RU2427726C2 - Центробежное рабочее колесо и способ его изготовления - Google Patents

Центробежное рабочее колесо и способ его изготовления Download PDF

Info

Publication number
RU2427726C2
RU2427726C2 RU2009141032/06A RU2009141032A RU2427726C2 RU 2427726 C2 RU2427726 C2 RU 2427726C2 RU 2009141032/06 A RU2009141032/06 A RU 2009141032/06A RU 2009141032 A RU2009141032 A RU 2009141032A RU 2427726 C2 RU2427726 C2 RU 2427726C2
Authority
RU
Russia
Prior art keywords
disk
blade
blades
drive
cover
Prior art date
Application number
RU2009141032/06A
Other languages
English (en)
Other versions
RU2009141032A (ru
Inventor
Николай Игоревич Белоусов (RU)
Николай Игоревич Белоусов
Original Assignee
Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2009141032/06A priority Critical patent/RU2427726C2/ru
Publication of RU2009141032A publication Critical patent/RU2009141032A/ru
Application granted granted Critical
Publication of RU2427726C2 publication Critical patent/RU2427726C2/ru

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретения могут быть использованы при изготовлении и эксплуатации малорасходных насосов изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей 1 ведущий диск 2, покрывной диск 3 с центральным входным отверстием 4 и размещенное между дисками 2, 3 четное число лопаток 5 с напорной и тыльной сторонами 6, 7 и входной и выходной кромками 8, 9. Диски 2, 3 выполнены заодно с лопатками 5. На диске 3 выполнены осесимметрично расположенные прорези 10, ограниченные стороной 6 каждой четной лопатки 5 и ближайшей к этой стороне стороной 7 соседней лопатки 5, наружным диаметром D диска 3 и диаметром d отверстия 4. На диске 2 выполнены осесимметрично расположенные прорези 11, ограниченные стороной 6 каждой нечетной лопатки 5 и ближайшей к ней стороной 7 соседней лопатки 5, наружным диаметром D диска 2 и внутренним контуром 12, отстоящим от оси колеса не далее радиуса R пересечения кромок 8 лопаток 5 с внутренней поверхностью диска 2. Изобретения направлены на снижение дисковых потерь, компенсацию осевой силы и повышение технологичности изготовления. 2 н.п. ф-лы, 9 ил.

