RU2429023C1 - Способ изготовления биологического протеза венозного клапана - Google Patents

Способ изготовления биологического протеза венозного клапана Download PDF

Info

Publication number
RU2429023C1
RU2429023C1 RU2010130322/15A RU2010130322A RU2429023C1 RU 2429023 C1 RU2429023 C1 RU 2429023C1 RU 2010130322/15 A RU2010130322/15 A RU 2010130322/15A RU 2010130322 A RU2010130322 A RU 2010130322A RU 2429023 C1 RU2429023 C1 RU 2429023C1
Authority
RU
Russia
Prior art keywords
solution
venous
valve
hours
heparin
Prior art date
Application number
RU2010130322/15A
Other languages
English (en)
Inventor
Леонид Семенович Барбараш (RU)
Леонид Семенович Барбараш
Ирина Юрьевна Журавлева (RU)
Ирина Юрьевна Журавлева
Юлия Александровна Кудрявцева (RU)
Юлия Александровна Кудрявцева
Марина Владимировна Насонова (RU)
Марина Владимировна Насонова
Анна Геннадьевна Тогулева (RU)
Анна Геннадьевна Тогулева
Original Assignee
Учреждение Российской академии медицинских наук Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний Сибирского отделения Российской академии медицинских наук (УРАМН НИИ КПССЗ СО РАМН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии медицинских наук Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний Сибирского отделения Российской академии медицинских наук (УРАМН НИИ КПССЗ СО РАМН) filed Critical Учреждение Российской академии медицинских наук Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний Сибирского отделения Российской академии медицинских наук (УРАМН НИИ КПССЗ СО РАМН)
Priority to RU2010130322/15A priority Critical patent/RU2429023C1/ru
Application granted granted Critical
Publication of RU2429023C1 publication Critical patent/RU2429023C1/ru

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к медицине. Описан способ изготовления биологического протеза венозного клапана, включающий клапаносодержащие венозные сегменты крупного рогатого скота, консервированные в 2-5% растворе ДЭЭ при температуре 18-30°С в течение 21 суток, затем последующую последовательную послойную модификацию биоматериала в растворе гепарина 100 Ед/мл в течение 16 часов, затем в растворе человеческого альбумина 3-20 г/л при pH 3,5-6,0 в течение 3 часов и повторно в растворе гепарина в течение 4 часов. Хранение биопротеза до использования осуществляют в 2% растворе диглицидилового эфира этиленгликоля. Техническим результатом изобретения является повышение гемосовместимости биопротеза венозного клапана за счет модификации клапаносодержащих венозных сегментов крупного рогатого скота, консервированных диглицидиловым эфиром этиленгликоля. 1 табл.

