RU2422810C1 - Способ экспресс-определения состава многокомпонентной жидкой среды - Google Patents

Способ экспресс-определения состава многокомпонентной жидкой среды Download PDF

Info

Publication number
RU2422810C1
RU2422810C1 RU2010107647/28A RU2010107647A RU2422810C1 RU 2422810 C1 RU2422810 C1 RU 2422810C1 RU 2010107647/28 A RU2010107647/28 A RU 2010107647/28A RU 2010107647 A RU2010107647 A RU 2010107647A RU 2422810 C1 RU2422810 C1 RU 2422810C1
Authority
RU
Russia
Prior art keywords
medium
contact element
components
voltage drop
change
Prior art date
Application number
RU2010107647/28A
Other languages
English (en)
Inventor
Шамиль Фаизович Саитов (RU)
Шамиль Фаизович Саитов
Касим Минивалеевич Искаков (RU)
Касим Минивалеевич Искаков
Расим Васимович Яхин (RU)
Расим Васимович Яхин
Тимерьян Идиятулович Еникеев (RU)
Тимерьян Идиятулович Еникеев
Лиана Ирековна Сакаева (RU)
Лиана Ирековна Сакаева
Original Assignee
Шамиль Фаизович Саитов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шамиль Фаизович Саитов filed Critical Шамиль Фаизович Саитов
Priority to RU2010107647/28A priority Critical patent/RU2422810C1/ru
Application granted granted Critical
Publication of RU2422810C1 publication Critical patent/RU2422810C1/ru

Links

Abstract

Изобретение относится к измерительной технике. Сущность изобретения: способ заключается в регистрации изменения падения напряжения непосредственно на контактном элементе источника энергетического воздействия в процессе нагрева анализируемой среды и определении функциональной зависимости изменения падения напряжения на источнике энергетического воздействия от количественного состава компонентов среды. Технический результат - обеспечение экспресс-анализа любых нерастворимых друг в друге жидких компонентов в реальном режиме времени. 1 ил.

