RU2429216C2 - Способ получения бутена-1 - Google Patents

Способ получения бутена-1 Download PDF

Info

Publication number
RU2429216C2
RU2429216C2 RU2009126060/04A RU2009126060A RU2429216C2 RU 2429216 C2 RU2429216 C2 RU 2429216C2 RU 2009126060/04 A RU2009126060/04 A RU 2009126060/04A RU 2009126060 A RU2009126060 A RU 2009126060A RU 2429216 C2 RU2429216 C2 RU 2429216C2
Authority
RU
Russia
Prior art keywords
butene
ethylene
reactor
catalyst
dimerization
Prior art date
Application number
RU2009126060/04A
Other languages
English (en)
Other versions
RU2009126060A (ru
Inventor
Геннадий Петрович Белов (RU)
Геннадий Петрович Белов
Рустем Алмазович Хасаншин (RU)
Рустем Алмазович Хасаншин
Руслан Рифатович Каюмов (RU)
Руслан Рифатович Каюмов
Владимир Николаевич Кудряшов (RU)
Владимир Николаевич Кудряшов
Леонид Степанович Алехин (RU)
Леонид Степанович Алехин
Сергей Сергеевич Потапов (RU)
Сергей Сергеевич Потапов
Александр Васильевич Кустов (RU)
Александр Васильевич Кустов
Original Assignee
Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран)
Казанское Открытое Акционерное Общество "Органический Синтез" (Оао "Казаньоргсинтез")
Закрытое акционерное общество "Инкор Инжиниринг" (ЗАО "Инкор Инжиниринг")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран), Казанское Открытое Акционерное Общество "Органический Синтез" (Оао "Казаньоргсинтез"), Закрытое акционерное общество "Инкор Инжиниринг" (ЗАО "Инкор Инжиниринг") filed Critical Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран)
Priority to RU2009126060/04A priority Critical patent/RU2429216C2/ru
Publication of RU2009126060A publication Critical patent/RU2009126060A/ru
Application granted granted Critical
Publication of RU2429216C2 publication Critical patent/RU2429216C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения бутена-1 путем димеризации этилена при давлении 0,5-4 МПа и температуре 50-95°С в среде углеводородного растворителя в присутствии каталитической системы, состоящей из триалкила алюминия - АlR3, в котором R - углеводородный радикал, содержащий 1-6 углеродных атомов, эфирата титана - Ti(OR)4, в котором R - углеводородный радикал, содержащий 2-6 углеродных атомов, в присутствии или отсутствии модификатора - эфира, причем по окончании реакции димеризации в реактор или при выводе из реактора реакционной массы в нее вводят дезактиватор катализатора, характеризующемуся тем, что в качестве дезактиватора катализатора применяют моноалкиловые эфиры этиленгликоля. Применение настоящего способа позволяет повысить селективность процесса и чистоту бутена-1, уменьшить возможность протекания побочных реакций, таких как изомеризации бутена-1 в цис- и транс-бутены-2, снизить степень полимерообразования, улучшить условия труда, улучшить экономические показатели процесса. 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области получения высших α-олефинов, a именно бутена-1 полимеризационной степени чистоты методом каталитической димеризации этилена в среде углеводородного растворителя в присутствии комплексных металлорганических катализаторов, содержащих в основном эфират титана - Ti(OR)4, триалкилалюминий - AlR3 и модификатор, и может найти применение в различных отраслях промышленности, особенно в крупнотоннажном синтезе сополимеров этилена и пропилена, полибутена и олигомеров бутена-1, для получения метилэтилкетона, окисибутилена и др. областях применения.
Современная нефтехимическая и химическая промышленность в значительной мере базируется на использовании низших олефинов (этилена и пропилена) в качестве исходного сырья для различного рода синтезов. Бутен-1 является третьим мономером олефинового ряда, внимание к которому не ослабевает в течение последних 20 лет. Хотя в промышленности бутен-1 может быть выделен из бутан-бутиленовой фракции газов крекинга или пиролиза углеводородного сырья, а также из продуктов, образующихся в процессах Фишера-Трошпа, потенциальным промышленным процессом получения высокочистого бутена-1 является каталитическая димеризация этилена. В последние годы в связи с расширением объемов производства и марочного состава сополимеров этилена и/или пропилена с бутеном-1 с улучшенным комплексом свойств возросла потребность в бутене-1.
При каталитическом способе димеризация этилена в бутен-1 может быть осуществлена либо на металлах или окислах металлов на носителях (A.Takahashi et al., Kogyo Kagaku Zasshi. 1963. v.63. p.973, патенты США №3113166, C08F 10/00, 1963; №4000211, С07С 3/10, 1976), либо в присутствии Al(С2Н5)3 (K.W.Egger. Trans. Farad. Soc. 1971. v.67. No.575. p.2636, патент США №4484016, С07С 2/04, 1984; яп.патент №61122230, C07C 2/30, 1986), либо в присутствии комплексных металлоорганических катализаторов. Однако эти два способа получения бутена-1 характеризуются низкой производительностью и селективностью по бутену-1.