Description

Изобретение относится к медицине, а именно к сердечнососудистой хирургии, и может быть использовано при создании биологических протезов венозного клапана для хирургического лечения хронической венозной недостаточности.
Опыт использования различных протезов показывает, что биологические протезы, по сравнению с синтетическими, при имплантации несут меньший риск тромбозов и тромбоэмболии. Это обусловлено физиологическими характеристиками центрального потока крови через биопротез, а также большей гемосовместимостью створчатого аппарата из биологической ткани по сравнению с синтетическими материалами запирательного элемента протеза.
Известен способ изготовления искусственного венозного клапана из тетрафторполиэтилена (ePTFE), при этом для повышения гемо- и биосовместимости поверхность протеза покрывают эндотелиальными клетками (Патент США №2003/0171802, МПК A61F 2/06, нац. класс 623/1.24, заявлен 03.05.2002 г., опубликован 09.11.2003 г.).
Недостатки такого клапана обусловлены тем, что створчатый аппарат протеза из тетрафторполиэтилена не обладает достаточной пластичностью, а, учитывая реологические свойства венозной крови (повышенная вязкость), при имплантации данного вида протезов присутствует высокий риск его тромбоза. Помимо этого, эндотелиальные клетки имеют ограниченный срок жизни, что уменьшает сроки использования модифицированного ими протеза.
Известен протез венозного клапана (Патент РФ №2129847, МКИ A61F 2/24, заявлен 29.05.1998 г., опубликован 10.05.1999 г.). Протез клапана содержит кольцевой корпус и дисковый запорный элемент, установленный в корпусе с возможностью поворота. Запорный элемент выполнен из полиамида, близкого по плотности к плотности крови.
Недостатками данного протеза является то, что инородный материал в составе конструкции приводит к активации форменных элементов в венозном кровотоке и усиливает гиперкоагуляцию крови, что повышает риск тромбообразования, а нефизиологическая конфигурация в целом, не соответствующая строению естественного венозного клапана, искажает геометрию физиологического потока крови через клапан.
Известен биопротез венозного клапана, изготовленный из яремной вены крупного рогатого скота, консервированный глутаровым альдегидом (Kaya M, Grogan JB, Lentz D, et al. // J. Surg. Res., - 1988. - №45. - P.294-297). В отличие от синтетических протезов, биопротез обладает такими преимуществами, как естественная конфигурация клапана, меньшее негативное влияние на компоненты крови. Тем не менее, данный вид протеза обладает рядом недостатков. Биоматериал, обработанный глутаровым альдегидом, обладает гидрофобными свойствами и низкой эластичностью, что в целом негативно отражается на гемосовместимости протеза. Помимо этого, глутаровый альдегид придает консервированному биоматериалу ригидность (жесткость) и обладает высоким кальцийсвязывающим потенциалом. Все перечисленные недостатки могут спровоцировать тромбоз протеза.
В качестве прототипа принят способ консервации биоткани для протезирования венозного клапана, заключающийся в том, что производят замену традиционного консерванта - глутарового альдегида на новый сшивающий и стерилизующий агент из класса эпокисоединений - 2-5% раствор диглицидилового эфира этиленгликоля (патент на изобретение РФ №2008767, МКИ A01N 1/00, заявлено 23.01.1992 г., опубликовано 15.03.1994 г.). Использование нового сшивающего и стерилизующего агента позволяет подавить кальцификацию биоткани. Эффективность и перспективность известного способа консервации биопротезов клапанов сердца и сосудов подвержена на моделях и в опытах на клапанах и сосудах ех vivo. Диглицидиловый эфир этиленгликоля (ДЭЭ) обладает высокой активностью поперечной сшивки коллагена, достаточной стерилизующей активностью и придает ткани эластичность, аналогичную нативной ткани. Непрореагировавшие эпоксигруппы (у части молекул, связавшихся с аминогруппами коллагена одной эпоксигруппой) используются для ковалентной иммобилизации гепарина, что позволяет повысить тромборезистентность протезов.
Недостатками известного способа является то, что иммобилизация гепарина позволяет лишь частично сгладить рельеф поверхности биоматериала и придать ей определенные тромборезистентные свойства, однако для стенки вены, обладающей исходно «грубым», неровным рельефом, этого недостаточно. Также высокий риск тромбоза венозного биопротеза обусловлен реологическими особенностями венозной крови (повышенная вязкость и медленная скорость кровотока) и турбулентным потоком крови в подклапанном пространстве.
Техническим результатом изобретения является повышение гемосовместимости биопротеза венозного клапана за счет модификации клапаносодержащих венозных сегментов крупного рогатого скота, консервированных ДЭЭ, последовательно в растворах гепарина и альбумина.
Предложенный способ изготовления биологического протеза венозного клапана включает очистку и отмывку клапаносодержащих венозных сегментов в растворе 0,9% натрия хлорида с последующей консервацией в 2-5% растворе диглицидилового эфира этиленгликоля при pH 5,0-8,0 и температуре 18-30°С в течение 21 суток с последующей модификацией венозных сегментов и хранением их до использования в 2% растворе диглицидилового эфира этиленгликоля. Отличием является то, что после 3-кратной отмывки биоматериала по 20 минут в 0,9% растворе натрия хлорида выполняют последовательную послойную модификацию, сначала инкубируя биоматериал в течение 16 часов в растворе гепарина с концентрацией 100 Ед/мл при температуре 37°C, затем 3 часа в растворе человеческого альбумина с концентрацией 3-20 г/л при pH 3,5-6,0 и заканчивают модификацию выдержкой в растворе гепарина в течение 4-х часов.
