RU2423262C1 - Кузов железнодорожного вагона - Google Patents

Кузов железнодорожного вагона Download PDF

Info

Publication number
RU2423262C1
RU2423262C1 RU2010115981/11A RU2010115981A RU2423262C1 RU 2423262 C1 RU2423262 C1 RU 2423262C1 RU 2010115981/11 A RU2010115981/11 A RU 2010115981/11A RU 2010115981 A RU2010115981 A RU 2010115981A RU 2423262 C1 RU2423262 C1 RU 2423262C1
Authority
RU
Russia
Prior art keywords
outer sheathing
sheets
welding
corrosion
sheathing
Prior art date
Application number
RU2010115981/11A
Other languages
English (en)
Inventor
Александр Дмитриевич Конюхов (RU)
Александр Дмитриевич Конюхов
Татьяна Никифоровна Воробьева (RU)
Татьяна Никифоровна Воробьева
Original Assignee
Открытое Акционерное Общество "Российские Железные Дороги"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Российские Железные Дороги" filed Critical Открытое Акционерное Общество "Российские Железные Дороги"
Priority to RU2010115981/11A priority Critical patent/RU2423262C1/ru
Application granted granted Critical
Publication of RU2423262C1 publication Critical patent/RU2423262C1/ru

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к транспортному машиностроению, а именно к кузовам железнодорожных вагонов. Кузов вагона содержит каркас с вертикальными и горизонтальными элементами жесткости и наружные листы обшивы, соединенные с каркасом и между собой посредством сварки. Наружные листы обшивы выполнены из листового проката, для получения которого используется коррозионно-стойкая сталь следующего состава (мас.%): 0<С<0,08, 0<Mn<2,5, 0<Si<1,0, Сr 17,0-19,0, Ni 9,0-11,0, Р<0,035, S<0,020, Nb 0<0,25, N 0,15-0,25, Fe остальное до 100%, с возможностью обеспечения предела текучести δ02 листового проката не менее 300 МПа. Соединение наружных листов обшивы выполнено дуговой сваркой встык, или дуговой сваркой внахлест, или точечной сваркой внахлест. В качестве наружных листов обшивы используется листовой прокат толщиной от 1,5 мм до 2,5 мм. Изобретение обеспечивает повышение долговечности и прочностных характеристик обшивы вагона, в частности повышение предела текучести при ударных нагрузках. 2 з.п. ф-лы.

