RU2418869C2 - Способ извлечения металлов из минерального сырья - Google Patents

Способ извлечения металлов из минерального сырья Download PDF

Info

Publication number
RU2418869C2
RU2418869C2 RU2009117575/02A RU2009117575A RU2418869C2 RU 2418869 C2 RU2418869 C2 RU 2418869C2 RU 2009117575/02 A RU2009117575/02 A RU 2009117575/02A RU 2009117575 A RU2009117575 A RU 2009117575A RU 2418869 C2 RU2418869 C2 RU 2418869C2
Authority
RU
Russia
Prior art keywords
leaching
fraction
sand
reactors
sand fraction
Prior art date
Application number
RU2009117575/02A
Other languages
English (en)
Other versions
RU2009117575A (ru
Inventor
Эдуард Владимирович Адамов (RU)
Эдуард Владимирович Адамов
Любовь Николаевна Крылова (RU)
Любовь Николаевна Крылова
Ольга Николаевна Травникова (RU)
Ольга Николаевна Травникова
Константин Александрович Вигандт (RU)
Константин Александрович Вигандт
Владимир Николаевич Травников (RU)
Владимир Николаевич Травников
Марина Ивановна Назимова (RU)
Марина Ивановна Назимова
Original Assignee
Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный технологический университет "Московский институт стали и сплавов"
Эдуард Владимирович Адамов
Любовь Николаевна Крылова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный технологический университет "Московский институт стали и сплавов", Эдуард Владимирович Адамов, Любовь Николаевна Крылова filed Critical Федеральное государственное образовательное учреждение высшего профессионального образования "Государственный технологический университет "Московский институт стали и сплавов"
Priority to RU2009117575/02A priority Critical patent/RU2418869C2/ru
Publication of RU2009117575A publication Critical patent/RU2009117575A/ru
Application granted granted Critical
Publication of RU2418869C2 publication Critical patent/RU2418869C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

Изобретение относится к гидрометаллургии цветных, редких и благородных металлов. Способ извлечения металлов из минерального сырья включает выщелачивание измельченного исходного минерального материала не менее чем в 2-х последовательно соединенных реакторах при перемешивании. Затем проводят классификацию продукта выщелачивания по крупности на песковую и шламовую фракции. Песковую фракцию выщелачивают не менее чем в 2-х последовательно соединенных реакторах при перемешивании. Извлечение металлов ведут из фаз шламовой фракции и продукта выщелачивания песковой фракции. Технический результат изобретения заключается в повышении степени выщелачивания измельченного минерального сырья. Дополнительный результат заключается в снижении энергетических затрат на переработку, уменьшении объемов реакторов, повышении производительности выщелачивания. 9 з.п. ф-лы.

