RU2421766C2 - Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала - Google Patents

Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала Download PDF

Info

Publication number
RU2421766C2
RU2421766C2 RU2009104649/28A RU2009104649A RU2421766C2 RU 2421766 C2 RU2421766 C2 RU 2421766C2 RU 2009104649/28 A RU2009104649/28 A RU 2009104649/28A RU 2009104649 A RU2009104649 A RU 2009104649A RU 2421766 C2 RU2421766 C2 RU 2421766C2
Authority
RU
Russia
Prior art keywords
frequency
photodiodes
signal
threshold
levels
Prior art date
Application number
RU2009104649/28A
Other languages
English (en)
Other versions
RU2009104649A (ru
Inventor
Борис Наумович Вольфовский (RU)
Борис Наумович Вольфовский
Станислав Сергеевич Шибаев (RU)
Станислав Сергеевич Шибаев
Виктор Власович Роздобудько (RU)
Виктор Власович Роздобудько
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" (ЮФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" (ЮФУ) filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" (ЮФУ)
Priority to RU2009104649/28A priority Critical patent/RU2421766C2/ru
Publication of RU2009104649A publication Critical patent/RU2009104649A/ru
Application granted granted Critical
Publication of RU2421766C2 publication Critical patent/RU2421766C2/ru

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Communication System (AREA)

Abstract

Настоящее изобретение касается способа определения частоты радиосигнала в акустооптическом приемнике-частотомере в режиме сильного сигнала. Заявленный способ заключается в том, что на электрический вход акустооптического дефлектора подают анализируемый радиосигнал, где преобразовывают его в акустический и далее в оптический сигнал, затем подвергают его Фурье-преобразованию с фиксацией распределения его интенсивности N-элементной линейкой фотодиодов, далее формируют на их выходах видеосигналы, после чего вычисляют частоту радиосигнала, отождествляемую с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами. При этом устанавливают порог в верхней части линейного участка амплитудной характеристики фотодиодов и определяют уровни сигналов ниже порогов на четырех фотодиодах с ближайшими к порогу уровнями, далее обозначают уровни сигналов на этих фотодиодах yA, yB, yC и yD, а соответствующие этим уровням частоты обозначают в порядке возрастания частоты fA, fB, fC и fD, затем убеждаются в том, что частоты fA и fB находятся ниже по частоте участка ограничения сигнала, образованного порогом, а частоты fC и fD - выше, далее сравнивают сигналы на фотодиодах и, если yA>yC, вычисляют частоту f0 по формуле f0=(fC+fA-Δf1)/2, где Δf1=ΔF(yA-yC)/(yA-yB), в противном случае частоту f0 вычисляют по формуле f0=(fC+fA+Δf2)/2, где Δf2=ΔF(yC-yA)/(yC-yD), где ΔF - частотный интервал между фотодиодами. Данный способ позволяет повысить точность измерения частоты радиосигналов в режиме сильного сигнала. 6 ил.