Ниже приведен пример осуществления предлагаемого способа изготовления.
Взятые от свежезабитых животных, очищенные и отмытые от крови в растворе 0,9% натрия хлорида клапаносодержащие венозные сегменты погружают в 2-5% раствор ДЭЭ при pH 5,0-8,0 и температуре 18-30°C, где они консервируются в течение 21 суток. Перед модификацией производят 3-кратную отмывку биоматериала по 20 минут в 0,9% растворе натрия хлорида. Модификацию венозных сегментов выполняют последовательно, инкубируя в течение 16 часов в растворе гепарина с концентрацией 100 Ед/мл при температуре 37°C, затем 3 часа в растворе человеческого альбумина (3-20 г/л) при pH 3,5-6,0 и далее повторно в растворе гепарина в течение 4 часов. Затем биопротез венозного клапана отмывают 3-кратно в 0,9% растворе натрия хлорида в течение 20 минут каждый раз и до использования биоматериал хранят в 2% растворе ДЭЭ.
Сущность предложенного способа заключается в том, что использование ДЭЭ придает ксеновенам необходимую прочность и эластичность, а непрореагировавшие эпоксигруппы позволяют проводить иммобилизацию гепарина и альбумина, не прибегая к сложным технологиям. Послойная модификация «гепарин-альбумин-гепарин» позволяет получить ровный сглаженный рельеф поверхности ксеновен, помимо этого, комплекс «гепарин-альбумин» обладает усиленными антикоагулянтными свойствами, препятствуя активации форменных элементов и адсорбции плазменных белков крови.
ДЭЭ обеспечивает ксеновенам высокую структурную стабильность за счет высокой плотности поперечной сшивки коллагена при консервации. Для изучения оценки качества биоматериала был использован аминокислотный анализ. Полученные результаты подтверждают, что при использовании глутарового альдегида сшивка коллагена осуществляется только за счет лизина и гидроксилизина. Применение в качестве консерванта ДЭЭ позволяет вовлечь в реакцию с коллагеном, помимо лизина и гидроксилизина, также гистидин, тирозин и частично - метионин (см. таблицу).
Таблица
Относительное содержание некоторых аминокислот в стенке ксеновены на 1000 аминокислотных остатков (M±m)
Аминокислота Натив ГА ДЭЭ
Метионин (Met) 6,7±0,2 7,0±0,1 4,1±0,1
Тирозин (Tyr) 9,8±0,4 7,7±0,2 0,5±0,03
Гистидин (His) 6,7±0,20 5,2±0,17 0
Оксилизин (OH-Lys) 4,4±0,1 1,0±0,1 0,7±0,1
Лизин (Lys) 27,4±1,2 4,0±0,03 1,1±0,09
В биоматериале, обработанном ГА, остается 15% свободных остатков лизина, в то время как в консервированной диэпоксидом - всего 4% (за 100% принимали содержание свободных остатков аминокислоты в нативной ткани). Гидроксилизина оставалось 14,9% после консервации ДЭЭ и 17% - после применения ГА. При консервации ксеновен ДЭЭ происходит практически полное вовлечение гистидина и тирозина в реакцию с коллагеном - содержание тирозина уменьшается на 98% в консервированной ткани, а гистидина - на 100% по сравнению с нативными образцами. Содержание метионина в биоткани, обработанной ДЭЭ, снижается на 39%.
Таким образом, данные аминокислотного анализа свидетельствуют о том, что консервация ксеновен ДЭЭ превосходит консервацию глутаровым альдегидом как по качественным, так и по количественным показателям сшивки.
При оценке физико-механических свойств образцов ксеновен было обнаружено, что по прочности ГА-обработанные ксеновены (2,31±0,52 МПа) недостоверно превосходят консервированные ДЭЭ (1,9±0,29 МПа). В целом, прочность консервированного биоматериала не уступает по прочности нативным венам (1,5-2 МПа). По эластичности биоматериал, консервированный ГА (77,0±6,6%) и ДЭЭ (76,9±5,8%), не имеет достоверных различий.
Изучение поверхности биоматериала при помощи метода сканирующей электронной микроскопии показало, что ксеновены, подвергшиеся стадийной модификации «гепарин-альбумин-гепарин», имеют наиболее гладкий, ровный рельеф поверхности по сравнению с контролем (ДЭЭ) и модификацией только лишь в растворе гепарина.
При изучении агрегационной активности тромбоцитов, индуцированной коллагеном, было установлено, что ГА-консервированный биоматериал оказывает наиболее агрессивное воздействие на тромбоциты - максимум агрегации увеличился на 21% (p<0,05), по сравнению с исходными показателями (74,3%), и составил 90%. После контакта с ксеновенами, консервированными ДЭЭ, максимум агрегации составил 81,2%. Предложенная стадийная модификация «гепарин-альбумин-гепарин» позволила снизить данный показатель до 71,5%. Показатели агрегации тромбоцитов, индуцированной АДФ, была аналогичны.
Тромборезистентные свойства ксеновен определяли по количеству тромботических масс, осевших на стенках испытуемых венозных сегментов при контакте с нативной кровью: в опытах in vitro показано, что через 60 минут контакта с кровью масса пристеночного тромба на образцах, консервированных ГА, составила 1,97±0,2 мг/см2. Поверхность ксеновен, консервированных ДЭЭ, была менее тромбогенной - 1,73±0,14 мг/см2, а с дополнительной модификацией гепарином - 1,22±0,09 мг/см2. Модификация ксеновен по предложенному способу «гепарин-альбумин-гепарин» позволила значительно уменьшить массу пристеночного тромба - до 0,7±0,06 мг/см2 (p<0,001).

