RU2417386C2 - Способ и система обнаружения радиации с использованием многоканального спектрометра и устройство для обработки данных - Google Patents

Способ и система обнаружения радиации с использованием многоканального спектрометра и устройство для обработки данных Download PDF

Info

Publication number
RU2417386C2
RU2417386C2 RU2008149051/28A RU2008149051A RU2417386C2 RU 2417386 C2 RU2417386 C2 RU 2417386C2 RU 2008149051/28 A RU2008149051/28 A RU 2008149051/28A RU 2008149051 A RU2008149051 A RU 2008149051A RU 2417386 C2 RU2417386 C2 RU 2417386C2
Authority
RU
Russia
Prior art keywords
spectrum
degenerate
energy
measurement
background
Prior art date
Application number
RU2008149051/28A
Other languages
English (en)
Other versions
RU2008149051A (ru
Inventor
Минг РУАН (CN)
Минг РУАН
Йингронг ДЖИАН (CN)
Йингронг ДЖИАН
Кун ЖАО (CN)
Кун ЖАО
Джин ЛИН (CN)
Джин ЛИН
Original Assignee
Нуктек Компани Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нуктек Компани Лимитед filed Critical Нуктек Компани Лимитед
Publication of RU2008149051A publication Critical patent/RU2008149051A/ru
Application granted granted Critical
Publication of RU2417386C2 publication Critical patent/RU2417386C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к системе обнаружения радиации, используя многоканальный спектрометр, и к способу, используемому для этой цели, в частности изобретение относится к системе для обнаружения радиоактивных материалов. Устройство обработки данных содержит средство для разделения диапазона энергий для разделения указанного многоканального спектра в вырожденный спектр ограниченных каналов, при этом каждый вырожденный спектр представляет диапазон энергии; средство вычисления вырожденного спектра для вычисления фонового вырожденного спектра и вырожденного спектра измерений на основе указанного фонового спектра и указанного спектра измерений, соответствующего указанному вырожденному спектру ограниченных каналов, соответственно; средство вычисления коэффициента использования энергии для вычисления коэффициента использования энергии на основе расчетного фонового вырожденного спектра и вырожденного спектра измерений; средства обнаружения пикового значения для поиска пикового значения в расчетных коэффициентах использования энергии; информацию, определяющую диапазон энергии для определения соответствующего диапазона энергии указанных гамма-лучей на основе найденного пикового значения в коэффициентах использования энергии. В соответствующем способе обнаружения радиации и в системе обнаружения радиации также используется устройство для обработки данных. 3 н. и 6 з.п. ф-лы, 3 ил.

