RU2426085C1 - Устройство импульсного нагрева воздуха - Google Patents
Устройство импульсного нагрева воздуха Download PDFInfo
- Publication number
- RU2426085C1 RU2426085C1 RU2010109837/28A RU2010109837A RU2426085C1 RU 2426085 C1 RU2426085 C1 RU 2426085C1 RU 2010109837/28 A RU2010109837/28 A RU 2010109837/28A RU 2010109837 A RU2010109837 A RU 2010109837A RU 2426085 C1 RU2426085 C1 RU 2426085C1
- Authority
- RU
- Russia
- Prior art keywords
- chamber
- pressure
- air
- low
- diameter
- Prior art date
Links
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
Изобретение относится к области экспериментальной аэрогазодинамики и может быть использовано в импульсных установках для нагрева сжатого давлением газа, когда при моделировании и экспериментальном исследовании струйных течений в вакуумных камерах требуется импульсный нагрев сжатого воздуха давлением 10-30 МПа до температуры 500-600 К и выше. Изобретение направлено на повышение надежности, упрощение эксплуатации и конструкции устройства. Этот технический результат обеспечивается за счет того, что устройство импульсного нагрева воздуха содержит последовательно соединенные камеры высокого и низкого давления с быстродействующими запорными устройствами на выходе, при этом согласно изобретению камера низкого давления снабжена двумя диафрагмами с отверстиями, одна из которых установлена на входе камеры, а вторая - на расстоянии от ее выхода, равном или меньшем трети длины камеры, при этом диаметры отверстий диафрагм выбраны из соотношения: 0,3≤d*≤0,75, где d*=d/dк, d - диаметр отверстия диафрагм, dк - диаметр камеры низкого давления. 1 ил.
Description
Изобретение относится к области экспериментальной аэрогазодинамики, в частности к устройствам нагрева газа для импульсных установок. Так, при моделировании и экспериментальном исследовании струйных течений в вакуумных камерах требуется устройство импульсного нагрева сжатого воздуха давлением 10-30 МПа до температуры 500-600 К. При длительности рабочего режима ~0,05 с расход воздуха должен составлять до 3 кг/с. Время установления давления в камере струйной модели и амплитуда колебаний давления не должны превышать соответственно 0,005 с и ±5%. Воздух не должен содержать твердых частиц (окалины), которые могли бы привести к искажению картины течения ввиду, как правило, небольших размеров сопел струйных моделей. Кроме этого устройство должно быть надежным, простым в эксплуатации, его внедрение не должно приводить к большим конструктивным доработкам существующих систем газообеспечения импульсных установок и к большим финансовым затратам.
Известны устройства нагрева газа с использованием электрической энергии (Поуп А., Гойн К. Аэродинамические трубы больших скоростей. - М.: Мир, 1968). Нагрев газа омическим подогревателем в темпе эксперимента при длительности рабочего режима ~0,05 с представляет большую техническую сложность, так как требует разработки малоинерционных подогревателей, большой подводимой электрической мощности, сложных систем управления, синхронизации и защиты. Использование электрических подогревателей регенеративного типа требует прогрева трубопровода, подающего сжатый газ (воздух) в модель. Это приводит к снижению точности измерений параметров на струйной модели из-за температурных погрешностей датчиков.
Использование дугового разряда конденсаторной батареи или индуктивных накопителей (Королев А.С., Бошенятов Б.В., Друкер И.Г., Затолока В.В. Импульсные трубы в аэродинамических исследованиях. - Новосибирск: Наука, 1978) не отвечает предъявляемым конструктивным, эксплуатационным и экономическим требованиям.
Наиболее близким техническим решением, выбранным в качестве прототипа, является ударная труба, содержащая последовательно соединенные камеры высокого и низкого давления с быстродействующими запорными устройствами (БЗУ) на выходе (Краснов Н.Ф., Кошевой В.Н., Данилов А.Н. и др. Прикладная аэродинамика. - М.: Высшая школа, 1974). В качестве БЗУ в ударных трубах, как правило, применяются мембраны. В ударной трубе за счет преобразования механической энергии газа высокого давления в тепловую энергию с помощью ударной волны нагревается газ, находящийся в камере низкого давления. Длительность рабочего режима существующих ударных труб составляет до 0,005 с. Создание ударной трубы, отвечающей рассмотренным выше требованиям (в частности, длительности рабочего режима ~0,05 с), требует больших капиталовложений, больших производственных площадей.
Целью изобретения является создание устройства импульсного нагрева воздуха, в полной мере отвечающего вышерассмотренным требованиям.