Description

Изобретение относится к транспортному машиностроению, а именно к кузовам пассажирских вагонов, в частности железнодорожных вагонов.
Известны конструкции кузовов вагонов, в том числе и пассажирских, из малоуглеродистой стали (патент РФ №44616, В61D 17/08, опубл. 27.03.2005 г.) - аналог.
Основным недостатком конструкции кузовов пассажирских вагонов из обычной малоуглеродистой стали является их низкая коррозионная стойкость. Несмотря на то что, как правило, внутренняя и наружная поверхности кузовов имеют противокоррозионное покрытие (на внутреннюю поверхность кузова наносят грунтовку типа ФЛ-03к, с перекрытием битумной мастикой, на наружную - грунтовку типа ФЛ-03к с перекрытием эмалью типа ПФ-115), через 8-10 лет эксплуатации покрытие на внутренней поверхности, в нижней части кузова разрушается. Через 12-16 лет в торцевых частях кузова возникают сквозные коррозионные повреждения пола и нижнего пояса боковин. Ремонт коррозионных повреждений и возобновление покрытия внутри кузовов производят путем вскрытия внутренней обшивки кузова до границы распространения коррозии. Стоимость такого ремонта пропорциональна объему вскрытия кузова и составляет до 60% от стоимости нового вагона.
Известны железнодорожные вагоны, обшива которых изготовлена из листового проката, для получения которого используется нержавеющая сталь 08Х18Н10Т с пределом текучести 200 МПа (ГОСТ Р 51393-99) -прототип.
Недостатком известного решения являются недостаточные прочностные характеристики обшивы, в том числе и из-за количественного и качественного содержания состава сплава, из которого производят листовой прокат, используемый для обшивы.
Техническим результатом, на достижение которого направлено заявляемое решение, является повышение долговечности и прочностных характеристик обшивы вагона, в частности повышение предела текучести при ударных нагрузках.
Указанный технический результат достигается тем, что в кузове вагона, содержащем каркас с вертикальными и горизонтальными элементами жесткости и наружные листы обшивы, соединенные с каркасом и между собой посредством сварки, наружные листы обшивы выполнены из листового проката, для получения которого используется коррозионно-стойкая сталь следующего состава (мас.%): 0<С<0,08, 0<Мn<2,5, 0<Si<1,0, Cr 17,0-19,0, Ni 9,0-11,0, P<0,035, S<0,020, Nb 0<0,25, N 0,15-0,25, Fe остальное до 100%, с возможностью обеспечения предела текучести σ02 листового проката не менее 300 МПа.
Вагон, характеризующийся тем, что соединение наружных листов обшивы выполнено дуговой сваркой встык, или дуговой сваркой внахлест, или точечной сваркой внахлест.
Вагон, характеризующийся тем, что в качестве наружных листов обшивы используется листовой прокат толщиной от 1,5 мм до 2,5 мм.
Изготовление обшивы вагона из листового проката, полученного из сплава состава, приведенного в формуле изобретения, обосновано следующим.
Хром является легирующим элементом, обеспечивающим высокую коррозионную стойкость коррозионно-стойких сталей аустенитного типа, к которым относятся как сталь, из которой изготовлена обшива заявляемого вагона, так и прототипа. Хром обеспечивает создание пассивной оксидной пленки, которая и определяет высокую коррозионную стойкость, причем она достигается при содержании хрома более 17% (мас.). В случае если содержание хрома менее 17% (мас.), то коррозионная стойкость является недостаточной и требуется дополнительная защита от коррозии. Если содержание хрома более 19%, то при заявляемом содержании в составе сплава Ni происходит охрупчивание сплава, т.е. снижение его пластичности и долговечности.
Как известно, углерод обеспечивает высокую прочность сталей при термической обработке, однако содержание углерода в сплаве ограничивается из-за ухудшения свариваемости, показателей ударной вязкости и трещинностойкости. Уменьшение содержания углерода по сравнению с прототипом обеспечивает хорошую свариваемость, технологическую пластичность, способствует повышению коррозионной стойкости обшивы заявляемого вагона.
Наличие в составе сплава связки элементов Ni-N в заявляемых пропорциях стабилизирует аустенитную структуру, что обеспечивает заявляемой обшиве из заявляемого сплава высокую технологическую пластичность и хорошую свариваемость, что существенно при изготовлении вагона.
Повышение по сравнению с прототипом в составе сплава магния в количестве до 2,5% (мас.) позволяет повысить коррозионную стойкость и прочность, однако при чрезмерном увеличении более 2,5% (мас.) магний начинает ухудшать свариваемость, что является крайне нежелательным для изготовления обшивы вагона.
Ниобий, так же как и титан, дополнительно упрочняют сталь и повышают прочность границ зерен, однако использование ниобия предотвращает ликвацию углерода в швах при сварке. При количестве ниобия выше 0,15%(мас.) происходит охрупчивание сплавов, что ограничивает возможность легирования из-за появления пластинчатых выделений фаз типа Ni3Nb.
Таким образом, как следует из вышеизложенного, приведенный в формуле состав сплава для изготовления проката для обшивы вагона в качественном и количественном соотношении компонентов обеспечивает достижение заявляемого технического результата.
Для расширения возможностей конструирования кузовов вагонов, в том числе с использованием для обшивы стального проката повышенной прочности, как в заявляемом решении, с пределом текучести 300-350 МПа, были выплавлены опытно-промышленные плавки коррозионно-стойких сталей и проведены их испытания. Результаты представлены в таблице 1 и в таблице 2.