Наиболее простым и дешевым способом получения бутена-1 полимеризационной степени чистоты на сегодня является способ каталитической димеризации этилена в присутствии катализаторов на основе эфиратов титана в сочетании с алюминийорганическими соединениями триалкилами алюминия и различными модификаторами. Роль модификатора сводится к заметному снижению образования полимера, являющимся побочным продуктом в процессе получения бутена-1. В качестве модификаторов применяются различные электронодонорные соединения (эфиры, амины и т.п.). Поэтому применение модификатора обусловлено предъявляемыми требованиями к процессу получения бутена-1.
Именно над этой проблемой и работают в последние 30 лет исследователи в различных странах мира. Наибольший успех на сегодня получен исследователями из Института проблем химической физики РАН (патенты США №5030790, С07С 2/24, 1991; №5037997, С07С 2/24, 1991).
Наиболее близким к предложенному изобретению является способ, описанный в европейском патенте №0200654 A1, C07C 11/08, 1986. Процесс димеризации этилена проводился при температуре 55°С и давлении 2 МПа на каталитической системе, состоящей из смеси эфирата титана (с добавлением тетрагидрофурана и без него, который применяли в качестве модификатора каталитической системы) и алюминийорганического соединения с использованием в присутствии дезактиватора каталитической системы - первичных или вторичных аминов, которые добавляются в реакционную массу на стадии выделения бутена-1 из реакционной массы. В технологии получения бутена-1 применение дезактиватора способствует повышению качества выделяемого бутена-1 и его выхода вследствие существенного подавления побочных реакций изомеризации: бутена-1 в цис- и транс-бутены-2, а также подавления полимерообразования на стадии выделения бутена-1 из реакционной массы.
Недостатками процесса по указанному способу являются:
- высокое содержание примесей в готовом продукте - бутене-1;
- в качестве дезактиватора катализатора используются достаточно токсичные химические реагенты из класса алифатических или ароматических аминов (табл.1).
Задачей данного изобретения является разработка способа получения бутена-1, обеспечивающего повышение селективности процесса при температурах 50-90°С за счет снижения образования бутенов-2, вследствие изомеризации бутена-1 в цис- и транс-бутены-2, а также за счет снижения степени полимерообразования в процессе выделения бутена-1 из реакционной массы.
Технический результат достигается тем, что способ получения бутена-1 включает димеризацию этилена в бутен-1 при температурах 50-95°С и давлении этилена 0,3-4 МПа в углеводородном растворителе в присутствии катализаторов Ti(OR)4, АlR3 и модификатора (например, эфир или без него) с последующим добавлением на стадии выделения бутена-1 более доступного и менее токсичного дезактиватора катализатора - химического соединения из класса моноалкиловых эфиров этиленгликоля. В качестве химического соединения из класса моноалкиловых эфиров этиленгликоля применяют различные целлозольвы.
Таблица №1
Сравнительная характеристика предельно допустимых концентраций (ПДК) для различных веществ (Вредные вещества в промышленности. Под ред. Н.В.Лазарева. Изд. Химия, 1971, т.1)
Соединение ПДК, мг/м3
Амины
Анилин 0,1
Смеси аминов (C710) 1
Циклогексиламин 1
N-метиланилин 3
Метилцеллозольв 80
Этилцеллозольв 200
Бутилцеллозольв 240
При осуществлении предлагаемого способа получения бутена-1 в качестве компонентов катализатора могут быть применены:
- эфираты титана общей формулы Ti(OR)4, в которых R является алкильным радикалом, содержащим 2-6 углеродных атомов, предпочтительно использовать Ti(OC4H9)4 и Ti(O-i-С3Н7)4;
- триалкилалюминий - общей формулы AlR3, где R - углеводородный радикал, содержащий 1-6 углеродных атомов, предпочтительнее 2-4 углеродных атомов;
- эфиры - диэтиловый эфир, диизопропиловый эфир тетрагидрофуран, 1,4-диоксан, предпочтительно тетрагидрофуран или 1,4-диоксан.
Мольное отношение эфир:Ti(OR)4=(0,1÷2,0):1.
Мольное отношение AlR3:Ti(OR)4=(2÷4):1.
При проведении процесса получения бутена-1 в качестве растворителя могут использоваться алифатические и ароматические углеводороды растворители, такие как: изопентан, гептан, гексан, толуол или их смеси, а также побочные продукты димеризации этилена - бутен-гексеновая или гексеновая фракция или сам бутен-1 в присутствии или отсутствии толуола.
Предварительно готовят растворы тетраалкоксититана и триалкилалюминия в углеводородном растворителе, представляющем парафиновые углеводороды (изопентан, гептан) или ароматические углеводороды (толуол), или циклопарафиновые углеводороды (циклогексан), или узкие углеводородные фракции («Нефрас» 94-96°С) или непредельные углеводороды (гексеновая или бутен-гексеновая фракция, образующаяся при димеризации этилена, или сам бутен-1) или их смеси.
Концентрация растворов компонентов катализатора может быть от 40 до 250 г/л. В качестве тетраалкоксититана используют предпочтительно Ti(O-i-С3Н7)4 или Ti(OC4H9)4, а в качестве алюминийорганической компоненты - триэтилалюминий - Аl(С2Н5)3 или триизо-бутилалюминий - Аl(i-С4Н9)3, которые могут содержать 0,5-3% масс. AlR2Cl.