Description

Изобретение относится к машиностроительной гидравлике и может быть использовано для производства рабочих колес малорасходных центробежных насосов систем терморегулирования космических летательных аппаратов.
Известно центробежное рабочее колесо, содержащее ведущий диск, покрывной диск и выполненные заодно с ними лопатки (Малюшенко В.В., Михайлов А.К. Энергетические насосы. Справочное пособие. М., Энергоиздат, 1981, с.21, рис.1.15а). На покрывном диске выполнен бурт под щелевое уплотнение.
Известен способ изготовления центробежного рабочего колеса путем его отливки (Малюшенко В.В., Михайлов А.К. Энергетические насосы. Справочное пособие. М., Энергоиздат, 1981, с.21, разд. 1.4.3, абзац 3).
Недостатками такого центробежного рабочего колеса являются сложность конструкции и большой осевой габарит, вызванные выполнением бурта под щелевое уплотнение.
Недостатком способа изготовления рабочего колеса является ограниченная область применения, в основном для насосов средней и большой мощности, так как для малорасходных центробежных насосов систем терморегулирования космических летательных аппаратов с наружными диаметрами рабочих колес в диапазоне около 50 мм (Бобков А.В. Центробежные насосы систем терморегулирования космических аппаратов. Владивосток, Дальнаука, 2003, с.18) изготовление колес способом литья крайне затруднительно из-за малой толщины стенок ведущего и покрывного дисков и лопаток (~0,7-1 мм).
Недостатка аналога конструкции лишено центробежное рабочее колесо, выбранное в качестве ближайшего аналога и содержащее выполненный заодно со ступицей ведущий диск, покрывной диск с центральным входным отверстием и размещенное между ведущим и покрывным диском четное число лопаток (Бобков А.В. Центробежные насосы систем терморегулирования космических аппаратов. Владивосток, Дальнаука, 2003, с.129, рис.5.8в). Применение уплотнения по торцовой поверхности покрывного диска упрощает конструкцию и снижает осевой габарит.
Недостатка аналога способа лишен способ изготовления рабочего колеса, состоящий из формообразования путем воздействия инструмента поверхностей ведущего и покрывного дисков, а также напорной и тыльной кромок каждой из четного числа лопаток, которые выполняются заодно с ведущим диском, после чего покрывной диск припаивается к торцовой поверхности лопаток, выбранный в качестве ближайшего аналога (Бобков А.В. Центробежные насосы систем терморегулирования космических аппаратов. Владивосток, Дальнаука, 2003, с.186, последний абзац). Этот способ вполне применим для изготовления рабочих колес малого размера, характерного для малорасходных насосов, что было отмечено выше.
Недостатком центробежного рабочего колеса - ближайшего аналога являются значительные дисковые потери на трение по наружным поверхностям основного и покрывного дисков из-за их большой поверхности, а также нескомпенсированная осевая сила, возникающая при работе колеса из-за разности эпюр давления по наружным поверхностям основного и покрывного дисков. Известные методы борьбы с этой силой, как, например, выполнение разгрузочных отверстий в стенке ведущего диска, могут снизить значение этой силы, но не позволяют достигнуть полной осевой разгрузки, что отмечено в (Бобков А.В. Центробежные насосы систем терморегулирования космических аппаратов. Владивосток, Дальнаука, 2003, с.208, 209, рис.7.16). Другим недостатком центробежного рабочего колеса является его низкая технологичность, вызванная необходимостью получения замкнутых полостей между дисками и сторонами лопаток.
Недостатком способа - ближайшего аналога является его низкая технологичность, т.к. он состоит из принципиально различных технологических операций - предварительной механической обработки ведущего диска с лопатками и покрывного диска, последующей пайкой их друг к другу - обычно это достигается вакуумной пайкой - и чистовой механической обработкой рабочего колеса со снятием припусков материала, необходимых для обеспечения жесткости центробежного колеса в процессе пайки, для исключения возможных поводок и коробления. Другим недостатком способа является ограничение им минимально возможной толщины лопатки, при которой возможна надежная пайка, что не позволяет максимально снизить толщину лопаток, что приводит к снижению КПД колеса.
Техническим результатом изобретения является снижение дисковых потерь на трение, компенсация осевого усилия на рабочем колесе при его работе, а также повышение технологичности его изготовления и устранение ограничения на минимальную толщину лопаток.
Технический результат достигается за счет того, что в центробежном рабочем колесе, содержащем выполненный заодно со ступицей ведущий диск, покрывной диск с центральным входным отверстием и размещенное между ведущим и покрывным диском четное число лопаток с напорной и тыльной сторонами, а также входной и выходной кромками, согласно изобретению ведущий и покрывной диски выполнены заодно с лопатками, на покрывном диске выполнены осесимметрично расположенные прорези, ограниченные напорной стороной каждой четной лопатки и ближайшей к этой стороне тыльной стороной соседней лопатки, наружным диаметром покрывного диска и диаметром входного отверстия, а на ведущем диске выполнены осесимметрично расположенные прорези, ограниченные напорной стороной каждой нечетной лопатки и ближайшей к этой стороне тыльной стороной соседней лопатки, наружным диаметром ведущего диска и внутренним контуром, отстоящим от оси рабочего колеса не далее радиуса пересечения входных кромок лопаток с внутренней поверхностью ведущего диска.