Таблица 1
№ плавки Содержание элементов, % вес.
С Мn Si Cr Ni P S Nb N
Плавка 1 0,04 1,97 0,51 18,01 9,50 0,027 0,008 0,14 0,19
Плавка 2 0,09 1,90 0,29 17,91 10,12 0,027 0,016 0,1 0,153
Таблица 2
№ плавки Термическая обработка Предел текучести σ0,2, МПа Временное сопротивление σв, МПа Относительное удлинение δ5, % KCU,при -60°С, Дж/см2 Твердость НВ
Плавка 1 Без т.о. 433-518 741-752 44,0-48,8 331-332 -
Зак. 1080°С 427-427 726-736 45,6-47,2 340-350 -
Плавка 2 Без т.о. 436-447 710-721 48,0-48,0 227-375 241
Зак. 1080°С 405-407 691-700 52,0 200-375 243
Таким образом, экспериментально установлено, что использование сплава, состав которого приведен в формуле изобретения, позволяет без снижения технологичности при прокатке повысить прочностные характеристики и сохранить на достаточно высоком уровне пластичность и ударную вязкость.
Предлагается использовать в конструкции обшивы кузова вагона листовой прокат с более высоким пределом текучести, в частности для гладкого листа наружной обшивы кузова и стоек. Использование заявляемого решения позволит изготавливать обшиву кузова пассажирского вагона из более прочной стали, что обеспечит сохранность кузова, в том числе при воздействии ненормативных нагрузок и при аварийных ситуациях.
Для проведения прочностных испытаний был изготовлен листовой прокат с повышенным пределом текучести 300 и 350 МПа из коррозионно-стойкой (нержавеющей) стали по известной технологии, включающей выплавку стали, горячую прокатку заготовок и подката до толщины 4 мм, холодную прокатку с периодическим отжигом до требуемой толщины 1,5 и 2,5 мм и травление. Ширина тонколистового проката может быть различной. Например, принятая на ОАО «ЧМЗ» технология позволяет изготавливать тонколистовой прокат из заявляемого состава коррозионно-стойкой стали как шириной 1000 мм, так и до 1500 мм.
Для изготовления пассажирских вагонов с кузовами из коррозионно-стойкой (нержавеющей) стали необходимо определить свариваемость заявляемой коррозионно-стойкой стали в однородных и разнородных сварных соединениях, выполненных дуговой сваркой встык, внахлест и точечной сваркой внахлест. Необходимо также оценить коррозионную стойкость однородных и разнородных сварных соединений и сопротивление усталости.
Для оценки прочности сварных соединений и влияния коррозионной среды было изготовлено 6 партий сварных образцов: 2 партии сварены встык дуговой сваркой, 2 партии - внахлест, 2 партии сварены контактной точечной сваркой.
Сварные соединения получали на пластинах габаритных размеров 120×200 мм, которые затем разрезали и строжкой доводили до размеров 180×20×2,0 мм. Из каждой сварной пластины изготавливали по 8 образцов, которые испытывали на растяжение непосредственно после изготовления, а также после выдержки в коррозионной среде.
Коррозионные испытания проводили в двух средах: 3% водном растворе хлорида натрия (поваренная соль) и 5% растворе серной кислоты. Испытания проводили при полном погружении и переменном погружении в указанные среды. Переменное погружение реализовано на «коррозионном колесе» с частотой вращения 1,5 оборота в час. Испытания проводили непрерывно в течение 50 суток. После проведения коррозионных испытаний образца испытывали на растяжение с определением разрушающей нагрузки.
Результаты испытаний свидетельствуют о том, что образцы из стали плавки 1 и плавки 2 выдержали большую нагрузку до разрушения, причем это образцы, сваренные встык, обе половинки которых изготовлены как из стали плавки 1, так и плавки 2: в исходном состоянии разрушающая нагрузка 24,8 кН, а после длительных коррозионных испытаний от 20,8 до 31,5 кН, таблица 3.
Таблица 3
Характеристика образцов Разрушающая нагрузка после испытания в среде, кН
Исходное состояние 50 сут в 3% NaCl 50 сут в 5% H2SO4
Плавка 1+плавка 1 сварка встык 24,8 20,8-21,6 30,3-31,5
Плавка 1+плавка 1 сварка внахлест 20,5-21,7 23,1-23,8 20,3-21,0
Плавка 2+плавка 2 контактная сварка 17,0-18,0 17,1-18,1 17,2
Плавка 1+09Г2Д сварка встык 12,0-13,3 12,1-13,8 0
Плавка 2+09Г2Д контактная точечная 13,6-14,7 13,5-14,2 9,8-10,2
Пример
Листовой прокат, изготовленный из сплава, приведенного в формуле данного решения, был использован при создании расчетной схемы конструкции кузова Р- 8168-01 модели.
Буферные брусья выполнены из швеллеров 30 ГОСТ 5267.1-90, обвязки рамы из уголка 155×95×8 ГОСТ 8510-86. Для поперечных балок рамы использованы швеллеры 14П ГОСТ 8240-89, а также омегообразные профили 100×78×32×4 мм и 60×25×23×3 мм. В конструкции каркаса рамы для продольных элементов использованы гнутые швеллеры 300×100×4 мм и зеты 35×140×60×5 мм. Гофрированная обшивка пола толщиной 1,5 мм содержит 23 трапециевидных гофра (h=16 мм, 1=50 мм, L=70 мм, шаг - 120 мм) и три накладных короба для проводки. Толщина вертикальных стоек - 3,0-4,0 мм. В обшиве стен вагона используется гладкий лист проката заявляемого состава толщиной 2,5 мм.
Исследования и опыт эксплуатации показали, что пассажирские вагоны с кузовами целиком из нержавеющей стали, включая нижнюю обвязку рамы, могут эксплуатироваться в течение 40 лет без ремонта кузовов из-за коррозионных повреждений. При использовании заявляемого решения срок эксплуатации может быть увеличен. Причем некоторое удорожание кузова (на 300-400 тыс.руб.) за счет удорожания стали и изготовления более широкого проката через короткое время (4-6 лет) окупается за счет снижения эксплуатационных расходов на ремонт.