Description

Изобретение относится к гидрометаллургии цветных, редких и благородных металлов, в том числе, меди, цинка, никеля, кобальта, молибдена, серебра, золота и других цветных, металлов, к чановому химическому и бактериально-химическому выщелачиванию измельченного минерального сырья, в частности, концентратов, промпродуктов и хвостов обогащения, техногенных продуктов, шламов, шлаков, огарков, руд. В частности, изобретение может быть использовано для бактериального вскрытия благородных металлов в упорном сульфидном минеральном сырье, в том числе, в упорных золотомышьяковых концентратах обогащения, кроме того, быть использовано для выщелачивания золота цианидами, тиокарбамидом, хлорными и другими реагентами, в условиях атмосферного и автоклавного выщелачивания.
Эффективность и продолжительность выщелачивания минерального сырья в значительной степени зависит от крупности частиц минерального сырья, которые при измельчении распределяются по крупности в зависимости от состава и механических свойств минерального сырья, применяемого оборудования, схемы и режима рудоподготовки.
Повышение извлечения металлов при выщелачивании и снижение продолжительности выщелачивания обеспечивает тонкое измельчение минерального материала, например до крупности 20 микрон и менее (WO 96/29439 А1, 26.09.1996 г.). Однако при снижении крупности частиц материала возрастают энергетические затраты на переработку и после выщелачивания продолжительность разделения твердой и жидкой фаз.
Известен способ извлечения золота из арсенопиритных руд (US №4822413, опублик. 18.04.1989 г.), заключающийся в бактериальном выщелачивании сульфидов и последующем растворении золота из кека выщелачивания цианированием. Известны способы выщелачивания минерального сырья трехвалентным железом в сернокислой среде с регенерацией окислителя железоокисляющими мезофильными бактериями при температуре 28-35°С (СА 2282848, С22В 3/18, опублик. 20.03.2001) и при температуре от 45 до 68°С термофильными бактериями (WO 0071763, С22В 3/18, опублик. 30.11.2000).
Известны способы бактериального выщелачивания сульфидного минерального сырья «BIOX» (Dew D.W. et al. The BIOX process for biooxidation of goldbearing ores or concentrates. Biomining: Theory, Microbes and Industrial processes, Ed. D.E.Rawlings, Chapter 3. Berlin: Springer-Verlag, 1997) и способ «BacTech» (AU 652231 В, опублик. 18.08.1994 г.).
Недостатками этих способов являются недостаточная эффективность и значительная продолжительность выщелачивания минеральных продуктов, большие затраты электроэнергии на перемешивание и аэрацию.
Известен способ переработки сульфидных медно-цинковых продуктов (RU 2203336, опублик. 05.03.2002), включающий выщелачивание ионами трехвалентного железа в сернокислой среде при интенсивном перемешивании до накопления иловой фракции -10 мкм до 40-60% от массы выщелачиваемого продукта, отделение фракции +10 мкм и возврат ее на первую стадию, довыщелачивание иловой фракции при аэрации воздухом до накопления иона трехвалентного железа до концентрации 12-15 г/дм3 и возврат продукта на выщелачивание с промежуточным выделением цветных металлов.
Способ технологически трудно реализуем, так как потоки между аппаратами определяются нестабильными, сложно контролируемыми условиями как накопление иловой фракции, обеспечение определенной концентрации иона трехвалентного железа, и недостаточно эффективен, так как ограничены температура и концентрации действующих реагентов и культура бактерий для окисления железа.
Наиболее близким аналогом заявленного изобретения является способ биоокисления сернистых полезных ископаемых для извлечения золота, серебра, металлов платиновой группы, цинка, кобальта, меди (US 005948375, С22В 11/00, С22В 15/00, С22В 23/00, приор. 10.07.1997). Способ включает биоокисление сульфидов металлов в одном реакторе, выделение из кека биоокисления гравитацией окисленной части сульфидов, в данном случае легкой фракции, биоокисление тяжелой фракции в последовательных реакторах, извлечение металлов из твердой или жидкой фаз легкой фракции.
Недостатками способа являются:
- гравитационное разделение кека биоокисления сульфидов не позволяет качественно выделить из кека окисленную фракцию, так как плотность частиц не определяет степень окисленности сульфидов, так как сульфиды металлов при окислении растворяются с образованием сульфатов и коллоидной элементной серы, частицы состоящие из сростков минералов различной плотности или содержащих металлы высокой плотности, например золото, имеют плотность не соответствующую степени окисленности отдельных минералов. В легкую фракцию попадают частицы вмещающей породы, имеющие небольшое количество сростков с не окислившимися сульфидами исходного материала, а в тяжелую фракцию возвращающуюся на биоокисление - имеющие высокую плотность вскрытые частицы золота;
- извлечение полезных металлов из легкой фракции приводит к потерям извлечения металлов высокой плотности, например золота;
- биоокисление при перемешивании в одном реакторе в непрерывном режиме не обеспечивает достаточное время пребывания и окисление всех поступающих частиц, так как вновь поступившая в реактор частица имеет высокую вероятность сразу выйти из реактора;
- не определена продолжительность биоокисления сульфидов металлов до гравитационного разделения, которая определяет долю окисленных сульфидов, в частности полученного результата 50% окисления всех частиц сульфидов в первом реакторе.
Технический результат, достигаемый настоящим изобретением, заключается в повышении извлечения металлов из минерального сырья.
Дополнительный результат, достигаемый изобретением, заключается в снижении энергетических затрат на переработку, уменьшением объемов реакторов, повышении производительности переработки.
Указанный технический результат достигается способом извлечения металлов из минерального сырья, включающим выщелачивание измельченного исходного материала не менее чем в 2-х последовательно соединенных реакторах при перемешивании, классификацию продукта выщелачивания по крупности на песковую и шламовую фракции, выщелачивание песковой фракции не менее чем в 2-х последовательно соединенных реакторах при перемешивании, извлечение металлов из фаз шламовой фракции и продукта выщелачивания песковой фракции.