Указанная цель достигается тем, что устройство импульсного нагрева воздуха, содержащее последовательно соединенные камеры высокого и низкого давления с быстродействующими запорными устройствами на выходе, снабжено двумя диафрагмами с отверстиями, одна из которых установлена на входе камеры, а вторая - на расстоянии от ее выхода, равном или меньшем трети длины камеры, при этом диаметры отверстий диафрагм выбраны из соотношения: 0,3≤d*≤0,75, где d*=d/dк, d - диаметр отверстия диафрагм, dк - диаметр камеры низкого давления.
Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием двух диафрагм с отверстиями, рекомендуемыми диаметрами отверстий и местами установки диафрагм.
Благодаря конструктивным отличиям в заявляемом устройстве за счет преобразования механической энергии сжатого воздуха в тепловую энергию нагревается и используется воздух, поступающий из камеры высокого давления. При этом остаточный газ в камере низкого давления, оставшийся после ее вакуумирования, нагретый ударной волной, ввиду его небольшого количества практически не влияет на температуру воздуха высокого давления.
В основу предлагаемого устройства импульсного нагрева воздуха легли результаты математического и физического моделирования и изучения процессов газодинамики и теплообмена при заполнении сжатым газом (воздухом) отвакуумированных камер сложной двух-и трехмерной геометрии, выполненных при финансовой поддержке Российского фонда фундаментальных исследований (проект №09-08 12057 ОФИм).
На чертеже представлена конструктивная схема предлагаемого устройства импульсного нагрева воздуха.
Устройство содержит последовательно соединенные камеру 1 высокого давления и камеру 2 низкого давления, БЗУ 3, 4 на выходе камер. Камера 2 низкого давления снабжена двумя диафрагмами 5, 6 с отверстиями 7, 8. Одна диафрагма 5 установлена на входе камеры, а вторая диафрагма 6 - на расстоянии от ее выхода, равном или меньшем трети длины камеры. Диаметры отверстий диафрагм выбраны из соотношения 0,3≤d*≤0,75.
На чертеже изображены также вентили 9, 10 соответственно системы газообеспечения 11 и устройства вакуумирования 12.
В исходном состоянии устройства импульсного нагрева воздуха БЗУ 3, 4 и вентили 9, 10 закрыты.
Устройство импульсного нагрева воздуха работает следующим образом.
Открывается вентиль 9 и в камеру 1 от системы газообеспечения 11 подается сжатый воздух с рабочим давлением 10-30 МПа. Открывается вентиль 10 и камера 2 с помощью устройства вакуумирования 12 вакуумируется до давления ~1 Па. После создания необходимых величин давления в камерах 1 и 2 вентили 9 и 10 закрываются.
При открытии БЗУ 3 сжатый воздух через отверстие 7 диафрагмы 5 под действием высокого давления в камере 1 поступает в камеру 2, при этом его температура повышается.
В камере 2 после диафрагмы 5 воздух расширяется, формируются направленная вдоль оси камеры сверхзвуковая струя, а впереди ее ударная волна. При взаимодействии струи со стенками камеры образуется система скачков уплотнения. При натекании струи на диафрагму 6 возникает прямой скачок уплотнения. Давление воздуха заторможенной струи оказывается существенно меньшим давления в камере 1 из-за потерь полного давления на диафрагме 5 и в скачках уплотнения.
Одна часть поступающего воздуха заторможенной струи через отверстие 8 диафрагмы 6 наполняет рабочий объем (объем между диафрагмой 6 и выходом камеры 2), повышая в нем давление, а другая приводит к увеличению давления перед диафрагмой 6. В результате увеличения давления прямой скачок уплотнения перемещается от диафрагмы 6 к диафрагме 5, а воздух заторможенной струи сжимается и нагревается.
При возрастании давления около отверстия 7 диафрагмы 5 структура течения изменяется. В камеру 2 втекает дозвуковая струя воздуха. Она дополнительно сжимает заторможенный воздух в камере 2, повышая его температуру.
С увеличением давления воздуха в камере 2 и уменьшением разности давления между камерами 1 и 2 уменьшаются скоростной напор и размеры струи. В камере 2, наряду с течением воздуха вдоль оси камеры от диафрагмы 5 к диафрагме 6, возникает возвратное течение воздуха от диафрагмы 6 вдоль стенок камеры 2 к диафрагме 5, приводящее к выравниванию температуры в объеме камеры 2 между диафрагмами. Диафрагма 6 препятствует вытеснению из рабочего объема нагретого воздуха менее нагретым воздухом. Благодаря ей обеспечивается "запирание" нагретого воздуха в рабочем объеме камеры.