Description

Предлагаемое изобретение относится к радиоизмерительной технике и может быть использовано в качестве высокоточного измерителя параметров радиосигналов в частотомерах и демодуляторах частотно-модулированных сигналов диапазона СВЧ.
Известен (см. фиг.1) способ измерения несущей частоты радиосигналов, реализованный в акустооптическом процессоре (Гуревич А.С., Нахмансон Г.С. Обнаружение и измерение частоты узкополосных радиосигналов на фоне помех в акустооптоэлектронном спектроанализаторе // Известия ВУЗов СССР - Радиоэлектроника. - 1981. - Т.24. - №4. - С.26-33), заключающийся в том, что сигнал S(t), частота которого подлежит измерению, подают на электрический вход акустооптического дефлектора 2, где он преобразуется в акустический сигнал, с которым взаимодействует лазерное излучение 1, в результате чего формируют световой сигнал, над которым с помощью линзы 3 выполняют операцию оптического интегрирования с последующим детектированием при помощи линейки фотоприемников 4, состоящей из дискретного набора фотодиодов, формирующих набор видеосигналов, обрабатывая которые электронной системой 5 и решающим устройством 6, определяют порядковый номер фотодиода с максимальным уровнем сигнала и значение частоты сигнала S(t), соответствующей найденному номеру.
Признаками аналога, совпадающими с признаками предлагаемого изобретения, являются подача радиосигнала на электрический вход акустооптического дефлектора, его преобразование в дефлекторе в акустический аналог, преобразование акустического аналога в световой сигнал, операция оптического интегрирования (операция Фурье-преобразования в заявляемом способе), детектирование светового сигнала фотодиодами линейки фотоприемников, формирование на их выходах видеосигналов с последующей обработкой и вычислением частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, продетектированного фотодиодами.
Причиной, препятствующей достижению технического результата, является низкая точность измерения частоты в режиме сильного сигнала. В названном режиме несколько фотодиодов линейки фотоприемников 4 находятся в насыщении, из-за чего определение фотодиода с максимальным сигналом осуществляется с большой погрешностью. Как следствие, погрешность измерения частоты описанным способом-аналогом может существенно превысить частотный интервал ΔF между фотодиодами.
Известен также способ (см. фиг.2) измерения несущей частоты радиосигналов, реализованный в акустооптическом приемнике-частотомере (Роздобудько В.В., Дикарев Б.Д. Высокоточный акустооптический приемник-частотомер комбинированного типа // Радиотехника. 2003. - №9. - С.31-36), заключающийся в том, что сигнал S(t), частота которого подлежит измерению, подают на электрический вход акустооптического дефлектора, где он преобразуется в акустический сигнал, с которым взаимодействует лазерное излучение, в результате чего формируют световой сигнал, над которым с помощью интегрирующей линзы 3 выполняют операцию Фурье-преобразования и детектирование при помощи линейки фотоприемников 4, формирование на их выходах видеосигналов, которые усиливают затем видеоусилителями 7, сравнивают с пороговым уровнем в пороговых устройствах 8 (при превышении порогового уровня уровнем видеосигнала пороговое устройство срабатывает) с последующим грубым определением частоты радиосигнала регистрирующим устройством I-9 и уточнением частоты с использованием коммутатора 10, дискриминатора 11 и регистрирующего устройства II-12 путем сопоставления уровней сигналов Uп и Uз, снимаемых с двух крайних фотодиодов, уровни которых превышают уровень 14 (фиг.3) срабатывания пороговых устройств и путем уточнения положения максимума распределения светового сигнала 13 (фиг.3), продетектированного фотодиодами линейки фотоприемников.
Признаками аналога, совпадающими с признаками предлагаемого изобретения, являются подача радиосигнала на электрический вход акустооптического дефлектора, его преобразование в дефлекторе в акустический аналог, преобразование акустического аналога в световой сигнал, операция Фурье-преобразования, детектирование светового сигнала фотодиодами линейки фотоприемников, формирование на их выходах видеосигналов с последующей обработкой и вычислением частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, продетектированного фотодиодами.
Причиной, препятствующей достижению технического результата, является крайне низкая точность измерения частоты радиосигналов в режиме сильного сигнала.