Частные случаи использования изобретения характеризуются тем, что при крупности поступающего на выщелачивание исходного материала 60-100% класса минус 0,071-0,074 мм, классификацию продукта выщелачивания производят на фракции минус 0,044 мм и плюс 0,044 мм.
Предпочтительно, классификацию продуктов выщелачивания по крупности осуществлять в гидроциклоне.
Кроме того, предпочтительно песковую фракция перед выщелачиванием доизмельчать.
Также, выщелачивание песковой фракции проводят в отдельных реакторах и в реакторах и в реакторах выщелачивания исходного материала.
Кроме того, жидкая фаза после выщелачивания исходного сырья используют для выщелачивания песковой фракции в отдельных реакторах и для выщелачивания исходного материала.
Также, жидкая фаза после выщелачивания песковой фракции используют для выщелачивания исходного материала и для выщелачивания песковой фракции.
Кроме того, после выщелачивания в отдельных ректорах песковой фракции проводят классификацию по крупности продукта выщелачивания песковой фракции, с возвратом крупной фракции на выщелачивание.
В частном случае, шламовую фракцию подвергают выщелачиванию, продолжительностью меньше, чем выщелачивание песковой фракции.
Также, перед выщелачиванием проводят классификацию исходного материала по крупности и фракции выщелачивают в различных режимах.
При выщелачивании измельченного минерального сырья в одном реакторе с перемешиванием в непрерывном режиме только поступившие в реактор частицы имеют большую вероятность сразу выйти из реактора, не успев достаточное время взаимодействовать с реагентами. При выщелачивании в нескольких последовательных реакторах вероятность выхода частиц из реактора снижается. Выщелачивание не менее чем в 2-х последовательно соединенных реакторах с перемешиванием в непрерывном режиме позволяет обеспечить большее время пребывания всех поступающих частиц в зоне реакции.
Перемешивание при выщелачивании в реакторах обеспечивает повышение скорости массообменных физико-химических процессов, что увеличивает эффективность и уменьшает продолжительность процесса.
Минеральное сырье имеют многокомпонентный состав, включающий различные минералы металлов, вмещающие породы, благородные металлы - золото, серебро, которые отличаются по плотности, скорости выщелачивания, часто находятся в срастании друг с другом или вкраплены друг в друга. При выщелачивании измельченного минерального сырья сначала растворяются наиболее быстро выщелачиваемые минералы, причем сначала те, которые находятся на поверхности, при этом размер частиц уменьшается, поэтому крупность частиц в основном определяет степень их взаимодействия с реагентами.
Например, при окислительном бактериальном выщелачивании упорных золотосодержащих сульфидных концентратов практически все сульфиды растворяются, крупность частиц уменьшается, и определяет степень окисленности, при этом содержащиеся в сульфидах благородные металлы вскрываются и, в зависимости от минерального состава, плотность частиц может как повыситься, так и снизиться, и не определяет степень окисленности сульфидов. Также, размер частиц золота, поступающих на цианирование или хлорирование, определяет продолжительность и эффективность процесса.
Из растворов выщелачивания извлекаются перешедшие из минералов исходного минерального сырья металлы, например из сульфидных минералов медь, цинк, сурьма, мышьяк.
Крупность частиц материала подвергающегося выщелачиванию в реакторах с перемешиванием определяет скорость и эффективность процесса, поэтому на выщелачивание направляются измельченные материалы. Концентраты флотации имеют крупность 60-100% класса минус 0,071-0,074 мм, или смесь гравитационного концентрата после доизмельчения и флотационного концентратов, а также концентраты обогащения после доизмельчения до крупности 60-100% класса минус 0,044 мм.
Классификацию кека выщелачивания материала измельченного до крупности 60-100% класса минус 0,071-0,074 мм рационально проводить на фракции минус 0,044 мм и плюс 0,044 мм. Классификацию кека выщелачивания исходного материала измельченного до крупности 60-100% класса минус 0,044 мм рационально проводить на фракции меньшей крупности, например, минус 0,02 мм и плюс 0,02 мм.
Разделение частиц по крупности гидроциклоне происходит быстро и эффективно, размеры гидроциклона небольшие, производительность высокая, при этом не нужно производить значительные изменения расположения работающих реакторов выщелачивания. Работа гидроциклона не требует высоких затрат энергии и не представляет проблем в обслуживании.
Продолжительность выщелачивания материала в реакторах и крупность классификации кека выщелачивания определяются из требований высокого извлечения металлов из твердой или/и жидкой фаз после выщелачивания, зависящего от содержания в достаточной степени выщелоченных частиц в шламовой фракции после классификации и/или в песковой фракции после довыщелачивания. В основном эти параметры оцениваются экспериментальным путем. Например, из твердой фазы шламовой фракции биоокисления упорного сульфидного золотосодержащего концентрата обогащения, и из песковой фракции после доокисления извлечение золота цианированием должно быть не менее 90%.
Песковую фракцию после классификации подвергают довыщелачиванию, продолжительность которого должна быть достаточна для экономически целесообразного растворения минералов или металлов. Для повышения интенсивности и эффективности процесса перед довыщелачиванием песковая фракция доизмельчается. После классификации масса выщелачиваемого материала значительно сокращается, по результатам экспериментов в 2-3 раза, что позволяет повысить продолжительность и глубину переработки оставшейся фракции.
Выщелачивание песковой фракции после классификации можно осуществлять в отдельных реакторах или/и в реакторах, где проводят выщелачивание исходного материала.