Claims (3)

1. Кузов железнодорожного вагона, содержащий каркас с вертикальными и горизонтальными элементами жесткости и наружные листы обшивы, соединенные с каркасом и между собой посредством сварки, отличающийся тем, что наружные листы обшивы выполнены из листового проката, для получения которого используется коррозионно-стойкая сталь следующего состава (мас.%): 0<С<0,08; 0<Mn<2,5; 0<Si<1,0; Cr - 17,0-19,0; Ni - 9,0-11,0; Р<0,035; S<0,020; Nb 0<0,25; N - 0,15-0,25; Fe - остальное до 100%, с возможностью обеспечения предела текучести σ02 листового проката не менее 300 МПа.
2. Устройство по п.1, отличающееся тем, что соединение наружных листов обшивы выполнено дуговой сваркой встык, или дуговой сваркой внахлест, или точечной сваркой внахлест.
3. Устройство по п.1, отличающееся тем, что в качестве наружных листов обшивы используется листовой прокат толщиной от 1,5 до 2,5 мм.
RU2010115981/11A 2010-04-22 2010-04-22 Кузов железнодорожного вагона RU2423262C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010115981/11A RU2423262C1 (ru) 2010-04-22 2010-04-22 Кузов железнодорожного вагона

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010115981/11A RU2423262C1 (ru) 2010-04-22 2010-04-22 Кузов железнодорожного вагона

Publications (1)

Publication Number Publication Date
RU2423262C1 true RU2423262C1 (ru) 2011-07-10

Family

ID=44740207

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010115981/11A RU2423262C1 (ru) 2010-04-22 2010-04-22 Кузов железнодорожного вагона

Country Status (1)