Наиболее близким по технической сущности к заявляемому способу является способ-прототип, реализованный в акустооптическом частотомере (фиг.4) (Роздобудько В.В. Широкополосные акустооптические измерители частотных и фазовых параметров радиосигналов // Радиотехника. - 2001. - №1. - С.79-92) и заключающийся в том, что на электрический вход акустооптического дефлектора 2 подают измеряемый радиосигнал S(t), в акустооптическом дефлекторе он преобразуется в акустический сигнал, с которым взаимодействует оптическое излучение, сформированное лазером 15 и коллиматором 16, в результате чего формируют световой сигнал, над которым с помощью линзы 3 выполняют операцию Фурье-преобразования с последующим детектированием при помощи линейки фотоприемников 4, состоящей из дискретного набора фотодиодов, формирующих набор видеосигналов, которые усиливают затем видеоусилителями 7, сравнивают с пороговым уровнем в пороговых устройствах 8 (при превышении порогового уровня уровнем видеосигнала пороговое устройство срабатывает), далее определяют номера первого mп и последнего mз сработавшего порогового устройства (см. фиг.5, на котором: 13 - распределение светового сигнала, продетектированное фотодиодами линейки фотоприемников, 14 - уровень порога) и определяют частоту радиосигнала при помощи решающего устройства 6 по формуле
Figure 00000001
где fH - начальная частота диапазона частот частотомера, ΔfΣ - его полоса пропускания, N - число фотодиодов в линейке фотоприемников 4.
Признаками прототипа, совпадающими с признаками предлагаемого изобретения, являются подача радиосигнала на электрический вход акустооптического дефлектора, его преобразование в дефлекторе в акустический аналог, преобразование акустического аналога в световой сигнал, операция Фурье-преобразования, детектирование светового сигнала фотодиодами линейки фотоприемников, формирование на их выходах видеосигналов с последующей обработкой и вычислением частоты радиосигнала, отождествляемой с абсциссой оси симметрии распределения интенсивности светового сигнала, продетектированного фотодиодами.
Причиной, препятствующей достижению технического результата, является низкая точность измерения частоты радиосигналов, которая для полосы рабочих частот процессора ΔfΣ и числа фотодиодов N в линейке фотоприемников не превышает величины 0,25(ΔfΣ/N), что соответствует четверти частотного интервала между фотодиодами. Кроме того, при работе в режиме сильного сигнала (в режиме ограничения) возможны грубые погрешности измерения частоты, связанные с превышением порогового уровня боковыми лепестками распределения интенсивности светового сигнала. Вследствие такого превышения могут быть неправильно определены номера mп и mз, используемые в формуле (1) для вычисления частоты, что приведет к грубым ошибкам в ее определении. Если же для избавления от грубых ошибок увеличить уровень порога, то это приведет к сужению линейного участка динамического диапазона.
Задачей, на решение которой направлено предлагаемое изобретение, является увеличение точности измерения частоты радиосигналов, поступающих на вход измерителя, при работе его в нелинейной части динамического диапазона (в режиме ограничения или в режиме насыщения фотодиодов).
Технический результат достигается тем, что устанавливают порог в верхней части линейного участка амплитудной характеристики фотодиодов, определяют уровни сигналов ниже порога на четырех фотодиодах с ближайшими к порогу уровнями, далее обозначают уровни сигналов на этих фотодиодах yA, yB, yC и yD, а соответствующие этим уровням частоты обозначают в порядке возрастания частоты fA, fB, fC, fD, затем убеждаются в том, что частоты fA и fB находятся ниже по частоте участка ограничения сигнала, образованного порогом, а частоты fC и fD - выше, далее сравнивают сигналы на фотодиодах и, если уА>yC, вычисляют частоту f0 по формуле f0(fC+fA-Δf1)/2, где Δf1=Δf(уА-yC)/(yA-yB), в противном случае частоту f0 вычисляют по формуле f0=(fC+fA+Δf2)/2, где Δf2=ΔF(yC-yA)/(yC-yD), ΔF - частотный интервал между фотодиодами.