В один из компонентов катализатора могут вводиться модификаторы, например эфиры. В качестве эфиров используют предпочтительно тетрагидрофуран или диоксан или их смеси. Смешивание производят при температуре (-25) - +40°С и времени выдержки 1-40 минут.
Полученный катализатор разбавляют растворителем до концентрации 0,25-2,5 г/л и направляют в реактор димеризации.
Приготовленный катализатор после разбавления растворителем вводят в реактор, после чего в реакторе поднимают давление 0,5-2,5 МПа за счет подачи этилена и проводят процесс димеризации этилена.
После окончания процесса димеризации в реактор или после вывода из реактора реакционной массы в нее вводят дезактиватор катализатора и направляют реакционную массу на стадию выделения бутена-1 и побочных продуктов - высших олефинов (гексенов и октенов).
Процесс получения бутена-1 может быть осуществлен как в периодическом, так и в непрерывном варианте. Непрерывным методом димеризацию этилена проводят в промышленных условиях на ОАО «Казаньоргсинтез» на установке общей производительностью по бутену-1 20,5 тыс. т/год.
Сущность предлагаемого изобретения иллюстрируется нижеследующими примерами.
Пример 1
В стальной герметичный реактор объемом 250 мл, снабженный пропеллерной мешалкой (число оборотов 1200 в мин), загружают 84 мл гептана 5 мл раствора Ti(OC4H9)4 (5·10-4 моль) и 11 мл Al(С2Н5)3 (15·10-4 моль). Температура в реакторе 90°С, давление этилена 2 МПа. После того как прореагирует 50 мл этилена, содержимое реактора направляют на ректификацию (температура куба колонки 130-140°С) и чистоту получаемого бутена-1 анализируют хроматографически на содержание в нем цис- и транс-бутенов-2. В кубе ректификационной колонки определяют содержание полимера, образовавшегося в процессе выделения бутена-1 из реакционной массы.
Пример 2 (по прототипу)
Процесс димеризации проводят аналогично примеру 1, но в присутствии модификатора катализатора на стадии синтеза и добавления дезактиватора катализатора - трибутиламина - на стадии завершения реакции димеризации. Чистоту получаемого бутена-1 и содержание полимера определяют также, как и в примере 1.
Примеры 3-10
В этих примерах приведены данные по димеризации этилена в различных условиях с введением различных модификаторов катализатора на стадии синтеза и дезактиваторов катализатора - целлозольвов - на стадии завершения реакции димеризации и влияние их на количество образующегося в качестве побочного продукта - полимера и на качество получаемого бутена-1 (см. табл.2).
Таблица 2
№№ опыта Модификатор, моль Дезактиватор, моль Дезактиватор: AlR3 моль Количество, % масс.
Полимер цис- и транс-бутены-2
1 отсутствует отсутствует 0 4 2,5
2 Тетрагидрофуран, 10×10-4 Трибутиламин, 45×10-4 3 2 1,2
3 Тетрагидрофуран, 10×10-4 Бутилцеллозольв, 5×10-4 0,33 0,02 0,025
4 Тетрагидрофуран, 10×10-4 Бутилцеллозольв, 10×10-4 0,66 0,012 0,012
5 Диоксан, 10×10-4 Этилцеллозольв, 15×10-4 1 0,18 0,02
6 Тетрагидрофуран, 5×10-4 Бутилцеллозольв, 15×10-4 1 0,01 0,01
7 Тетрагидрофуран, 10×10-4 Бутилцеллозольв, 20×10-4 1,3 0,008 0,008
8 Тетрагидрофуран, 10×10-4 Бутилцеллозольв, 30×10-4 2,0 0,006 0,006
9 Тетрагидрофуран, 5×10-4 Бутилцеллозольв, 45×10-4 3,0 0,015 0,012
10 Тетрагидрофуран, 2,5×10-4 Бутилцеллозольв, 10×10-4 0,3 0,15 0,03
В следующих примерах 11 и 12 процесс димеризации этилена проводят на промышленной установке непрерывного действия с объемом реактора 50 м3 (общей производительностью по бутену-1 - 20,5 тыс./т в год).
Пример 11
В реактор, в котором поддерживается температура 50°С и находится гексеновая фракция в количестве 15-17 м3, подают 1 кг каталитического комплекса, состоящего из эфирата титана, триизобутилалюминия, тетрагидрофурана в гексеновой фракции, 1200 кг/час этилена. Время контакта катализатора 4 час. Из реактора выходит жидкая реакционная масса 1700 кг/час, состоящая из этилена, бутена-1, изобутана, изобутилена, н-бутана, цис- и транс-бутенов-2, гексенов и октенов, в которую в качестве дезактиватора катализатора подают 1 кг/час трибутиламина, и всю эту массу направляют в блок разделения (температура испарителя 127°С), а затем в ректификационную колонну. После ректификации на склад в качестве товарной продукции поступает 1-бутен (99,1% чистоты), содержащий в своем составе до 0,8% масс. цис- и транс-бутенов-2.
Пример 12
Процесс димеризации этилена проводится аналогично примеру 11 за исключением того, что вместо трибутиламина подают бутилцеллозольв. После ректификации на склад в качестве товарной продукции поступает бутен-1 (99,8% чистоты), содержащий в своем составе до 0,1% масс. цис- и транс-бутенов-2.
Проведение процесса получения бутена-1 в указанных выше условиях позволяет:
- повысить селективность процесса и тем самым увеличить выход бутена-1;
- существенно уменьшить протекание на стадии выделения бутена-1 побочных реакций, таких как полимерообразование, изомеризации бутен-1 в бутены-2.
Таким образом, анализ существующей научно-технической и патентной литературы показал, что заявленная совокупность признаков отвечает критерию промышленной применимости, а также подтверждает соответствие заявляемого изобретения критериям новизны и существенным отличиям.