Description

Область изобретения
Настоящее изобретение относится к системе обнаружения радиации, используя многоканальный спектрометр, и к способу, используемому для этой цели, в частности изобретение относится к системе для обнаружения радиоактивных материалов путем вырождения многоканального спектра, созданного многоканальным спектрометром, и выполняя высокоскоростное определение пикового значения на вырожденном спектре.
Предпосылки создания изобретения
Многоканальный спектрометр (включая прибор без кристалла-анализатора и без фотоумножителя), содержащий сцинтиллятор, фотоумножитель, усилитель и многоканальный спектрометр, используется для обнаружения гамма-лучей и идентификации нуклидов, в котором используется стандартная обработка, включающая следующие операции: сцинтиллятор поглощает (полностью или частично) гамма-лучи, кристалл излучает свет, который собирается фотоумножителем, который выполняет фотоэлектрическое преобразование света и линейно умножает его в виде электрического импульса; усилитель выполняет процесс формирования и усиления электрического импульса; затем многоканальный анализатор анализирует усиленный электрический импульс и преобразует его в цифровой сигнал для последующей обработки. Поскольку указанная обработка является процессом линейного усиления и преобразования, многоканальный спектрометр может использоваться для обнаружения спектра гамма-лучей. В настоящее время разработаны различные системы обнаружения радиации, используя многоканальный спектрометр, чтобы определить состав и тип радиации на основе спектра гамма-лучей, обнаруженных детектором.
Диапазон энергии гамма-лучей, включаемых в область обнаружения радиации, в целом, лежит в пределах от 0,03 до 3 МэВ. Различные области энергии гамма-лучей, в основном, соответствуют различным областям применения источников радиоактивного излучения, например энергии гамма-лучей от концентратов специальных ядерных материалов с относительно низким энергетическим уровнем гамма-лучей, используемых в медицине, до концентратов радиоактивного материала в среднем диапазоне энергии и энергии гамма-лучей, используемых в промышленности в концентратах радиоактивного материала в относительно высоком энергетическом уровне. Следовательно, система обнаружения радиации не только должна иметь высокую чувствительность для обнаружения радиации, но также должна обнаруживать гамма-лучи в пределах широкого диапазона энергии, которой обладают радиоактивные материалы. Существующие системы обнаружения спектра гамма-излучения измеряют непосредственно состав спектра, чтобы получить подробную информацию о радиации. При этом процесс обработки требует относительно длительного времени, на базе предположения, что различные диапазоны энергии лучей в целом соответствуют различным областям применения источников радиоактивного излучения, и если диапазон энергии обнаруженного источника и категорию радиоактивного материала можно быстро определить, чтобы отличить опасные источники от ежедневно используемых медицинских источников, то рабочая нагрузка лаборантов может быть значительно снижена, а эффективность и точность системы обнаружения радиации могут быть повышены.
Сцинтиллятор многоканального спектрометра может быть различного типа, например неорганический сцинтиллятор (NaI, CsI, BGO) и органический сцинтиллятор (органический кристалл, органическая жидкость, органический пластик) и т.д., причем наиболее широко используется пластиковый сцинтиллятор благодаря таким его характеристикам, как большой объем, высокая эффективность обнаружения, широкий диапазон спектральной чувствительности по энергии, приемлемая цена и т.д., особенно для таких полей, как обнаружение специальных ядерных материалов и других радиоактивных материалов, низкая доза экологического загрязнения при измерении гамма-спектра. Однако разрешающая способность пластикового сцинтиллятора является относительно небольшой, так что, как правило, он не используется для измерения энергии идентификации нуклида и гамма-лучей. Некоторые иностранные изготовители объединяют пластиковый сцинтилляционный детектор с многоканальным спектрометром для того, чтобы различать естественные фоновые и искусственные источники радиоактивного излучения, и для того, чтобы устранить необходимость изменения чувствительности системы, вызванной колебанием фоновой радиации.
Если цель системы обнаружения радиации не состоит в точном определении состава радиоактивного материала, а состоит в быстром определении категории радиоактивного материала, то можно использовать пластиковый сцинтилляционный детектор в многоканальном спектрометре, чтобы быстро определить категорию радиоактивного материала, используя характеристики пластикового сцинтиллятора. Таким образом, все, что требуется, - это обеспечить систему обнаружения радиации, используя многоканальный спектрометр, содержащий пластиковый сцинтиллятор, чтобы быстро определить категорию радиоактивного материала.
Краткое описание изобретения
Целью настоящего изобретения является обеспечение системы обнаружения радиации, используя многоканальный спектрометр, способный к быстрому определению диапазона энергий источника гамма-излучения, чтобы определить категорию радиоактивного материала, и способа для достижения этой цели.