Для достижения технического результата в способе определения частоты радиосигнала в акустооптическом приемнике-частотомере, заключающемся в том, что на электрический вход акустооптического дефлектора подают анализируемый радиосигнал, где преобразовывают его в акустический и далее в оптический сигнал, затем подвергают его Фурье-преобразованию с фиксацией распределения его интенсивности N-элементной линейкой фотодиодов, далее формируют на их выходах видеосигналы, после чего вычисляют частоту радиосигнала, отождествляемую с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами, устанавливают порог в верхней части линейного участка амплитудной характеристики фотодиодов, определяют уровни сигналов ниже порога на четырех фотодиодах с ближайшими к порогу уровнями, далее обозначают уровни сигналов на этих фотодиодах yA, yB yC и yD, а соответствующие этим уровням частоты обозначают в порядке возрастания частоты fA, fB, fC, fD, затем убеждаются в том, что частоты fA и fB находятся ниже по частоте участка ограничения сигнала, образованного порогом, а частоты fC и fD - выше, далее сравнивают сигналы на фотодиодах и, если yA>yC, вычисляют частоту f0 по формуле f0=(fC+fA-Δf1)/2, где Δf1=ΔF(уА-yC)/(yA-yB), в противном случае частоту f0 вычисляют по формуле f0=(fC+fA+Δf2)/2, где Δf2=ΔF(yC-yA)/(yC-yD), ΔF- частотный интервал между фотодиодами.
Сравнивая предлагаемый способ с прототипом, видно, что он содержит новые признаки, т.е. соответствует критерию новизны. Проводя сравнение с аналогами, видно, что заявляемый способ соответствует критерию «существенные отличия», так как в аналогах не обнаружены предъявляемые новые признаки.
Для доказательства существования причинно-следственной связи между заявляемыми признаками и достигаемым техническим результатом рассмотрим сущность предлагаемого способа измерения частоты и сопоставим его со способом-прототипом и способами-аналогами.
Сущность заявляемого способа заключается в следующем. На фиг.6 в координатах частота-уровень показаны два возможных варианта (а и б) распределений интенсивности светового сигнала на фотоприемнике в режиме сильного сигнала (в режиме ограничения). Абсциссы точек В, А, С, D соответствуют частотам точной настройки фотодиодов фотоприемника (fB, fA, fC и fD). Ординаты точек В, А, C, D равны уровням сигналов на фотодиодах (yB, yA, yC и yD). Частотный интервал между фотодиодами равен ΔF. На выходах фотодиодов, находящихся в насыщении (интервал RS), сигнал максимален (ограничен). Распределение интенсивности светового сигнала симметрично относительно оси F, абсцисса которой равна частоте радиосигнала.
Суть предлагаемого способа измерения частоты состоит (см. фиг.6а) в определении положения на оси частот абсцисс точек С и G, т.е. значений fC и fG. Они симметричны относительно F, и потому абсцисса оси F, т.e. частота радиосигнала f0 определяется как среднее арифметическое частот fC и fG по формуле
Figure 00000002
В этой формуле частота fC известна, а точка G лежит на прямой АВ. Абсциссу fG можно вычислить по формуле
Figure 00000003
где Δf - неизвестный частотный интервал GE между точками G и Е. Для его поисков воспользуемся свойствами подобных треугольников ВАН и GAE. Составим пропорцию AH/BH=AE/GE, откуда искомый отрезок GE (интервал Δf) определяется по формуле:
Figure 00000004
Но частотный интервал между точками ВН - это частотный интервал ΔF между фотодиодами, величины АЕ и АН вычисляются по формулам:
Figure 00000005
Figure 00000006
Таким образом,
Figure 00000007
После подстановки вычисленного Δf=Δf1 в (3) и вычисленной fG в (2) получим искомое положение оси симметрии распределения:
Figure 00000008
Формула (9) справедлива для случая, когда yA>yC. Для альтернативной ситуации, показанной на фиг.6б, аналогичные формулы для вычисления частоты имеют вид:
Figure 00000009
Figure 00000010
Пример последовательности действий, направленных на измерение частоты радиосигнала, в соответствии с заявляемым способом включает в себя следующие шаги.
1. Устанавливают порог Up в верхней части линейного участка амплитудной характеристики фотодиодов. Этот шаг необходим, поскольку реальные амплитудные характеристики фотодиодов, как правило, не имеют явно выраженного участка ограничения.
2. Измеряют (см. фиг.6) уровни сигналов yA, yB, yC, yD. Все они должны быть ниже порога Up. При этом один из уровней сигналов уA или уC должен быть ближайшим к порогу Up уровнем.
3. Сравнивают сигналы yA и yC. В случае yA>yC (фиг.6а) применяют для вычислений частоты формулы (8) и (9), в альтернативном случае (фиг.6б) применяют формулы (10) и (11).
Можно показать, что по сравнению с прототипом максимальная погрешность измерения частоты заявляемым способом в режиме сильного сигнала может снизиться на порядок и более. Использование заявляемого способа измерения частоты в акустооптическом измерителе позволит улучшить технические характеристики данного устройства за счет увеличения точности измерения.