В частных случаях, жидкая фаза после выщелачивания материала имеет высокую концентрацию реагентов, участвующих в выщелачивании, поэтому рационально ее использовать для выщелачивания, например, направляя в реакторы выщелачивания исходного сырья или песковой фракции. Например, при бактериальном выщелачивании упорных золотосодержащих сульфидных концентратов жидкая фаза содержит ионы трехвалентного железа и активные железо- и серуокисляющие бактерии, которые способны обеспечить окисление сульфидов.
Аналогично вышесказанному жидкую фазу после выщелачивания песковой фракции рационально использовать для выщелачивания исходного материала и песковой фракции.
При наличии крупной фракции после выщелачивания песковой фракции возможно проведение повторной классификации продукта выщелачивания песковой фракции по крупности на шламовую и песковую фракции, направление выделенной шламовой фракции на извлечение металлов и песковой фракции на довыщелачивание.
В частном случае, шламовая фракция содержит полезные металлы, для извлечения которых ее выщелачивают продолжительностью меньше, чем песковую фракцию.
В отдельных случаях, минеральное сырье рационально классификацировать по крупности перед выщелачиванием, а полученные фракции по крупности выщелачивать в различных режимах.
Изобретение иллюстрируется примерами реализации способа.
Пример 1.
Проведено извлечение металлов из пирротин-арсенопирит-антимонит-пиритного золотосодержащего концентрата флотационного обогащения, содержащего 21,3% пирротина, 10,4% арсенопирита, 15% пирита, 7% антимонита, золота 57 г/т с целью вскрытия упорного тонковкрапленного в сульфидных минералах золота для последующего его извлечения из твердой фазы планированием и растворения антимонита для последующего извлечения сурьмы из раствора.
Концентрат крупностью 80% класса минус 0,074 мм выщелачивали при перемешивании, аэрации воздухом, температуре 42°С, концентрации серной кислоты поддерживаемой на уровне 1,5-3,0 г/л, содержании твердой фазы 12%, ассоциацией железо- и серуокисляющих бактерий при добавлении минеральных солей общей продолжительностью 80 часов последовательно сначала в трех параллельных реакторах, затем объединенного из них потока в одном реакторе. Классификацию продукта выщелачивания проводили на фракции плюс 0,044 мм и минус 0,044 мм в гидроциклоне при соотношении диаметров насадок гидроциклона 0,3. В результате классификации выход шламовой фракции составил 65,1%, в которой степень окисления сульфидов 92%, извлечение золота цианированием из этой фракции составило 93,6%. Степень биоокисления выделенной классификацией песковой фракции составила 56%, извлечение золота из нее цианированием 67%. Выщелачиванием песковой фракции в 2-х последовательно соединенных реакторах с перемешиванием продолжительностью 80 часов с использованием жидкой фазы, выходящей из реакторов выщелачивания исходного концентрата, позволило повысить степень окисления сульфидов до 91,4%, и извлечение золота цианированием до 92,1%. При доизмельчении песковой фракции до 90% класса минус 0,044 мм перед биоокислением и продолжительности биоокисления 80 часов степень окисления сульфидов составила 93,4%, извлечение золота цианированием - 95,2%.
Суммарная степень биоокисления сульфидов концентрата в реакторах общей продолжительностью 126 часов составила 86,4%, извлечение сурьмы из антимонита в раствор 84,5%. Извлечение золота цианированием из биокека составило 89,2%. Сурьма из растворов выщелачивания извлекалась известными методами как осаждение или сорбция.
Реализация способа приводит к повышению степени выщелачивания сульфидов в концентрате за счет выделения окисленной части, что позволяет повысить продолжительность и соответственно степень выщелачивания крупной фракции. Снижение объема перерабатываемого материала позволяет повысить производительность переработки, увеличить продолжительность и глубину выщелачивания песковой фракции. Применение способа позволяет повысить извлечение металлов при переработке.
Пример 2.
Проведено извлечение металлов из кеков пероксон-солевого выщелачивания сульфидного медного концентрата флотационного обогащения крупностью 60% класса минус 0,044 мм, содержащего 230 г/т серебра и 1,6% меди.
Выщелачивание исходного сырья осуществлено в растворе серной кислоты концентрацией 20 г/л в присутствии трехвалентного железа концентрацией ионов 3 г/л и тиокарбамида концентрацией 15 г/л, при температуре 20°С, содержании твердой фазы 30%, в двух последовательно соединенных реакторах при перемешивании продолжительностью 12 часов. Классификация продукта выщелачивания проведена в батарее гидроциклонов диаметром 25 мм на песковую фракцию крупностью плюс 0,02 мм (выход фракции составил 52,6%), и шламовую фракцию крупностью минус 0,02 мм (выход фракции 47,2%). По результатам анализа содержания металлов во фракциях после выщелачивания из шламовой фракции серебро извлеклось на 79,3%, медь на 45%, из песковой фракции извлечение серебра 61%, меди 22%. После выщелачивания песковой фракции раствором серной кислоты концентрацией 20 г/л в присутствии трехвалентного железа концентрацией ионов 3 г/л и тиокарбамида концентрацией 15 г/л, при температуре 20°С отдельных в 2-х последовательно соединенных реакторах при перемешивании продолжительностью 12 часов серебро растворилось до 82,2% от исходного содержания, медь до 39%.
Продукт после выщелачивания песковой фракции классифицирован по крупности в батарее гидроциклонов на фракции крупностью минус 0,02 мм (шламовая-2, выход 32%) и плюс 0,02 мм (песковая-2, выход 68%). Из шламовой фракции серебро извлеклось на 84,5%, медь на 41,4%. Песковая-2 фракция возвращена в первый из последовательно соединенных реакторов выщелачивания песковой фракции.
Выщелачивание кека пероксон-солевого серной кислотой концентрацией 20 г/л в присутствии трехвалентного железа концентрацией ионов 3 г/л и тиокарбамида концентрацией 15 г/л, температуре 20°С, содержании твердой фазы 30%, продолжительностью 18 часов, в одном реакторе при перемешивании в раствор извлекается серебра не более 71%, меди 38%.
Применение способа позволило повысить суммарное извлечение серебра и меди из исходного сырья, при этом объемы перерабатываемого материала снижены, что позволяет повысить производительность переработки, а также уменьшить затраты энергии на перемешивание.