Согласно одной цели настоящего изобретения обеспечивается устройство обработки данных для обработки опорного фонового спектра и спектра измерений радиоактивного материала, представленного многоканальным спектром, чтобы получить информацию о диапазоне энергий обнаруженных гамма-лучей, при этом указанное устройство обработки содержит: средство разделения диапазона энергий для вырождения указанного многоканального спектра в вырожденный спектр ограниченных каналов, при этом каждый вырожденный спектр представляет диапазон энергии; средство вычисления вырожденного спектра для вычисления фонового вырожденного спектра и измерения вырожденного спектра на основе указанного фонового спектра и указанного спектра измерений, соответствующего указанному вырожденному спектру ограниченных каналов, соответственно; средство вычисления коэффициента использования энергии для вычисления коэффициента использования энергии на основе расчетного фонового вырожденного спектра и измерения вырожденного спектра; средство определения пикового значения, чтобы найти пиковое значение в расчетных коэффициентах использования энергии; поиск информации о коэффициенте использования энергии для определения соответствующего диапазона энергий указанных гамма-лучей на основе найденного пикового значении в коэффициентах использования энергии.
Согласно еще одной цели настоящего изобретения обеспечивается радиационный способ обнаружения для обработки опорного фонового спектра и спектра измерений радиоактивного материала, представленного многоканальным спектром, при этом указанный способ содержит следующие стадии: преобразование указанного многоканального спектра в вырожденный спектр ограниченных каналов, при этом каждый вырожденный спектр представляет спектр энергии; вычисление фонового вырожденного спектра, соответствующего указанному вырожденному спектру, на основе указанного фонового спектра; вычисление вырожденного спектра измерений, соответствующего указанному вырожденному спектру, на основе указанного спектра измерений; вычисление коэффициента использования энергии на основе расчетного фонового вырожденного спектра и вырожденного спектра измерений; поиск пикового значения в расчетном коэффициенте использования энергии измерения; определение соответствующего диапазона энергий указанных гамма-лучей на основе найденного пикового значения коэффициента использования энергии измерения.
Согласно еще одной цели изобретения также обеспечивается система обнаружения радиации, содержащая многоканальный спектрометр, используемый для формирования опорного фонового спектра и спектра измерений радиоактивного материала, представленного многоканальным спектром; и устройство обработки данных, как указано выше, для обработки опорного фонового спектра и спектра измерений обнаруженного объекта, чтобы определить диапазон энергий лучей обнаруженного объекта.
Система обнаружения радиации и способ согласно этому изобретению могут быстро определить диапазон энергии обнаруженных источников гамма-лучей и категорию радиоактивного материала, отличить опасные источники от ежедневных используемых источников для медицинских целей, в значительной степени уменьшить рабочую нагрузку лаборантов и повысить эффективность системы обнаружения радиации.
Кроме того, настоящее изобретение обеспечивает новое устройство обработки данных, позволяющее улучшить существующую систему обнаружения радиации без реальной модификации аппаратных средств существующей системы обнаружения радиации, обладая такими характеристиками, как простая конструкция, хорошая совместимость, широкий диапазон адаптации, отсутствие сложного оборудования, низкая стоимость эксплуатации и пригодность для всех областей техники в области изготовления и разработки многоканальных приборов для обнаружения радиации.
Система и способ обнаружения радиации согласно настоящему изобретению подходят для любых мест, где требуются контроль и управление радиоактивными материалами, такие как таможенные дворы, лаборатории ядерных исследований, атомные электростанции, хранилища или склады для ядерных отходов, больницы, изготовители оружия и т.д.
Краткое описание чертежей
Эти и другие цели системы обнаружения радиации и способа согласно настоящему изобретению станут понятными при чтении описания предпочтительных примеров воплощения изобретения со ссылками на приложенные чертежи, на которых:
Фигура 1 - блок-схема системы обнаружения радиации согласно одному примеру воплощения настоящего изобретения;
Фигура 2 - блок-схема устройства обработки данных в системе обнаружения радиации согласно другому примеру воплощения настоящего изобретения;
Фигура 3 - технологическая схема способа обнаружения радиации согласно воплощениям настоящего изобретения.
Описание примера осуществления изобретения
На фигуре 1 представлена система обнаружения радиации 100 согласно одному воплощению настоящего изобретения. Система обнаружения радиации 100 содержит многоканальный спектрометр 101 и устройство обработки данных 102. Многоканальный спектрометр 101 является обычным многоканальным спектрометром, содержащим сцинтиллятор 111, фотоумножитель 112, усилитель 113 и многоканальный анализатор 114. Многоканальный спектрометр 101 получает информацию о многоканальном спектре гамма-лучей, падающих на спектрометр, и может выполнить калибровку по энергии указанного многоканального спектрометра посредством стандартного источника радиоактивного излучения, чтобы получить параметры калибровки по энергии. В одном предпочтительном варианте калибровка по энергии указанного многоканального спектрометра с помощью стандартного источника радиоактивного излучения может быть выражена как:
Ei=A·i+B, i=1, 2, 3, …, I,