Claims (1)

  1. Способ определения частоты радиосигнала в акустооптическом приемнике-частотомере, заключающийся в том, что на электрический вход акустооптического дефлектора подают анализируемый радиосигнал, где преобразовывают его в акустический и далее в оптический сигнал, затем подвергают его Фурье-преобразованию с фиксацией распределения его интенсивности N-элементной линейкой фотодиодов, далее формируют на их выходах видеосигналы, после чего вычисляют частоту радиосигнала, отождествляемую с абсциссой оси симметрии распределения интенсивности светового сигнала, дискретизированного фотодиодами, отличающийся тем, что устанавливают порог в верхней части линейного участка амплитудной характеристики фотодиодов, определяют уровни сигналов ниже порога на четырех фотодиодах с ближайшими к порогу уровнями, далее обозначают уровни сигналов на этих фотодиодах yA, yB, yC и yD, а соответствующие этим уровням частоты обозначают в порядке возрастания частоты fA, fB, fC и fD, затем убеждаются в том, что частоты fA и fB находятся ниже по частоте участка ограничения сигнала, образованного порогом, а частоты fC и fD - выше, далее сравнивают сигналы на фотодиодах и, если yA>yC, вычисляют частоту f0 по формуле f0=(fC+fA-Δf1)/2, где Δf1=ΔF(yA-yC)/(yA-yB), в противном случае частоту f0 вычисляют по формуле f0=(fC+fA+Δf2)/2, где Δf2=ΔF(yC-yA)/(yC-yD), где ΔF - частотный интервал между фотодиодами.
RU2009104649/28A 2009-02-11 2009-02-11 Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала RU2421766C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009104649/28A RU2421766C2 (ru) 2009-02-11 2009-02-11 Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009104649/28A RU2421766C2 (ru) 2009-02-11 2009-02-11 Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала

Publications (2)

Publication Number Publication Date
RU2009104649A RU2009104649A (ru) 2010-08-20
RU2421766C2 true RU2421766C2 (ru) 2011-06-20

Family

ID=44738285

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009104649/28A RU2421766C2 (ru) 2009-02-11 2009-02-11 Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала

Country Status (1)

Country Link
RU (1) RU2421766C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521200C2 (ru) * 2012-07-19 2014-06-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" Способ измерения частоты радиосигнала в акустооптическом приемнике-частотомере

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2521200C2 (ru) * 2012-07-19 2014-06-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" Способ измерения частоты радиосигнала в акустооптическом приемнике-частотомере

Also Published As

Publication number Publication date
RU2009104649A (ru) 2010-08-20

Similar Documents

Publication Publication Date Title
EP2198323B9 (en) Time delay estimation
Jongenelen et al. Analysis of errors in ToF range imaging with dual-frequency modulation
US9599714B2 (en) Wind measurement coherent lidar
US9518825B2 (en) Suppression of lock-in effect due to a MIOC frequency response in a fiber-optic Sagnac interferometer
US11255969B2 (en) Measurement apparatus and measurement method
JP6693783B2 (ja) 距離測定装置およびその校正方法
US9228828B2 (en) Thickness monitoring device, etching depth monitoring device and thickness monitoring method
RU2421766C2 (ru) Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в режиме сильного сигнала
RU2421740C2 (ru) Способ определения частоты радиосигналов в акустооптическом приемнике-частотомере в линейном режиме работы фотоприемника
JP5827140B2 (ja) レーザ光特性測定方法及び測定装置
JP5888111B2 (ja) エッチングモニタ装置
US20170167916A1 (en) System and method of optical spectrum analysis
RU2421767C2 (ru) Способ измерения частоты радиосигнала в акустооптическом приемнике-частотомере
Brajnik et al. Pilot tone as a key to improving the spatial resolution of eBPMs
Werle Time domain characterization of micrometeorological data based on a two sample variance
CN115825004A (zh) 气体检测可调谐半导体激光器的波长锁定装置及方法
US11933668B2 (en) Sampling assembly and testing instrument
Zygmunt et al. Real-time measurement technique of the echo signal magnitude in ToF laser scanners
CN110823517B (zh) 测量激光反馈系统中反馈因子c的方法
JP2014174069A (ja) レーザ測距装置
JP7173313B2 (ja) 位相測定方法及び信号処理装置
JP5470320B2 (ja) レーザ光コヒーレンス長測定方法及び測定装置
Jin et al. Suppression of precipitation bias on wind velocity from continuous-wave Doppler lidars
RU2428702C1 (ru) Способ измерения частоты радиосигнала в акустооптических приемниках-частотомерах
RU2431852C2 (ru) Радиометрический способ регистрации слабого широкополосного радиоизлучения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110409