Claims (10)

1. Способ извлечения металлов из минерального сырья, включающий выщелачивание измельченного исходного минерального материала не менее чем в 2 последовательно соединенных реакторах при перемешивании, классификацию продукта выщелачивания по крупности на песковую и шламовую фракции, выщелачивание песковой фракции не менее чем в 2 последовательно соединенных реакторах при перемешивании, извлечение металлов из фаз шламовой фракции и продукта выщелачивания песковой фракции.
2. Способ по п.1, в котором при крупности поступающего на выщелачивание исходного материала 60-100% класса минус 0,071-0,074 мм классификацию продукта выщелачивания минерального сырья производят на фракции минус 0,044 мм и плюс 0,044 мм.
3. Способ по п.1, в котором классификацию по крупности продуктов выщелачивания осуществляют в гидроциклоне.
4. Способ по п.1, в котором песковую фракцию перед выщелачиванием доизмельчают.
5. Способ по п.1, в котором выщелачивание песковой фракции проводят в отдельных реакторах и в реакторах выщелачивания исходного материала.
6. Способ по п.1, в котором жидкую фазу после выщелачивания исходного минерального сырья используют для выщелачивания песковой фракции в отдельных реакторах и для выщелачивания исходного материала.
7. Способ по п.1, в котором жидкую фазу после выщелачивания песковой фракции используют для выщелачивания исходного материала и для выщелачивания песковой фракции.
8. Способ по п.1, в котором после выщелачивания песковой фракции в отдельных ректорах проводят классификацию по крупности продукта выщелачивания песковой фракции, с возвратом крупной фракции на выщелачивание.
9. Способ по п.1, в котором шламовую фракцию подвергают выщелачиванию, продолжительность которого меньше чем выщелачивание песковой фракции.
10. Способ по п.1, в котором перед выщелачиванием проводят классификацию исходного материала по крупности и фракции выщелачивают в различных режимах.
RU2009117575/02A 2009-05-12 2009-05-12 Способ извлечения металлов из минерального сырья RU2418869C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009117575/02A RU2418869C2 (ru) 2009-05-12 2009-05-12 Способ извлечения металлов из минерального сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009117575/02A RU2418869C2 (ru) 2009-05-12 2009-05-12 Способ извлечения металлов из минерального сырья