в котором Ei представляет энергию i-канала, А и В представляют коэффициенты калибровки. Калибровка по энергии выполняется с помощью стандартного источника радиоактивного излучения с тем, чтобы получить коэффициенты калибровки А и В указанного многоканального спектра и сохранить эти коэффициенты калибровки для последующего использования, например для использования во время калибровки фонового спектра и спектра измерений и для использования в устройстве обработки данных 102.
Сцинтиллятор 111 предпочтительно является пластиковым сцинтиллятором, поскольку система обнаружения радиации 100 согласно воплощению настоящего изобретения используется для быстрого установления различия по существу в диапазоне энергий радиоактивного материала и категории радиоактивного материала, в то время как система обнаружения радиации 100, не предназначенная для точного определения радиоактивного материала, может с успехом использовать преимущества таких характеристик кристалла пластикового сцинтиллятора, как большой объем, высокая эффективность обнаружения лучей, широкий диапазон перекрытия спектра, доступная цена при отсутствии недостатка малой энергетической разрешающей способности на гамма-лучах.
Фотоумножитель 112 и усилитель 113 выполняют те же функции, которые они выполняют в обычном многоканальном спектрометре. В данных примерах воплощения высокое напряжение фотоумножителя 112 и усиление усилителя 113 отрегулированы таким образом, что динамический диапазон энергии, измеренной системой обнаружения 100, охватывает диапазон энергии представляющего интерес источника, а именно покрывает диапазон энергии радиоактивного материала порядка 0,03-3 МэВ.
Функция многоканального анализатора 114, в основном, также аналогична функции многоканального анализатора в обычном многоканальном спектрометре, в котором калибровка по энергии многоканального анализатора с помощью стандартного источника радиоактивного излучения выполняется, главным образом, в многоканальном анализаторе 114, чтобы получить и сохранить параметры калибровки по энергии А и В. Кроме того, многоканальный анализатор 114 дополнительно выполняет калибровку по энергии фонового спектра D и спектра измерений d с помощью параметров калибровки по энергии, чтобы получить значение Di, представляющее i-канал фонового спектра, и di, представляющее i-канал спектра измерений. Могут использоваться различные способы, известные в данной области техники, для выполнения калибровки по энергии и выполнения калибровки фонового спектра D и спектра измерений d. После того как многоканальный анализатор 114 выдаст такую информацию, как калибровка фонового спектра Di и спектра измерений di и номер канала I, который используется в многоканальном спектрометре, эта информация передается в устройство обработки данных 102 для дальнейшей обработки.
Устройство обработки данных 102 получает различную информацию, предоставленную многоканальным анализатором 114, преобразует многоканальные спектры в спектры ограниченных номеров канала и, соответственно, преобразует фоновый спектр Di и спектр измерений di в фоновый вырожденный спектр Nj и вырожденный спектр измерений Cj, вычисляет коэффициент использования энергии Hj и выполняет пиковое детектирование указанного коэффициента использования энергии Hj, чтобы найти вырожденный канал h, в котором находится пиковое значение, затем определяет, является ли найденный результат правильным, используя предопределенное пороговое значение, и выводит диапазон энергии, соответствующий указанному вырожденному каналу h, в виде диапазона энергий обнаруженного источника луча, и одновременно выдает данные о категории радиоактивного материала, соответствующего указанному диапазону энергий.
Фигура 2 представляет собой подробную блок-схему устройства обработки данных 102 согласно одному примеру воплощения настоящего изобретения. Устройство обработки данных 102 содержит средство разделения диапазона энергии 201, средство вычисления вырожденного спектра 202, средство вычисления увеличения скорости измерения 203, средство определения пикового значения коэффициента использования энергии 204, средство определения пикового значения 205 и средство вывода 206.
Средство разделения диапазона энергии 201 получает соответствующую информацию от каналов i в многоканальном спектрометре, например общее число I каналов, соответствующий диапазон энергии каждого канала и т.д. в соответствии с определяемыми диапазонами энергий, средство разделения диапазона энергий 201 разделяет диапазоны энергий, охваченные многоканальным спектрометром, на меньшее число представляющих интерес диапазонов энергий. Например, если обнаруженные радиоактивные материалы являются специальными ядерными материалами (энергия его гамма-лучей сконцентрирована в низкоэнергетической области) и в области радиоактивных материалов, используемых в медицине (энергия его гамма-лучей сконцентрирована в среднеэнергетической области), то диапазон энергий, охваченный многоканальным спектрометром, может быть разделен на два диапазона энергии. Если обнаруженные радиоактивные материалы являются специальными ядерными материалами со средней энергией и радиоактивным материалом, используемым в промышленности (энергия его гамма-лучей сконцентрирована в высокоэнергетической области), то диапазон энергий, охваченный многоканальным спектрометром, может быть разделен на три диапазона энергий. Указанные диапазоны энергий, конечно, могут быть дополнительно разделены в зависимости от области применения системы, чтобы дополнительно различить подкатегории в категории специальных ядерных материалов или категории используемого в медицине радиоактивного материала.