Технический результат достигается за счет того, что в способе изготовления центробежного рабочего колеса, состоящем из формообразования путем воздействия инструмента поверхностей ведущего и покрывного дисков, а также напорной и тыльной сторон каждой из четного числа лопаток, согласно изобретению формообразование напорной стороны каждой четной лопатки и ближайшей к ней тыльной стороны соседней лопатки производят одновременно с формообразованием расположенного между ними участка внутренней поверхности ведущего диска, с удалением при этом материала покрывного диска внутри поверхности, сметаемой боковой поверхностью инструмента при его движении, а формообразование напорной стороны каждой нечетной лопатки и ближайшей к ней тыльной стороны соседней лопатки производят одновременно с формообразованием расположенного между ними участка внутренней поверхности покрывного диска, с удалением при этом материала ведущего диска внутри поверхности, сметаемой боковой поверхностью инструмента при его движении. Поскольку заявленное в формуле изобретения устройство не может быть изготовлено посредством какого-либо другого, кроме указанного, способа, и так как способ позволяет изготовить только устройство, геометрия которого удовлетворяет лишь заявленной формуле устройства, то очевидно, что в заявке описана группа изобретений, объединенных единым изобретательским замыслом.
На фиг.1. приведен пример конкретного выполнения рабочего колеса дискового насоса, продольный разрез, на фиг.2 - то же, вид со стороны покрывного диска, на фиг.3 - то же, вид со стороны ведущего диска, на фиг.4 - то же, разрез по А-А. На фиг.5-7 приведены стадии изготовления центробежного рабочего колеса. Для разъяснения приведены также фотографии экспериментального рабочего колеса, сделанные со стороны покрывного и ведущего дисков соответственно (фиг.8, 9).
Центробежное рабочее колесо содержит выполненный заодно со ступицей 1 ведущий диск 2 диаметра D и покрывной диск 3 того же диаметра с центральным входным отверстием 4 диаметра d. Между ведущим и покрывным дисками размещено четное число лопаток 5 (в данном примере конкретно выполнено шесть лопаток, при этом подстрочный индекс в позиции лопатки на фиг.2-4 обозначает ее порядковый номер - 51, 52, 53, 54, 55, 56). Каждая лопатка имеет напорную 6 и тыльную 7 стороны, а также входную 8 и выходную 9 кромки. Ведущий 2 и покрывной 3 диски выполнены заодно с лопатками 5. На покрывном диске 3 выполнены осесимметрично расположенные прорези 10, ограниченные напорной стороной 6 каждой четной лопатки 5 (на фиг.2 показана выноска к напорной стороне лопатки 54) и ближайшей к этой стороне тыльной стороной 7 соседней лопатки 5 (на фиг.2 показана выноска к тыльной стороне лопатки 53 - она ближе, чем тыльная сторона другой соседней лопатки 55), наружным диаметром D покрывного диска и диаметром d входного отверстия 4. На ведущем диске 2 выполнены осесимметрично расположенные прорези 11, ограниченные напорной стороной 6 каждой нечетной лопатки 5 и ближайшей к этой стороне тыльной стороной 7 соседней лопатки, наружным диаметром D ведущего диска 2 и внутренним контуром 12, отстоящим от оси рабочего колеса не далее радиуса R пересечения входных кромок 8 лопаток 5 с внутренней поверхностью 13 ведущего диска 2. На фиг.2 выноска 11 указывает одну из трех прорезей, размещенную между напорной стороной 6 лопатки 53 и тыльной стороной 7 лопатки 52. Выполнение внутреннего контура 12, отстоящим от оси рабочего колеса не далее радиуса R пересечения входных кромок 8 лопаток 5 с внутренней поверхностью 13 ведущего диска 2, необходимо для того, чтобы обеспечить доступ инструмента для обработки напорной стороны 6 каждой нечетной лопатки 5 и ближайшей к этой стороне тыльной стороны 7 соседней лопатки на всей длине лопатки.
Центробежное рабочее колесо дискового насоса работает следующим образом: при приведении колеса во вращение (за счет установки ступицы на приводном валу) в среде жидкости жидкость в зазоре между дисками 2 и 3 под воздействием напорных сторон 6 лопаток 5 также приводится в движение, следствием которого является вытеснение жидкости к наружному диаметру рабочего колеса под действием центробежных сил инерции и создание рабочим колесом напора. Жидкость подается на каждую из шести лопаток 5 через входное отверстие 4. При этом момент трения наружных поверхностей дисков 2 и 3 о жидкость снижается почти в 2 раза по сравнению с прототипом, т.к. прорези 10 и 11 снижают площадь трущейся поверхности дисков 3 и 2 соответственно почти в 2 раза. Кроме того, т.