Description

Изобретение относится к системам измерения и анализа состава многокомпонентных жидких сред, их концентрации, массы, уровня и т.п., в частности, к системам анализа многофазного потока скважинного флюида, включающего в себя состав из компонентов нефти, газа, солей, воды и т.д.
Предшествующий уровень техники
Для анализа количественного состава параметров многокомпонентных жидких сред применяются широко известные методы», такие как:
- метод анализа параметров состава среды с применением теплового воздействия на исследуемую среду, основанного на учете разницы коэффициентов теплопроводности ее компонентов;
- метод термокондуктометрического газового анализа;
- метод, включающий поддержание постоянной температуры анализируемой среды, генерацию в ней акустического сигнала посредством паров вспомогательной жидкости и регистрацию этого сигнала;
- метод избирательного энергетического воздействия на составляющие компоненты анализируемой среды и регистрацию изменения ее температуры.
Известные методы основаны на проведении предварительных расчетов параметров модели анализируемой среды в лабораторных условиях, измерении какого-либо заданного параметра реальной среды, измерении выходного сигнала, определении расчетных коэффициентов в сравнении с лабораторными данными и обработке полученных данных в едином масштабе времени посредством процессора ЭВМ.
Известные методы отличаются определенной сложностью технической реализации, поскольку требуют обеспечения постоянной температуры стенок камеры с анализируемой средой, исключающей влияния конвективного и лучистого теплообмена на результат измерений. (В.А.Григорьев, В.М.Зорин. Тепло- и массообмен. Теплотехнический эксперимент. - М.: Энергоиздат. 1982. - c.392.) Либо в процессе измерений должна обеспечиваться дозированная подача пара вспомогательной жидкости в анализируемую среду, или должна обеспечиваться возможность избирательного энергетического воздействия по отношению к анализируемым составляющим среды (а.с. СССР, №914982, G01N 25/20, 1982).
Известен метод экспресс-определения состава двухкомпонентной жидкой среды, также основанный на сравнении анализируемых параметров с контрольными параметрами. Для этого термоанемометром нагревают контрольные пробы заданной концентрации компонентов анализируемой среды до определенной температуры, отключают термоанемометр, тепловым датчиком регистрируют темпы снижения температуры среды и фиксируют инерционную постоянную времени t, которая зависит от количественного соотношения компонент. Результаты заносят в контрольную таблицу (патент РФ №2188410, G01N 25/20, 2002).
Известный метод имеет ограниченные возможности применения, поскольку эффективен только при анализе сред, инерционные постоянные компонентов которых значительно отличаются друг от друга. Кроме того, метод имеет низкую точность, поскольку измерение производится дискретно (нагрев осуществляется скачками напряжения), а изменение температуры среды происходит инерционно, что вносит свою погрешность в конечный результат.
Задачей настоящего изобретения является повышение точности анализа многокомпонентной жидкой среды путем контроля количественного состава ее компонент в реальном режиме времени.
Поставленная задача достигается тем, что по способу экспресс-определения состава многокомпонентной жидкой среды, включающему операцию нагрева смеси источником энергетического воздействия, обладающим избирательностью по отношению к анализируемым составляющим компонентам, и регистрацию изменения температуры анализируемой среды в зависимости от концентрации составляющих ее компонент, согласно изобретению в процессе нагрева смеси регистрируют изменение ее температуры, регистрируя одновременно с этим изменение падения напряжения непосредственно на источнике энергетического воздействия, и рассчитывают в реальном режиме времени функциональную зависимость изменения падения напряжения на источнике энергетического воздействия от количественного состава компонентов среды.
Рассмотрим ситуацию, когда источник энергетического воздействия (контактный элемент теплового датчика) помещен в анализируемую среду, температура которой изменяется от t0 до t1 в процессе нагрева.
Мощность теплового датчика определяется как
Figure 00000001
где α - коэффициент теплопроводности анализируемой среды; F - площадь (поверхность) контактного элемента теплового датчика, находящегося в анализируемой среде, Θ-(t1-t0) - разность температуры анализируемой среды после нагрева t1 и до нагрева t0 соответственно.
В процессе нагрева анализируемой среды происходит изменение ее сопротивления R и, как следствие, изменение напряжения U на контактном элементе датчика нагрева.
Поскольку
Figure 00000002
подставим выражение (2) в формулу (1) и получим уравнение
U2/R=αFΘ, из которого следует
Figure 00000003
Так как величина F - постоянная, а значением Θ - const/α можно пренебречь, то очевидно, что коэффициент теплопроводности анализируемой среды определится как функция изменения напряжения на контактном элементе теплового датчика α-f(U), то есть показание изменения напряжения на датчика нагрева пропорционально соотношению количественного состава анализируемой среды. При этом, поскольку коэффициент теплопроводности самого контактного элемента α1=0,05, его значением можно пренебречь.
Таким образом, предложенный способ существенно отличается от известных, поскольку
- основан на получении функциональной зависимости изменения падения напряжения на выходе теплового датчика от количественного состава компонентов анализируемой среды в процессе нагрева последней в аналоговом режиме, что обеспечивает высокую точность расчета концентрации,
- измерение падения напряжения осуществляется непосредственно на контактном элементе теплового датчика,
- измерение и обработка регистрируемых параметров осуществляется в режиме реального времени,
- практическая реализация предложенного способа экспресс-определения состава многокомпонентной жидкой среды не требует специальных условий и материалов и осуществляется оперативно с использованием доступного оборудования, обеспечивающего недорогое обслуживание и быстрый ремонт,
- высокая точность определения количественного состава анализируемой среды предложенным способом и простота его практической реализации позволяют применять его для оперативного анализа как в стационарных, так и в полевых условиях, что актуально в нефтегазодобывающей и/или перерабатывающей отраслях промышленности, в частности в морской нефтеразведке.
На чертеже представлена блок-схема установки для реализации предложенного способа экспресс-определения состава многокомпонентной жидкой среды.
Установка содержит емкость 1 с контролируемой средой, датчик нагрева 2 с контактным элементом 3 и термометр 4. Контактный элемент 3 датчика нагрева 2 и термометр 4 соединены с процессором компьютера 5. Датчик нагрева 2 подключен к стабилизатору постоянного тока 6.
Реализация предложенного способа экспресс-определения состава многокомпонентной жидкой среды осуществляется следующим образом.
В емкость 1 с контактным элементом 3 датчика нагрева 2 и термометром 4 заливают пробу анализируемой среды. Выходы контактного элемента 3 и термометра 4 подключают к процессору компьютера 5. От стабилизатора постоянного тока 6 через датчик нагрева 2 пропускают постоянный ток, под воздействием которого контактный элемент 3 датчика нагрева 2 выделяет тепло, повышающее температуру анализируемой среды в емкости 1. При этом под воздействием конвенционных процессов в емкости 1 происходит теплообмен между контактным элементом 3 датчика нагрева 2 и анализируемой средой. На контактном элементе 3 происходит падение напряжения, которое фиксируется процессором компьютера 5. Одновременно компьютером 5 осуществляется контроль изменения реальной температуры анализируемой среды в емкости 1 посредством термометра 4.
Поскольку показание изменения падения напряжения на контактном элементе 3 датчика нагрева 2 пропорционально соотношению количественного состава компонент анализируемой среды, полученная информация считывается компьютером 5 и обрабатывается в реальном режиме времени по заданному алгоритму распределения с учетом изменения показаний термометра 4.
Высокая точность определения количественного состава анализируемой среды предложенным способом и простота его практической реализации позволяют применять его для оперативного анализа сред из любых нерастворимых друг в друге жидких компонентов в реальном режиме времени.