Country Link
RU (1) RU2423262C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU173186U1 (ru) * 2016-12-27 2017-08-15 Общество с ограниченной ответственностью "Всесоюзный научно-исследовательский центр транспортных технологий" (ООО "ВНИЦТТ") Кузов полувагона
RU2647425C2 (ru) * 2013-07-25 2018-03-15 Арселормиттал Точечное сварное соединение с использованием высокопрочной стали с высокой способностью к штамповке и способ его изготовления
RU206825U1 (ru) * 2021-07-01 2021-09-29 Общество с ограниченной ответственностью "Всесоюзный научно-исследовательский центр транспортных технологий" (ООО "ВНИЦТТ") Кузов грузового вагона

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2647425C2 (ru) * 2013-07-25 2018-03-15 Арселормиттал Точечное сварное соединение с использованием высокопрочной стали с высокой способностью к штамповке и способ его изготовления
US10272514B2 (en) 2013-07-25 2019-04-30 Arcelormittal Sa Spot welded joint using high strength and high forming steel and its production method
US11504795B2 (en) 2013-07-25 2022-11-22 Arcelormittal Spot welded joint using high strength and high forming steel and its production method
RU173186U1 (ru) * 2016-12-27 2017-08-15 Общество с ограниченной ответственностью "Всесоюзный научно-исследовательский центр транспортных технологий" (ООО "ВНИЦТТ") Кузов полувагона
RU206825U1 (ru) * 2021-07-01 2021-09-29 Общество с ограниченной ответственностью "Всесоюзный научно-исследовательский центр транспортных технологий" (ООО "ВНИЦТТ") Кузов грузового вагона

Similar Documents

Publication Publication Date Title
KR102084936B1 (ko) 심 용접성이 우수한 고강도 강판
JP6396461B2 (ja) 高強度および高成形鋼を用いたスポット溶接継手ならびにその製造方法
JP5228062B2 (ja) 溶接性に優れた高強度薄鋼板及びその製造方法
JP5396758B2 (ja) 船舶のバラストタンク用熱間圧延形鋼およびその製造方法
JP5299257B2 (ja) 高強度鋼板のスポット溶接方法
US20170022580A1 (en) High-strength spring steel
EP2799577B1 (en) Ferritic stainless steel
US10316385B2 (en) High-tensile-strength steel plate and process for producing same
US20190154177A1 (en) Ti-CONTAINING FERRITIC STAINLESS STEEL SHEET FOR EXHAUST PIPE FLANGE MEMBER, PRODUCTION METHOD, AND FLANGE MEMBER
RU2423262C1 (ru) Кузов железнодорожного вагона
US7967923B2 (en) Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof
US20200224295A1 (en) Hot-working material, component and use
JP4998708B2 (ja) 材質異方性が小さく、耐疲労亀裂伝播特性に優れた鋼材およびその製造方法
JP2007321182A (ja) 衝撃吸収能の大きな自動車部材
Velasco et al. Effect of welding on local mechanical properties of stainless steels for concrete structures using universal hardness tests
JP5716419B2 (ja) 耐疲労特性に優れた厚鋼板およびその製造方法
JP5421615B2 (ja) Ni節減型ステンレス鋼製自動車用部材
JP5195399B2 (ja) 低サイクル疲労特性と塗装後耐食性に優れた高強度熱延鋼板およびその製造方法
US20110315277A1 (en) Steel alloy for a low-alloy steel for producing high-strength seamless steel tubing
KR101687687B1 (ko) 판두께 방향의 내피로 특성이 우수한 후강판 및 그의 제조 방법, 그 후강판을 이용한 필렛 용접 조인트
JP6690585B2 (ja) 鋼材およびその製造方法
JP4363321B2 (ja) 疲労特性に優れた溶接継手
JP2010115678A (ja) ナットプロジェクション溶接継手
JP6179609B2 (ja) 冷間加工性に優れた厚肉高強度鋼板の製造方法
KR102635314B1 (ko) 중공 스태빌라이저용 전봉 강관 및 그의 제조 방법