к измельчению аустенитного зерна и получению однородной структуры;
- на стадии охлаждения с печью до 250-300°С производят изотермическую выдержку (3) при температуре 680-730°С, что соответствует AC1-(70÷120°C), т.е. температурному интервалу минимальной устойчивости переохлажденного аустенита в перлитной области - в течение 40 часов до полного распада аустенита по диффузионному механизму для подготовки структуры к последующей закалке и для эффективного удаления водорода;
- последующий высокий отпуск (4) производят при температуре 690-710°С, что соответствует AC1-(90÷110°C), для уменьшения термических напряжений и максимального удаления водорода;
- нагрев до температуры второй аустенизации (5) производят со скоростью 60-100°С/ч для ограничения роста аустенитного зерна;
- вторую аустенизацию (5) производят при температуре 1000-1040°С, что соответствует AC3+(110÷150°С), с целью наиболее полного растворения карбидной и карбонитридной фаз, повышения бейнитной прокаливаемости для получения равномерной мелкозернистой структуры по сечению поковки и обеспечения высокого уровня прочности после основной термообработки;
- охлаждение в воде после второй аустенизации для получения дисперсной бейнитной структуры по всему сечению заготовки;
- высокий отпуск (6) с охлаждением на воздухе осуществляют при температуре 680-740°С, что соответствует AC1-(60÷120°C), для выделения стабильных мелкодисперсных карбидов и карбонитридов, что позволяет обеспечить требуемый уровень заданных эксплуатационных свойств в состоянии после длительных дополнительных послесварочных отпусков.
Пример. Обработке по предлагаемому режиму подвергались 24 заготовки кованых обечаек из стали SA-336M F22V наружным диаметром 5230 мм, внутренним диаметром 4550 мм, высотой 2574 мм, толщиной стенки 335-349 мм. Типичный химический состав материала представлен в таблице 2. После основной термообработки пробы заготовок подвергали дополнительному послесварочному отпуску максимальной продолжительности при температуре 705°С в течение 32 часов. Оценивали структуру и механические свойства в середине толщины кованых заготовок (таблица 1).
В результате заявленного способа комплексной термической обработки получена однородная мелкозернистая структура отпущенного бейнита с выделениями стабильных мелкодисперсных карбидов в теле матрицы, размер зерна преимущественно G6-G9 по ASTME 112. Обеспечен уровень предела прочности при нормальной температуре в диапазоне 587÷645 МПа и уровень предела прочности при температуре испытания 454°С в диапазоне 461÷510 МПа в состоянии после основной термической обработки с наложением послесварочного отпуска при температуре 705°С продолжительностью 32 часа.
Преимуществом заявленного способа является:
- обеспечение однородной мелкозернистой структуры отпущенного бейнита с равномерным выделением стабильных мелкодисперсных карбидов;
- обеспечение высокого уровня прочности при нормальной температуре и температуре эксплуатации 454°С в состоянии после послесварочного отпуска максимальной продолжительности.
Figure 00000001
Таблица 2
Типичный химический состав
Элемент Содержание, вес.%
Углерод 0,15
Марганец 0,50
Фосфор 0,0045
Сера 0,0030
Кремний 0,10
Никель 0,16
Хром 2,38
Молибден 1,05
Ванадий 0,29
Ниобий 0,02
Бор 0,0020
Титан 0,005
Медь 0,04
Кальций 0,002

Claims (1)

  1. Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали, включающий копеж, первую аустенизацию, изотермическую выдержку на стадии охлаждения до 250-300°С, последующий высокий отпуск, вторую аустенизацию, охлаждение в воде после второй аустенизации, высокий отпуск с охлаждением на воздухе, отличающийся тем, что копеж осуществляют при температуре AC1-(150÷200°С), первую аустенизацию выполняют при температуре АC3+(70÷90°С), изотермическую выдержку - при температуре AC1-(70÷120°C) продолжительностью 40 ч, последующий высокий отпуск - при температуре AC1-(90÷110°С), нагрев до температуры второй аустенизации - со скоростью нагрева 60-100°С/ч, вторую аустенизацию осуществляют при температуре АC3+(110÷150°С), а высокий отпуск выполняют при температуре AC1-(60÷120°C).
RU2010118943/02A 2010-05-11 2010-05-11 Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали RU2431686C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010118943/02A RU2431686C1 (ru) 2010-05-11 2010-05-11 Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010118943/02A RU2431686C1 (ru) 2010-05-11 2010-05-11 Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали

Publications (1)

Publication Number Publication Date
RU2431686C1 true RU2431686C1 (ru) 2011-10-20

Family

ID=44999194

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010118943/02A RU2431686C1 (ru) 2010-05-11 2010-05-11 Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали

Country Status (1)

Country Link
RU (1) RU2431686C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180830U1 (ru) * 2017-09-18 2018-06-26 Сергей Леонидович Лякишев Корпус горизонтального парогенератора для АЭС
CN112961964A (zh) * 2021-02-02 2021-06-15 无锡派克新材料科技股份有限公司 一种容器用厚截面钢的差温淬火技术
CN115323136A (zh) * 2022-08-19 2022-11-11 无锡派克新材料科技股份有限公司 一种核动力部件用15х3hмфа壳体锻件制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180830U1 (ru) * 2017-09-18 2018-06-26 Сергей Леонидович Лякишев Корпус горизонтального парогенератора для АЭС
CN112961964A (zh) * 2021-02-02 2021-06-15 无锡派克新材料科技股份有限公司 一种容器用厚截面钢的差温淬火技术
CN115323136A (zh) * 2022-08-19 2022-11-11 无锡派克新材料科技股份有限公司 一种核动力部件用15х3hмфа壳体锻件制造方法
CN115323136B (zh) * 2022-08-19 2024-01-19 无锡派克新材料科技股份有限公司 一种核动力部件用15х3hмфа壳体锻件制造方法

Similar Documents

Publication Publication Date Title
US10391742B2 (en) Steel for carburizing, carburized steel component, and method of producing the same
JP5135563B2 (ja) 浸炭用鋼、浸炭鋼部品、及び、その製造方法
CA2857439C (en) High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
CA2888154C (en) Low alloy steel for oil country tubular goods having excellent sulfide stress cracking resistance and manufacturing method therefor
CA2937139C (en) Low-alloy steel pipe for an oil well
JP4965001B2 (ja) 焼戻し軟化抵抗性に優れた鋼部品
EA010037B1 (ru) Стальная бесшовная труба для нефтяных скважин с превосходным сопротивлением сульфидному растрескиванию под напряжением и способ ее производства
JP6583533B2 (ja) 鋼材及び油井用鋼管
JP6432932B2 (ja) 耐ピッチング性および耐摩耗性に優れる高強度高靱性機械構造用鋼製部品およびその製造方法
EP3177744B1 (en) Austempered steel with medium c and high si contents, method, component, semi-finished bar and forging
JP7168003B2 (ja) 鋼材
WO2022075406A1 (ja) マルテンサイト系ステンレス鋼材
JPWO2016035316A1 (ja) 厚肉油井用鋼管及びその製造方法
CN105088081B (zh) 稳定杆的制造工艺
JP6583532B2 (ja) 鋼材及び油井用鋼管
RU2431686C1 (ru) Способ комплексной термической обработки крупногабаритных кованых заготовок из хромомолибденованадиевой стали
WO2022075405A1 (ja) マルテンサイト系ステンレス鋼材
JPH08127845A (ja) 黒鉛鋼及びその製品と製造方法
Tariq et al. Evolution of microstructure and mechanical properties during quenching and tempering of ultrahigh strength 0.3 C Si–Mn–Cr–Mo low alloy steel
CA3089461A1 (en) Steel pipe and method for producing steel pipe
Tian et al. Bainite transformation affected by predeformation and stress in G55SiMoV steel
EP3155134A1 (en) Method of heat treatment of bearing steel
CN106929756B (zh) 轴承钢及其制备方法
JP6328547B2 (ja) 大型鋳鋼品の製造方法及び大型鋳鋼品

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160512

NF4A Reinstatement of patent

Effective date: 20170320

PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20220427