Publications (2)

Publication Number Publication Date
RU2009117575A RU2009117575A (ru) 2010-11-20
RU2418869C2 true RU2418869C2 (ru) 2011-05-20

Family

ID=44058021

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009117575/02A RU2418869C2 (ru) 2009-05-12 2009-05-12 Способ извлечения металлов из минерального сырья

Country Status (1)

Country Link
RU (1) RU2418869C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532579C2 (ru) * 2013-02-13 2014-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ извлечения золота из концентратов
RU2603411C1 (ru) * 2015-07-17 2016-11-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ интенсификации процесса кучного выщелачивания золота из руд

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532579C2 (ru) * 2013-02-13 2014-11-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ извлечения золота из концентратов
RU2603411C1 (ru) * 2015-07-17 2016-11-27 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ интенсификации процесса кучного выщелачивания золота из руд

Also Published As

Publication number Publication date
RU2009117575A (ru) 2010-11-20

Similar Documents

Publication Publication Date Title
Mäkinen et al. Bioleaching of cobalt from sulfide mining tailings; a mini-pilot study
JP3705815B2 (ja) 大気圧における鉱物浸出プロセス
RU2483127C1 (ru) Способ переработки упорной золотосодержащей пирротин-арсенопиритной руды
WO2012053915A1 (en) A process of gold and copper recovery from mixed oxide - sulfide copper ores
CN104017991A (zh) 一种高效选择性分离铅冰铜中铜的工艺
RU2432407C1 (ru) Способ переработки сурьмяно-мышьяковых сульфидных золотосодержащих руд
CN103146911A (zh) 一种结合氧化铜矿石及回收伴生有价金属的选矿方法
Gorain et al. Innovations in gold and silver processing
RU2592656C1 (ru) Способ переработки упорных пирит-арсенопирит-пирротин-антимонитовых золотосодержащих руд (варианты)
RU2418869C2 (ru) Способ извлечения металлов из минерального сырья
RU2370316C1 (ru) Способ пульпоподготовки к флотации магнитной фракции из продуктов обогащения сульфидных медно-никелевых руд, содержащих ферромагнитные минералы железа и благородных металлов
CA3220436A1 (en) Recovering metal from metal-bearing material
CN108950195B (zh) 利用含氯废水提取锌精矿氧化渣中有价金属的方法
Ellis et al. Ultra fine grinding-a practical alternative to oxidative treatment of refractory gold ores
RU2439177C2 (ru) Способ переработки сульфидно-окисленных медных руд с извлечением меди и серебра
Adams Summary of gold plants and processes
CN111148851A (zh) 通过使难熔基质增溶的预处理提取贱金属和贵金属的方法0 hypex-goldest
EP4188608A1 (en) Processing method
CN105728199A (zh) 一种从含银的钒矿中化学活化浮选回收银的方法
JP3991934B2 (ja) 黄銅鉱を含む硫化銅鉱から銅を浸出する方法
RU2339708C1 (ru) Способ выщелачивания продуктов, содержащих сульфиды металлов
RU2601526C1 (ru) Комбинированный способ переработки труднообогатимых свинцово-цинковых руд
Chernoburova et al. Processing and extraction of critical raw materials from residues
Rice et al. Coal-dust Explosion Tests in the Experimental Mine 1913-1918, Inclusive
RU2256712C1 (ru) Способ переработки первичных золотосульфидных руд

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110513

NF4A Reinstatement of patent

Effective date: 20120427

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160513