к. формирование эпюры статического давления в каждой межлопаточной камере происходит под воздействием одного и того же профиля напорной стороны 6 лопаток 5, то эпюры давления будут полностью идентичны друг другу. Таким образом, результирующая сил статического давления на внутреннюю поверхность покрывного диска 3 (на участках между лопатками 52 и 53, 54 и 55, 56 и 51) полностью компенсируется действием результирующей сил статического давления на внутреннюю поверхность ведущего диска 2 (на участках между лопатками 51 и 52, 53 и 54, 55 и 56). Поскольку число лопаток четно, то это условие выполнимо всегда. Аналогично эпюры давлений на внешние поверхности дисков 2 и 3 также идентичны друг к другу в конструкции прототипа при условии равенства торцовых зазоров между колесом и неподвижными участками корпуса и взаимно компенсируют друг друга. Таким образом, обеспечивается полная разгрузка рабочего колеса от осевых сил. Кроме того, существенно повышается технологичность центробежного рабочего колеса за счет отсутствия в его конструкции замкнутых полостей. При этом заявленная конструкция не является разновидностью так называемого «полуоткрытого колеса» (Краев М.В., Лукин В.А., Овсянников Б.В. Малорасходные насосы авиационных и космических систем. М., Машиностроение, 1985, с.28, рис.2.4б, с.29), иногда называемого другими авторами «открытым колесом» (Бобков А.В. Центробежные насосы систем терморегулирования космических аппаратов. Владивосток, Дальнаука, 2003, с.188, табл.7.4), т.к. для полуоткрытого колеса характерен резкий перепад давления между напорной и тыльной сторонами одной и той же лопатки, ограниченный только торцевым зазором между торцем лопатки и корпусом, что приводит к довольно существенным перетечкам через открытый торец лопатки и существенному вихреобразованию, снижающему КПД колеса. В заявленной конструкции, которую можно назвать «полузакрытым колесом», перетекание между напорной и тыльной стороной одной и той же лопатки принципиально невозможно, т.к. они разделены участком либо ведущего, либо покрывного дисков. Перетекание возможно лишь между напорной стороной одной лопатки и тыльной стороной следующей лопатки, которые разделены участком наружной поверхности либо покрывного, либо ведущего диска, поэтому расход этой перетечки резко снижается - зазор между указанными участками диска и корпусом работает, как щелевое уплотнение. Соответственно снижается и вихреобразование.
Изготовление указанного рабочего колеса производят следующим образом: сначала получают путем обработки на токарном станке заготовку, ограниченную внешними поверхностями ведущего и покрывного дисков, что показано на фиг.5. Далее полученную заготовку устанавливают на столе фрезерного станка и производят фрезерование трех фрезеровок 15, осуществляя этой операцией формообразование напорной стороны 6 каждой четной лопатки и ближайшей к ней тыльной стороны 7 соседней лопатки одновременно с формообразованием расположенного между ними участка внутренней поверхности 13 ведущего диска 2. При этом осуществляется удаление материала покрывного диска 3 внутри поверхности 16, сметаемой боковой поверхностью инструмента - в данном случае фрезы 17 (показана пунктиром) при его движении. После этого заготовку переворачивают на 180 градусов и производят фрезерование трех фрезеровок 18, осуществляя этой операцией формообразование напорной стороны 6 каждой нечетной лопатки и ближайшей к ней тыльной стороны 7 соседней лопатки одновременно с формообразованием расположенного между ними участка 19 внутренней поверхности покрывного диска 3. При этом осуществляется удаление материала ведущего диска 2 внутри поверхности 20, сметаемой боковой поверхностью инструмента - в данном случае фрезы 17 (показана пунктиром) при его движении. В данном примере количество фрезеровок 15 и 18 равно трем, так как в примере устройства, получаемого данным способом, лопаток 6. Но заявляется способ изготовления колеса с любым четным числом лопаток. В результате использования способа повышается технологичность центробежного рабочего колеса, т.к. процесс его изготовления не включает технологические операции различного характера, такие как сочетание механической обработки в сочетании с пайкой. Кроме того, использование заявленного способа снимет ограничение на минимально возможную толщину лопатки, накладываемое ранее необходимость проведения операции пайки. Поскольку формообразование напорной и тыльной сторон каждой лопатки и участков внутренней поверхности ведущего и покрывного дисков может производиться не только фрезой, но и другим инструментом - например, электродами с профилем поверхностей 16 и 20 при электроэрозионной обработке заготовок, то определение инструмента не конкретизируется. В примере конкретного выполнения способа приведен процесс предварительной токарной обработки заготовки, но он отсутствует, например, при получении рабочего колеса за одну операцию прессования на термопластавтомате, при котором инструментом являются пуансон и матрица прессформы.
В иллюстрациях, для упрощения описания, приведено рабочее колесо с лопатками, напорные и тыльные стороны которых выполнены плоскими, однако это непринципиально - конструкция и способ позволяют получать любой профиль лопатки одинарной кривизны (кстати, такие лопатки встречаются практически на всех центробежных малорасходных насосах, ибо применение лопаток двойной кривизны при малых диаметрах рабочих колес нецелесообразно). Пример конкретного выполнения рабочего колеса с профилем напорной стороны в виде кривой приведен на фиг.8 и 9, где представлен опытный образец колеса, изготовленный для проведения гидравлических испытаний.
Указанные преимущества позволяют рекомендовать заявленную группу изобретений к использованию при изготовлении и эксплуатации в изделиях ракетно-космической техники.