Claims (3)

1. Способ получения бутена-1 путем димеризации этилена при давлении 0,5-4 МПа и температуре 50-95°С в среде углеводородного растворителя в присутствии каталитической системы, состоящей из триалкила алюминия - АlR3, в котором R - углеводородный радикал, содержащий 1-6 углеродных атомов, эфирата титана - Ti(OR)4, в котором R - углеводородный радикал, содержащий 2-6 углеродных атомов, в присутствии или отсутствии модификатора - эфира, причем по окончании реакции димеризации в реактор или при выводе из реактора реакционной массы в нее вводят дезактиватор катализатора, отличающийся тем, что в качестве дезактиватора катализатора применяют моноалкиловые эфиры этиленгликоля.
2. Способ получения бутена-1 по п.1, отличающийся тем, что в качестве моноалкилового эфира этиленгликоля применяют этицеллозольв или бутилцеллозольв.
3. Способ получения бутена-1 по п.1, отличающийся тем, что молярное соотношение целлозольв: АlR3=0,33-3.
RU2009126060/04A 2009-07-09 2009-07-09 Способ получения бутена-1 RU2429216C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009126060/04A RU2429216C2 (ru) 2009-07-09 2009-07-09 Способ получения бутена-1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009126060/04A RU2429216C2 (ru) 2009-07-09 2009-07-09 Способ получения бутена-1