Строго говоря, средство разделения диапазона энергий 201 разделяет диапазон энергии на n диапазонов энергий Pj, j=1, 2, 3, … n. Хотя каждый диапазон энергий включает множество каналов i, калибруемых многоканальным спектрометром 101, диапазон энергий указанного множества каналов i идентичен диапазону Pj. Например, Р1=[1, 2, …, Ip1], P2=[Ip1+1, Ip1+2, …, Ip2], …, Pn=[Ipn-1, Ipn-1+2, …, n]. Число каналов, включенных в каждый диапазон энергий Pj, может быть различным.
Средство вычисления вырожденного спектра 202 получает фоновый спектр Di и спектр измерений di, обеспечиваемые многоканальным анализатором 114, и дополнительно получает диапазон энергий Pj, разделенный средством разделения диапазона энергий 201, и, соответственно, преобразует фоновый спектр Di и спектр измерений di в вырожденный фоновый спектр Nj и вырожденный спектр измерений Cj соответственно. Согласно одному предпочтительному примеру настоящего изобретения могут использоваться следующие выражения для вычисления фонового вырожденного спектра Nj и измерительного вырожденного спектра Cj:
Figure 00000001
,
Figure 00000002
.
Средство вычисления коэффициента использования энергии 203 получает фоновый вырожденный спектр Nj и вырожденный спектр измерений Cj, полученные от средства вычисления вырожденного спектра 202, и вычисляет соответствующий коэффициент использования энергии Hj=Cj/Nj.
Средство определения пикового значения коэффициента использования энергии 204 получает коэффициент использования энергии Hj, вычисленный средством вычисления коэффициента использования энергии 203, и определяет диапазон энергии h, где расположен самый высокий пик А среди всех Hj. Строго говоря, средство определения пикового значения коэффициента использования энергии 204 может найти пиковые значения по следующей логике:
А=Н1;
для (j=1; j=n; j++),
если (A=Hj) A=Hj; h=j.
Средство определения пикового значения 205 получает диапазон энергии h самого высокого пика, найденного средством определения пикового значения коэффициента использования энергии 204, получает соответствующий фоновый вырожденный спектр Nh и вырожденный спектр измерений Ch от средства вычисления вырожденного спектра 202 и определяет, отражает ли должным образом найденный диапазон энергии h диапазон энергии рассматриваемого радиоактивного материала в соответствии с предопределенным пороговым условием для Ch=Nh+xisuh·(Nh)1/2. Коэффициент xisuh в указанном предопределенном пороговом условии может быть получен экспериментальным путем или установлен на основании конкретных требований пользователя. Если диапазон энергии h самого высокого пика h удовлетворяет вышеупомянутому предопределенному пороговому условию, то можно считать, что h должным образом отражает диапазон энергии данного радиоактивного материала. После этого средство вывода 206 выводит соответствующую информацию Ph о диапазоне энергии и категории радиоактивного материала, соответствующего диапазону энергии Ph.
Следовательно, категории соответствующих радиоактивных материалов могут постоянно определяться путем измерения гамма-лучей радиоактивных материалов с помощью упомянутой системы обнаружения радиации 100, чтобы постоянно получать спектры измерения и благодаря совместному функционированию вышеупомянутых узлов; кроме того, операции, выполняемые в устройстве обработки данных 102, являются простыми арифметическими операциями. Таким образом, указанная система обнаружения радиации 100 может быстро различить категории радиоактивных материалов.
На фигуре 3 показана блок-схема последовательности технологического процесса радиационного способа обнаружения согласно примеру воплощения настоящего изобретения. Перед началом процесса, показанного на фигуре 3, предполагается, что высокое напряжение фотоумножителя 112 и усиление усилителя 113 в системе обнаружения радиации 100 при использовании этого способа было уже отрегулировано так, что динамический диапазон энергии, измеряемой указанной системой обнаружения 100 диапазонов энергии, охватывает источники, представляющие интерес. Кроме того, также предполагается, что многоканальный спектрометр 101 в системе обнаружения радиации 100 уже выполнил калибровку по энергии с помощью стандартного источника радиоактивного излучения с тем, чтобы получить соответствующие параметры калибровки по энергии, и, таким образом, можно получить нормальный фоновый спектр Di и спектр измерений di. Эти предположения приемлемы, поскольку они обычно используются в обычном многоканальном спектрометре.
На стадии S310 диапазон энергий, охваченный многоканальным спектрометром 101, разделен на небольшое число диапазонов энергии, представляющих интерес. Например, если радиоактивные материалы, подлежащие обнаружению, являются специальными ядерными материалами и радиоактивным материалом, используемым в медицине, то диапазон энергии, охваченный многоканальным спектрометром, может быть разделен на два диапазона энергий. Если радиоактивные материалы, подлежащие обнаружению, являются среднеэнергетическими специальными ядерными материалами, используемыми в промышленности, то диапазон энергии, охваченный многоканальным спектрометром, может быть разделен на три диапазона энергий. Конечно, указанный диапазон энергий может быть разделен по-другому, или разделенные диапазоны энергии могут быть дополнительно разделены в зависимости от области применения системы. Конкретно, диапазон энергии разделен на n диапазонов энергий Pj, j=1, 2, 3, … n. При этом каждый диапазон энергии включает множество каналов I, калиброванных многоканальным спектрометром 101, при диапазоне энергий указанных множественных каналов i идентичен диапазону, включенному в Pj. Например, Р1=[1, 2, …, Ip1], Р2=[Ip1+1, Ip1+2, …, Ip2], …, Pn=[Ipn-1, Ipn-1+2, …, n]. Число каналов, включенных в каждый диапазон энергии Pj, может быть различным.