Claims (2)

1. Центробежное рабочее колесо, содержащее выполненный заодно со ступицей ведущий диск, покрывной диск с центральным входным отверстием и размещенное между ведущим и покрывным диском четное число лопаток с напорной и тыльной сторонами, а также входной и выходной кромками, отличающееся тем, что ведущий и покрывной диски выполнены заодно с лопатками, на покрывном диске выполнены осесимметрично расположенные прорези, ограниченные напорной стороной каждой четной лопатки и ближайшей к этой стороне тыльной стороной соседней лопатки, наружным диаметром покрывного диска и диаметром входного отверстия, а на ведущем диске выполнены осесимметрично расположенные прорези, ограниченные напорной стороной каждой нечетной лопатки и ближайшей к этой стороне тыльной стороной соседней лопатки, наружным диаметром ведущего диска и внутренним контуром, отстоящим от оси рабочего колеса не далее радиуса пересечения входных кромок лопаток с внутренней поверхностью ведущего диска.
2. Способ изготовления центробежного рабочего колеса, состоящий из формообразования путем воздействия инструмента поверхностей ведущего и покрывного дисков, а также напорной и тыльной сторон каждой из четного числа лопаток, отличающийся тем, что формообразование напорной стороны каждой четной лопатки и ближайшей к ней тыльной стороны соседней лопатки производят одновременно с формообразованием расположенного между ними участка внутренней поверхности ведущего диска, с удалением при этом материала покрывного диска внутри поверхности, сметаемой боковой поверхностью инструмента при его движении, а формообразование напорной стороны каждой нечетной лопатки и ближайшей к ней тыльной стороны соседней лопатки производят одновременно с формообразованием расположенного между ними участка внутренней поверхности покрывного диска, с удалением при этом материала ведущего диска внутри поверхности, сметаемой боковой поверхностью инструмента при его движении.
RU2009141032/06A 2009-11-05 2009-11-05 Центробежное рабочее колесо и способ его изготовления RU2427726C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009141032/06A RU2427726C2 (ru) 2009-11-05 2009-11-05 Центробежное рабочее колесо и способ его изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009141032/06A RU2427726C2 (ru) 2009-11-05 2009-11-05 Центробежное рабочее колесо и способ его изготовления

Publications (2)

Publication Number Publication Date
RU2009141032A RU2009141032A (ru) 2011-05-10
RU2427726C2 true RU2427726C2 (ru) 2011-08-27