Publications (2)

Publication Number Publication Date
RU2009126060A RU2009126060A (ru) 2011-01-20
RU2429216C2 true RU2429216C2 (ru) 2011-09-20

Family

ID=44758826

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009126060/04A RU2429216C2 (ru) 2009-07-09 2009-07-09 Способ получения бутена-1

Country Status (1)

Country Link
RU (1) RU2429216C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640820C1 (ru) * 2013-12-13 2018-01-18 Сауди Бейсик Индастриз Корпорейшн Каталитические композиции для селективной димеризации этилена

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3074493B1 (fr) * 2017-12-05 2019-12-13 IFP Energies Nouvelles Procede de dimerisation de l'ethylene comprenant une etape de traitement de l'effluent reactionnel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640820C1 (ru) * 2013-12-13 2018-01-18 Сауди Бейсик Индастриз Корпорейшн Каталитические композиции для селективной димеризации этилена
US9919298B2 (en) 2013-12-13 2018-03-20 Saudi Basic Industries Corporation Catalyst compositions for selective dimerization of ethylene

Also Published As

Publication number Publication date
RU2009126060A (ru) 2011-01-20

Similar Documents

Publication Publication Date Title
US9593055B2 (en) Method for preparing linear alpha-olefins
JPS6094923A (ja) エチレンの二量化による1‐ブテンの改良合成方法
KR20090014372A (ko) 이소부텐 함량이 낮은 c4 탄화수소 혼합물로부터 반응성이있고 실질적으로 할로겐을 함유하지 않는 폴리이소부텐의 제조
US20160325274A1 (en) Catalyst compositions for ethylene dimerization
US6300444B1 (en) Process for producing butene polymer
MX2011000532A (es) Proceso para preparar isobuteno mediante la escision de mezclas que contienen eter metil ter-butilico.
FR3023285A1 (fr) Procede ameliore de dimerisation selective de l'ethylene en butene-1
JPS58109428A (ja) 線状オレフイン生成物の製造法
JP2013067613A (ja) 1−ブテンの選択的オリゴマー化によって2−ブテンおよび1−ブテンを含有するc4留分から2−ブテンを分離する方法
EP2657217B1 (en) Process for producing a T-butyl phenol from a C4 raffinate stream
JP6673904B2 (ja) ポリブテンの製造方法
US6111148A (en) Process for producing tertiary butyl alcohol
RU2429216C2 (ru) Способ получения бутена-1
HU203308B (en) Process for producing 1-butene
US4533781A (en) Process for preparing 4-methyl-1-pentene
JP5343041B2 (ja) オレフィン重合体の製造方法
JP2008179817A (ja) α−オレフィン低重合体の製造方法及びピロール化合物の保管方法
RU2304147C2 (ru) Каталитическая система для димеризации этилена и способ димеризации этилена в 1-бутен
JP2007119383A (ja) 1−ヘキセンの製造方法
US6949671B2 (en) Process for the production of acetic acid C4-esters
JPH0363234A (ja) アルケンのカツプリング
US11124470B2 (en) Systems and methods of producing methyl tertiary butyl ether and propylene
KR20180047941A (ko) 폴리이소부텐 원료 전처리 방법
CN112661595B (zh) 高纯度1-丁烯的制备方法
CN114456029A (zh) 从碳四烃制备1-丁烯的方法和装置