Claims (1)

  1. Способ изготовления биологического протеза венозного клапана включает очистку и отмывку клапаносодержащих венозных сегментов в растворе 0,9%-ного натрия хлорида с последующей консервацией в 2-5%-ном растворе диглицидилового эфира этиленгликоля при pH 5,0-8,0 и температуре 18-30°С в течение 21 суток с последующей модификацией венозных сегментов и хранением их до использования в 2%-ном растворе диглицидилового эфира этиленгликоля, отличающийся тем, что после 3-кратной отмывки биоматериала по 20 мин в 0,9%-ном растворе натрия хлорида выполняют последовательную послойную модификацию, сначала инкубируя биоматериал в течение 16 ч в растворе гепарина с концентрацией 100 Ед/мл при температуре 37°С, затем 3 ч в растворе человеческого альбумина с концентрацией 3-20 г/л при pH 3,5-6,0 и заканчивают модификацию выдержкой в растворе гепарина в течение 4 ч.
RU2010130322/15A 2010-07-20 2010-07-20 Способ изготовления биологического протеза венозного клапана RU2429023C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010130322/15A RU2429023C1 (ru) 2010-07-20 2010-07-20 Способ изготовления биологического протеза венозного клапана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010130322/15A RU2429023C1 (ru) 2010-07-20 2010-07-20 Способ изготовления биологического протеза венозного клапана

Publications (1)

Publication Number Publication Date
RU2429023C1 true RU2429023C1 (ru) 2011-09-20

Family

ID=44758630

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010130322/15A RU2429023C1 (ru) 2010-07-20 2010-07-20 Способ изготовления биологического протеза венозного клапана

Country Status (1)

Country Link
RU (1) RU2429023C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633544C1 (ru) * 2016-06-06 2017-10-13 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ им. ак. Е.Н. Мешалкина" Минздрава России) Способ изготовления клапансодержащего кондуита из яремной вены крупного рогатого скота

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633544C1 (ru) * 2016-06-06 2017-10-13 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ им. ак. Е.Н. Мешалкина" Минздрава России) Способ изготовления клапансодержащего кондуита из яремной вены крупного рогатого скота

Similar Documents

Publication Publication Date Title
Pennel et al. The performance of cross-linked acellular arterial scaffolds as vascular grafts; pre-clinical testing in direct and isolation loop circulatory models
RU2630979C2 (ru) Способ стерилизации
CA2884689C (en) Method for the preparation of biological tissue for dry use in an implant
JP5208513B2 (ja) 移植可能なバイオマテリアルおよび同生成する方法
US6132473A (en) Differential treatment of prosthetic devices
JP2014519906A (ja) 滅菌された無細胞の細胞外マトリックス組成物及びその作製方法
CN109651627A (zh) 天然聚合物交联剂及其在制备抗钙化生物瓣膜中的应用
JP2004502499A (ja) 動物の角膜組織を含むバイオマテリアル
US20210268151A1 (en) Pre-Loadable Biological Heart Valve Capable of Rapid Rehydration and Preparation Method Thereof
US20220072197A1 (en) Method for producing a fibrin-based bioartificial, primarily acellular construct, and the construct itself
KR20210124886A (ko) 외과적 이식용 생물 조직의 준비 방법
US20220176018A1 (en) A process for prevention of degradation and degeneration of tissue used in bioprosthesis
RU2429023C1 (ru) Способ изготовления биологического протеза венозного клапана
CN112263715B (zh) 一种抗凝血抗钙化的人工心脏瓣膜材料及其制备方法与应用
Noishiki et al. Development and evaluation of a pliable biological valved conduit. Part I: preparation, biochemical properties, and histological findings
Wong et al. Polyethyleneterephthalate provides superior retention of endothelial cells during shear stress compared to polytetrafluoroethylene and pericardium
WO2017067295A1 (zh) 一种人工生物带瓣膜血管及其制备方法
KR20010038098A (ko) 헤파린 처리된 항석회화성 생체조직 이식물 및 이의 제조 방법
RU2122321C1 (ru) Способ обработки биологических протезов для сердечно-сосудистой хирургии
CA3107918A1 (en) Methods of preparing personalized blood vessels
RU2809478C2 (ru) Способ предотвращения разложения и дегенерации ткани, используемой в биопротезах
RU2026618C1 (ru) Способ изготовления сосудистого ксенотрансплантата
RU2008767C1 (ru) Способ консервирования биоткани для протезирования клапанов сердца и сосудов
Wang et al. Polyurethane vascular grafts with thorough porosity: Does an internal or an external membrane wrapping improve their in vivo blood compatibility and biofunctionality?
Takahashi Adsorption of basic fibroblast growth factor onto Dacron vascular prosthesis and its biological efficacy

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20130422

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190721