Family

ID=44732339

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009141032/06A RU2427726C2 (ru) 2009-11-05 2009-11-05 Центробежное рабочее колесо и способ его изготовления

Country Status (1)

Country Link
RU (1) RU2427726C2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522134C1 (ru) * 2012-12-11 2014-07-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Центробежное рабочее колесо
CN103953842A (zh) * 2014-04-30 2014-07-30 于浩 一种y型互接式旋转片
RU2733502C2 (ru) * 2016-05-31 2020-10-02 Зульцер Мэнэджмент Аг Способ изготовления компонента ротационной машины и компонент, изготовленный с использованием упомянутого способа
RU2743542C2 (ru) * 2016-09-22 2021-02-19 Зульцер Мэнэджмент Аг Способ изготовления или ремонта детали ротационной машины, а также деталь, изготовленная или отремонтированная с использованием такого способа
RU2782767C2 (ru) * 2018-04-19 2022-11-02 Сафран Эркрафт Энджинз Способ получения металлического лопаточного элемента для авиационной турбомашины

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
БОБКОВ А.В. Центробежные насосы систем терморегулирования космических аппаратов. - Владивосток: Дальнаука, 2003, с.129, рис.5.8 в, с.186. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2522134C1 (ru) * 2012-12-11 2014-07-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Центробежное рабочее колесо
CN103953842A (zh) * 2014-04-30 2014-07-30 于浩 一种y型互接式旋转片
CN103953842B (zh) * 2014-04-30 2016-03-30 于法周 一种y型互接式旋转片
RU2733502C2 (ru) * 2016-05-31 2020-10-02 Зульцер Мэнэджмент Аг Способ изготовления компонента ротационной машины и компонент, изготовленный с использованием упомянутого способа
RU2743542C2 (ru) * 2016-09-22 2021-02-19 Зульцер Мэнэджмент Аг Способ изготовления или ремонта детали ротационной машины, а также деталь, изготовленная или отремонтированная с использованием такого способа
RU2782767C2 (ru) * 2018-04-19 2022-11-02 Сафран Эркрафт Энджинз Способ получения металлического лопаточного элемента для авиационной турбомашины

Also Published As

Publication number Publication date
RU2009141032A (ru) 2011-05-10

Similar Documents

Publication Publication Date Title
US8067865B2 (en) Electric motor/generator low hydraulic resistance cooling mechanism
US7626292B2 (en) Cast groove electric motor/generator cooling mechanism
RU2427726C2 (ru) Центробежное рабочее колесо и способ его изготовления
US9651055B2 (en) Slurry pump impeller
KR20120115204A (ko) 나사 홈 배기부의 통형 고정 부재와 이것을 사용한 진공 펌프
KR102694802B1 (ko) 원심 펌프의 3차원 플라스틱 임펠러
KR20130114566A (ko) 배기 펌프
KR102041249B1 (ko) 회전 전기 모터의 냉각 구조
WO2014184368A1 (en) Impeller with backswept circular pipes
CN203051222U (zh) 分体式双蜗壳结构
US20210205876A1 (en) Manufacturing method and tooling for ceramic cores
CN112296613B (zh) 一种闭式叶轮整体数控车削、铣削加工制造方法
RU2533605C2 (ru) Центробежное рабочее колесо
CN102900703A (zh) 分体式双蜗壳结构
JP4503283B2 (ja) ケーシング及び該ケーシングを備えた多段ポンプ
CN202468152U (zh) 具有密封结构的摆线液压马达转定子副
RU99551U1 (ru) Направляющий аппарат центробежного многоступенчатого насоса
US2791183A (en) Impeller for centrifugal pumps
JP6626421B2 (ja) 遠心ポンプ
CN114310204B (zh) 一种锅炉给水泵的径向导叶体制造方法
TWI717849B (zh) 離心式泵浦之3維塑膠葉輪之製造方法及其結構
CN203879759U (zh) 大流量高扬程多级屏蔽泵
RU112297U1 (ru) Насос
CN111946613B (zh) 一种基于层流边界层和旋转磁场的微型圆盘泵设计方法
JP2010196680A (ja) 両吸込ポンプ