При открытии БЗУ 4 нагретый воздух из рабочего объема камеры 2 поступает в камеру струйной модели (не показана). Проводятся измерения параметров на струйных моделях.
После эксперимента устройство импульсного нагрева воздуха приводится в исходное состояние.
Применение диафрагм 5, 6 с рекомендуемыми диаметрами отверстий и местами их установки позволяет создавать в камере 2 область нагретого сжатого газа с заданными параметрами (давлением, температурой и объемом). Диафрагмы 5, 6 обеспечивают также демпфирование колебаний давления при импульсной подаче нагретого воздуха в камеру струйной модели.
Нагрев воздуха в рабочем объеме камеры 2 до 500-600 К и выше был подтвержден результатами экспериментальных исследований на лабораторном стенде и в вакуумной камере.
На лабораторном стенде камера низкого давления была выполнена из отсека трубы диаметром 40 мм и длиной 1,5 м. Для изменения расстояния от второй диафрагмы до выхода камеры использовались сменные вкладыши. Камера низкого давления после вакуумирования наполнялась воздухом из атмосферы через электромагнитный клапан. Исследования проводились с диафрагмами, имеющими диаметры отверстий: 8 мм, 12 мм, 20 мм,25 мм, 30 мм, 35 мм. Температура воздуха в рабочем объеме камеры измерялась миниатюрными термометрами сопротивления, выполненными из вольфрамового микропровода диаметром 8 мкм и длиной 5 мм, а давление - датчиком ДХП 096.
При экспериментах в вакуумной камере использовалась камера высокого давления длиной 3,7 м, диаметром 0,195 м. К ней через электропневмоклапан (Ду=60 мм) подключалась камера низкого давления, содержащая два отсека трубы, каждый диаметром 70 мм и длиной 1 м, и сменные вкладыши для установки второй диафрагмы. В качестве БЗУ 2 использовались мембраны из материала А1 с насечкой для естественного раскрытия при давлениях 50, 100, 150, 200, 250 МПа. Исследования проводились с одним отсеком, двумя отсеками, диафрагмами, имеющими диаметры отверстий 30 мм, 40 мм, 50 мм. Температура воздуха измерялась двумя вольфрамрениевыми термопарами с термоэлектродами диаметрами 0,05 мм и 0,1 мм, помещенными в защитный корпус с протоком воздуха (для уменьшения инерционности). Давление определялось датчиками типа ЛХ-412.
Термометры сопротивления, термопары и датчики давления работали в комплекте с усилительной аппаратурой постоянного тока типа KWS 620 фирмы НВМ класса точности 0,1. Сбор, регистрация и обработка измеряемых параметров осуществлялась с помощью ИВК на базе станции Н-2000 (основная погрешность ±0,03%, частота дискретизации 400 кГц на 32 канала) и специализированного программного обеспечения ACTest-Pro.
Были проведены анализ и оценка основных составляющих погрешностей измерения температуры. В результаты измерения внесена поправка, исключающая систематическую погрешность из-за потерь тепла теплопроводностью через токовводы. Случайная погрешность измерения температуры не превышала ±10 К.
Эксперименты показали следующее.
Температура в рабочем объеме камеры низкого давления при выбранной длине камеры зависит от относительного диаметра отверстий диафрагм d*=d/dк, где d - диаметр отверстия диафрагмы, dк - диаметр камеры низкого давления, и от относительного расстояния между второй диафрагмой и выходом камеры низкого давления L*=L/Lк, где L - расстояние от второй диафрагмы до выхода камеры, Lк - длина камеры низкого давления.
При 0,3≤d*≤0,75 и L*=1/3 воздух в рабочем объеме камеры 2 нагревается до 500 К. При уменьшении L* температура нагрева воздуха возрастает. При 0,3≤d*≤0,75 и L*=0,l температура составляет 850 К. При d*<0,3 наблюдается снижение температуры нагрева воздуха. При d*>0,75 в камере низкого давления возникают колебания давления, которые приводят к уносу тепла из рабочего объема и кроме этого приводят к снижению точности измерения параметров на струйной модели. При d≤0,75 колебания демпфируются
Эксперименты показали также, что заявленное устройство импульсного нагрева воздуха отвечает предъявляемым к нему ранее рассмотренным требованиям. Одним из достоинств устройства является его простая конструкция.
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект №09-08 12057 ОФИм).