На стадии S320, соответствующей вырожденным и разделенным диапазонам энергий Pj на стадии S310, нормальный фоновый спектр Di вырождается в фоновый вырожденный спектр Nj, т.е.:
Figure 00000003
.
На стадии S330, соответствующей вырожденным и разделенным диапазонам энергий Pj на стадии S310, нормальный спектр измерения di вырождается в вырожденный спектр измерений Cj, т.е.
Figure 00000002
.
На стадии S340 соответствующий коэффициент использования энергии Hj=Cj/Nj вычисляется с фоновым вырожденным спектром Nj и с вырожденным спектром измерений Cj.
На стадии S350 обнаружения пикового коэффициента использования энергии выполняется операция определения диапазона энергии Ph, где расположен самый высокий пик А среди всех измеренных увеличенных спектров Hj. В деталях, пиковые значения могут быть найдены по следующей логике:
А=Н1;
для (j=1; j=n; j++),
если (A=Hj) A=Hj; h=j.
Затем на стадии S360 определяется, правильно ли найденный диапазон энергии Ph отражает диапазон энергии рассматриваемого радиоактивного материала согласно предопределенному пороговому значению Ch=Nh+xisuh·(Nh)1/2. Коэффициент xisuh в указанном пороговом значении может быть получен экспериментальным путем или основан на требованиях определенного пользователя. Если найдено, что найденный диапазон энергии Ph должным образом отражает диапазон энергии данного радиоактивного материала, то процесс переходит на стадию S370, выдается соответствующий диапазон энергии Ph, так же как и категория радиоактивного материала, соответствующего диапазону энергии Ph. Затем процесс возвращается на стадию S380, и мы получаем новый спектр измерений di для анализа этого нового измерения.
Если определение на стадии S360 терпит неудачу, это доказывает, что никакие аварийные радиоактивные материалы не поступили в измерительную систему, и процесс возвращается на стадию S380 для получения нового спектра измерений di, чтобы проанализировать это новое измерение.
Согласно вышеописанной обработке категории радиоактивных материалов могут быть определены в течение коротко промежутка времени, и, поскольку указанная обработка не относится к конкретным характеристикам определенного радиоактивного материала, здесь не требуется высокоэнергетической разрешающей способности в сцинтилляторе, используемом на переднем конце указанной измерительной системы, так что в этой измерительной системе достаточно использовать в своих интересах такие характеристики кристалла пластического сцинтиллятора, как большой объем, высокая эффективность обнаружения лучей, широкий диапазон перекрытия спектра, доступная цена, без недостатка относительно малой энергетической разрешающей способности на гамма-лучах.
В соответствии с вышеописанным техническим решением все решения в системе обнаружения с многоканальными лучами (рентгеновские лучи, гамма-лучи, заряженные частицы), которые приспособлены к многоканальному (по диапазону энергий) вырождению и идентифицируют области источников энергии на основе коэффициента использования энергии вырожденных каналов, входят в охват правовой защиты настоящего изобретения.
В соответствии с вышеописанным техническим решением все решения в системе обнаружения с многоканальными лучами (рентгеновские лучи, гамма-лучи, заряженные частицы), которые приспособлены к многоканальному (по диапазону энергий) вырождению, используют фоновый спектр, чтобы соответствовать спектру измерения и идентифицировать диапазоны энергий источника лучей, выполняя определение пикового значения остаточного спектра, входят в охват правовой защиты настоящего изобретения.
Следует отметить, что в устройстве обработки данных 102 компоненты логически разделены в зависимости от выполняемых ими функций, но настоящее изобретение этим не ограничивается; соответствующие компоненты в устройстве обработки данных 102 могут быть дополнительно разделены или объединены в зависимости от предъявляемых требований, например некоторые компоненты могут быть объединены в один узел или некоторые компоненты могут быть дополнительно разделены на большее количество субкомпонентов.
Следует также отметить, что вышеописанные примеры воплощения просто иллюстрируют настоящее изобретение и не ограничивают его объем; специалистами в данной области техники могут быть разработаны другие варианты воплощения, не выходящие из объема изобретения, определенного формулой изобретения. Слово "включает" не исключает элементы или стадии, которые имеют место, но не содержатся в формуле изобретения. Артикль единственного числа "а" или "an" в английском тексте не исключает наличия множества таких элементов. Это изобретение может быть осуществлено с помощью аппаратных средств, включая несколько различных элементов, или с помощью компьютера, запрограммированного соответствующим образом. В пунктах патентования, которые перечисляют несколько средств, некоторые из них могут быть включены в объем одного и того же аппаратного элемента. Использование таких слов, как первый, второй, третий, не представляет какого-либо порядка, который может быть просто объяснен как название.