Claims (1)

  1. Способ экспресс-определения состава многокомпонентной жидкой среды, согласно которому нагревают многокомпонентную жидкую смесь источником энергетического воздействия, обладающим избирательностью по отношению к анализируемым составляющим компонентам, и регистрируют изменение температуры смеси в зависимости от концентрации составляющих ее компонентов, отличающийся тем, что в процессе нагрева смеси регистрируют изменение ее температуры, регистрируя одновременно с этим изменение падения напряжения непосредственно на источнике энергетического воздействия, и рассчитывают в реальном режиме времени функциональную зависимость изменения падения напряжения на источнике энергетического воздействия от количественного состава компонентов среды.
RU2010107647/28A 2010-03-02 2010-03-02 Способ экспресс-определения состава многокомпонентной жидкой среды RU2422810C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010107647/28A RU2422810C1 (ru) 2010-03-02 2010-03-02 Способ экспресс-определения состава многокомпонентной жидкой среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010107647/28A RU2422810C1 (ru) 2010-03-02 2010-03-02 Способ экспресс-определения состава многокомпонентной жидкой среды

Publications (1)

Publication Number Publication Date
RU2422810C1 true RU2422810C1 (ru) 2011-06-27

Family

ID=44739350

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010107647/28A RU2422810C1 (ru) 2010-03-02 2010-03-02 Способ экспресс-определения состава многокомпонентной жидкой среды

Country Status (1)

Country Link
RU (1) RU2422810C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507513C1 (ru) * 2012-10-10 2014-02-20 Шлюмберже Текнолоджи Б.В. Способ определения количественного состава многокомпонентной среды

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507513C1 (ru) * 2012-10-10 2014-02-20 Шлюмберже Текнолоджи Б.В. Способ определения количественного состава многокомпонентной среды

Similar Documents

Publication Publication Date Title
EP1411355A1 (en) Method and device for determining a characteristic value that is representative of the condition of a gas
US20150316401A1 (en) Thermal, flow measuring apparatus and method for determining and/or monitoring flow of a medium
US20080289412A1 (en) Thermal mass flow meter and method for its operation
US9702745B2 (en) Characterizing multiphase fluid flow
CN103675217A (zh) 一种气体检测方法及装置
RU2422810C1 (ru) Способ экспресс-определения состава многокомпонентной жидкой среды
JP2006508341A (ja) 多機能流体の熱伝導率の測定方法と装置
Gustavsson et al. Thermal conductivity as an indicator of fat content in milk
Al Helal et al. Measurement of mono ethylene glycol volume fraction at varying ionic strengths and temperatures
RU2382337C2 (ru) Способ измерения расхода двухфазной трехкомпонентной среды
WO2018097197A1 (ja) 化学センサ測定による試料識別方法、試料識別装置、及び入力パラメータ推定方法
RU2008102198A (ru) Способ и устройство для мониторинга разработки нефтяных залежей
RU59832U1 (ru) Устройство для измерения теплофизических параметров
RU2620328C1 (ru) Прибор для определения параметров газовыделения
RU59831U1 (ru) Устройство для измерения тепловых величин
CN206019798U (zh) 一种流量计现场检定数据采集与处理系统
RU2439491C1 (ru) Способ определения величины отложений на внутренней поверхности трубопровода и устройство для его осуществления
Hammerschmidt et al. Transient Hot Strip On-a-Chip
RU2527138C1 (ru) Способ измерения влажности нефти
RU2548123C1 (ru) Способ измерения параметров газовых и жидких сред
RU2329492C2 (ru) Способ комплексного определения теплофизических характеристик материалов и устройство для его осуществления
RU2718140C1 (ru) Способ измерения массы одного из компонентов двухкомпонентного вещества с коррекцией по температуре и устройство для его реализации
RU74711U1 (ru) Устройство для измерения удельного сопротивления теплопередаче через исследуемый объект
Pape et al. Coating diagnostics for thermal mass flowmeters
RU2188410C1 (ru) Способ экспресс-определения состава двухкомпонентной среды

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150303