Claims (1)
- Устройство импульсного нагрева воздуха, содержащее последовательно соединенные камеры высокого и низкого давления с быстродействующими запорными устройствами на выходе, отличающееся тем, что камера низкого давления снабжена двумя диафрагмами с отверстиями, одна из которых установлена на входе камеры, а вторая - на расстоянии от ее выхода, равном или меньшем трети длины камеры, при этом диаметры отверстий диафрагм выбраны из соотношения: 0,3≤d*≤0,75, где d*=d/dк, d - диаметр отверстия диафрагм, dк - диаметр камеры низкого давления.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010109837/28A RU2426085C1 (ru) | 2010-03-17 | 2010-03-17 | Устройство импульсного нагрева воздуха |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010109837/28A RU2426085C1 (ru) | 2010-03-17 | 2010-03-17 | Устройство импульсного нагрева воздуха |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2426085C1 true RU2426085C1 (ru) | 2011-08-10 |
Family
ID=44754676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010109837/28A RU2426085C1 (ru) | 2010-03-17 | 2010-03-17 | Устройство импульсного нагрева воздуха |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2426085C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108051176A (zh) * | 2017-11-29 | 2018-05-18 | 中国航空工业集团公司沈阳空气动力研究所 | 一种宽马赫数高焓管风洞驱动管体 |
RU2773063C1 (ru) * | 2021-12-09 | 2022-05-30 | Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук (ИПМех РАН) | Способ измерения температуры модели при вакуумировании в гиперзвуковом потоке |
-
2010
- 2010-03-17 RU RU2010109837/28A patent/RU2426085C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
КРАСНОВ Н.Ф. И ДР. ПРИКЛАДНАЯ АЭРОДИНАМИКА. - М.: ВЫСШАЯ ШКОЛА, 1974. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108051176A (zh) * | 2017-11-29 | 2018-05-18 | 中国航空工业集团公司沈阳空气动力研究所 | 一种宽马赫数高焓管风洞驱动管体 |
CN108051176B (zh) * | 2017-11-29 | 2019-11-15 | 中国航空工业集团公司沈阳空气动力研究所 | 一种宽马赫数高焓管风洞驱动管体 |
RU2773063C1 (ru) * | 2021-12-09 | 2022-05-30 | Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук (ИПМех РАН) | Способ измерения температуры модели при вакуумировании в гиперзвуковом потоке |
RU2802983C1 (ru) * | 2023-02-15 | 2023-09-05 | Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук (ИПМех РАН) | Ударная труба |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107976295B (zh) | 一种2m量级自由活塞驱动的高焓激波风洞 | |
Golub et al. | Experimental and numerical investigation of hydrogen gas auto-ignition | |
CN104407013A (zh) | 测量气体爆炸对结构影响的实验装置 | |
RU2426085C1 (ru) | Устройство импульсного нагрева воздуха | |
CN105181269B (zh) | 一种检漏仪器的多通道快速校准装置及方法 | |
Spinelli et al. | Experimental observation of non-ideal nozzle flow of siloxane vapor MDM | |
Prickett et al. | Water hammer in a spacecraft propellant feed system | |
CN104613307B (zh) | 一种用于直联式超声速燃烧实验台的液氧供给系统 | |
CN104062123A (zh) | 一种箭上液氢温区冷氦加温器模拟装置 | |
Volkov et al. | Gas dynamics of a recessed nozzle in its displacement in the radial direction | |
RU2463527C1 (ru) | Устройство импульсного нагрева воздуха | |
Volkov et al. | Simulation of the Transverse Injection of a Pulsed Jet from the Surface of a Flat Plate into a Supersonic Flow | |
US8910505B2 (en) | System and method for simulating primary and secondary blast | |
Matsuo et al. | Effect of axisymmetric sonic nozzle geometry on characteristics of supersonic air jet | |
CN104062124A (zh) | 一种火箭发动机飞行全程液氧输入流量模拟试验装置 | |
KR100935659B1 (ko) | 극초음속유동을 이용한 실험장치 | |
Valli et al. | Pulse detonation engine: parameters affecting performance | |
RU167762U1 (ru) | Ударная гиперзвуковая аэродинамическая труба | |
Abashev et al. | The study of the dynamics of intersecting jets in a semi-open channel with a large area of the input holes | |
Wang et al. | Computational Investigation of the Internal Flow Characteristics of Supersonic Fluidic Element | |
Adusumilli | Performance Evaluation and Optimization of High Power 14.5-GHz Miniature Microwave Electrothermal Thruster | |
Erasmus | The development of a novel impingement heat transfer device | |
Reshetnikov et al. | Nonequilibrium phase transitions in a jet of highly superheated water | |
Jin et al. | Modeling and simulation of dynamic performance of horizontal steam-launch system | |
Aswalekar et al. | Study and Analysis of Vortex Tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC43 | Official registration of the transfer of the exclusive right without contract for inventions |
Effective date: 20200619 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210318 |