Claims (9)

1. Устройство для обработки данных, для обработки опорного фонового спектра и спектра измерений радиоактивного материала, для получения информации о диапазоне энергии обнаруженных лучей, в котором опорный фоновый спектр и спектр измерений радиоактивного материала представлены многоканальным спектром, и содержащее:
средства для разделения диапазона энергий, используемые для разделения указанного многоканального спектра в вырожденный спектр ограниченных каналов, причем каждый из ограниченных каналов содержит множество каналов указанного многоканального спектра и каждый из ограниченных каналов представляет диапазон энергии;
средства вычисления вырожденного спектра для вычисления фонового вырожденного спектра и вырожденного спектра измерений на основе указанного фонового спектра и указанного спектра измерений, соответствующего указанному вырожденному спектру ограниченных каналов соответственно;
средства вычисления коэффициента использования энергии для вычисления коэффициента использования энергии на основе расчетного фонового вырожденного спектра и вырожденного спектра измерений;
средства обнаружения пика для поиска пикового значения в расчетных коэффициентах использования энергии;
средства для получения информации для определения соответствующей области энергии указанных гамма-лучей на основе найденного пикового значения в коэффициентах использования энергии.
2. Устройство обработки данных по п.1, дополнительно содержащие средства вывода для вывода категории указанного радиоактивного материала, соответствующего определенному диапазону энергии.
3. Система обнаружения радиации, содержащая:
многоканальный спектрометр, используемый для формирования опорного фонового спектра и спектра измерения радиоактивного материала; и
устройство обработки данных по п.1 или 2, используемое для обработки опорного фонового спектра и спектра измерения обнаруженного объекта, чтобы определить диапазон энергии гамма-лучей обнаруженного объекта.
4. Система обнаружения радиации по п.3, в которой указанный многоканальный спектрометр содержит сцинтиллятор, фотоумножитель, усилитель и многоканальный анализатор, при этом высокое напряжение фотоумножителя 112 и усиление усилителя 113 отрегулированы таким образом, что динамический диапазон энергии, измеренной системой обнаружения, покрывает диапазон энергии радиоактивного материала.
5. Система обнаружения радиации по п.3, в которой сцинтиллятор в указанном многоканальном спектрометре представляет собой пластиковый сцинтиллятор.
6. Способ обнаружения радиации путем обработки фонового спектра и спектра измерений радиоактивного материала, при этом опорный фоновый спектр и спектр измерений радиоактивного материала представлены многоканальным спектром, и указанный способ содержит следующие стадии:
разделение указанного многоканального спектра в вырожденный спектр ограниченных каналов, причем каждый из ограниченных каналов, содержит множество каналов указанного многоканального спектра и каждый из ограниченных каналов представляет диапазон энергии;
вычисление фонового вырожденного спектра, соответствующего указанному вырожденному спектру, на основе указанного фонового спектра;
вычисление вырожденного спектра измерений, соответствующего указанному вырожденному спектру, на основе указанного спектра измерений;
вычисление коэффициента использования энергии на основе расчетного фонового вырожденного спектра и вырожденного спектра измерений;
обнаружение пика для поиска пикового значения в расчетных коэффициентах использования энергии;
определение соответствующей области энергии указанных гамма-лучей на основе найденного пикового значения в коэффициентах использования энергии.
7. Способ обнаружения радиации по п.6, дополнительно содержащий стадию вывода категории указанного радиоактивного материала, соответствующего определенному диапазону энергии.
8. Способ обнаружения радиации по п.6 или 7, в котором многоканальный спектрометр выполнен с возможностью обеспечения опорного фонового спектра и спектра измерений радиоактивного материала, представленного многоканальным спектром, а многоканальный спектрометр содержит сцинтиллятор, фотоумножитель, усилитель и многоканальный анализатор, при этом способ дополнительно содержит стадию регулирования высокого напряжения фотоумножителя и усиления усилителя таким образом, что динамический диапазон энергии, измеренный системой обнаружения радиации, покрывает диапазон энергии радиоактивного материала.
9. Способ обнаружения радиации по п.8, в котором сцинтиллятор в указанном многоканальном спектрометре представляет собой пластиковый сцинтиллятор.
RU2008149051/28A 2007-12-29 2008-12-12 Способ и система обнаружения радиации с использованием многоканального спектрометра и устройство для обработки данных RU2417386C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710308549.7 2007-12-29
CN2007103085497A CN101470206B (zh) 2007-12-29 2007-12-29 利用多道谱仪的放射性物质探测系统及其方法

Publications (2)

Publication Number Publication Date
RU2008149051A RU2008149051A (ru) 2010-06-20
RU2417386C2 true RU2417386C2 (ru) 2011-04-27

Family

ID=40343862

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008149051/28A RU2417386C2 (ru) 2007-12-29 2008-12-12 Способ и система обнаружения радиации с использованием многоканального спектрометра и устройство для обработки данных

Country Status (5)

Country Link
US (1) US7947957B2 (ru)
CN (1) CN101470206B (ru)
DE (1) DE102008064558A1 (ru)
GB (1) GB2455906B (ru)
RU (1) RU2417386C2 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027463A (ja) * 2009-07-22 2011-02-10 Okayama Univ 発ガン性診断システム
US9564977B2 (en) 2010-07-16 2017-02-07 Vital Alert Communication Inc. Portable through-the-earth radio
TWI495896B (zh) * 2011-04-19 2015-08-11 Iner Aec Executive Yuan 碘化鈉偵檢器量測所得能譜之活度計算方法
CN102353972B (zh) * 2011-07-01 2013-04-10 成都理工大学 多种模式的数字化多道谱仪
CN103135124A (zh) * 2011-11-25 2013-06-05 中国原子能科学研究院 用于内照射活体测量的便携式测量系统
FR2985033B1 (fr) * 2011-12-23 2014-09-19 Accumulateurs Fixes Methode de determination d'un parametre d'etat d'un element electrochimique par impedance complexe aux frequences radioelectriques
GB2504469A (en) * 2012-07-27 2014-02-05 Symetrica Ltd Gamma Ray Spectrometry Stabilization
CN103076622B (zh) * 2012-10-31 2016-08-17 成都理工大学 一种稳谱用随机信号的产生方法
US10132943B2 (en) 2013-01-22 2018-11-20 Passport Systems, Inc. Spectral segmentation for optimized sensitivity and computation in advanced radiation detectors
CN105093253A (zh) * 2014-05-09 2015-11-25 苏州瑞派宁科技有限公司 一种核雾霾测量装置及方法
CN105182399B (zh) * 2015-07-27 2017-11-07 江苏赛诺格兰医疗科技有限公司 一种正电子断层扫描探测器在线实时校正方法
CN105496432A (zh) * 2015-11-24 2016-04-20 中国原子能科学研究院 一种用于内照射测量的反宇宙射线系统及反符合方法
CN106932812A (zh) * 2015-12-30 2017-07-07 核工业北京地质研究院 一种旋进钻孔式活性炭包伽玛能谱测氡方法
CN108241091B (zh) * 2016-12-27 2021-09-03 北京普源精电科技有限公司 利用频谱仪进行2fsk信号峰值搜索的方法及频谱仪
CN108152845B (zh) * 2017-12-14 2020-02-11 中国计量科学研究院 基于脉冲高度谱的空气吸收剂量率测量方法
CN108490479B (zh) * 2018-02-09 2020-03-27 张岚 一种测试放射性核素的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795768A (fr) * 1972-02-23 1973-06-18 Euratom Appareil pour la mesure et l'interpretation des pointes d'un signal comportant un fond de bruit
US4346590A (en) * 1980-09-02 1982-08-31 Texaco Inc. Gain stabilization for radioactivity well logging apparatus
JPS61287380A (ja) * 1985-06-13 1986-12-17 Fuji Photo Film Co Ltd 放射線画像情報読取方法
GB0117705D0 (en) 2001-07-20 2001-09-12 Harwell Instr Ltd Air monitor
GB2424065A (en) 2005-03-11 2006-09-13 Corus Uk Ltd Radiation detection apparatus
RU2300782C2 (ru) 2005-08-08 2007-06-10 Государственное общеобразовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ" Сцинтилляционный детектор нейтронов
CN1932474A (zh) * 2006-07-31 2007-03-21 成都理工大学 考古用同位素密度成像仪
CN101210971A (zh) * 2006-12-31 2008-07-02 同方威视技术股份有限公司 一种放射性物质射线能区识别方法及射线能区探测系统

Also Published As

Publication number Publication date
US20090166542A1 (en) 2009-07-02
CN101470206B (zh) 2011-10-05
GB2455906B (en) 2012-06-27
DE102008064558A1 (de) 2009-07-16
CN101470206A (zh) 2009-07-01
US7947957B2 (en) 2011-05-24
GB2455906A (en) 2009-07-01
RU2008149051A (ru) 2010-06-20
GB0823148D0 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
RU2417386C2 (ru) Способ и система обнаружения радиации с использованием многоканального спектрометра и устройство для обработки данных
US8084748B2 (en) Radioactive material detecting and identifying device and method
US7456405B1 (en) Portable radiation monitor methods and apparatus
JP7026443B2 (ja) 放射性ダストモニタ
Marrodán Undagoitia et al. Fluorescence decay-time constants in organic liquid scintillators
US8946648B2 (en) Dual range digital nuclear spectrometer
US9817135B2 (en) Performance stabilization for scintillator-based radiation detectors
KR20080015497A (ko) 방사성 핵종별 선량률 측정이 가능한 환경방사능감시시스템
JP2013228285A (ja) 線量率測定装置
CN116381772A (zh) 一种用于剂量率仪的实时能量响应校正方法、系统及终端
Favalli et al. Delayed gamma-ray spectroscopy with lanthanum bromide detector for non-destructive assay of nuclear material
CN110988967A (zh) 环境X、γ辐射探测器剂量率量程的扩展方法
KR102280128B1 (ko) 방사성 핵종 판별 장치 및 방법
Priester et al. Tritium activity measurements with a photomultiplier in liquids–The TRAMPEL Experiment
US20180336976A1 (en) Scintillator-based neutron and gamma-ray dosimeter
Alharbi Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors
Bocci et al. A low cost network of spectrometer radiation detectors based on the ArduSiPM a compact transportable Software/Hardware Data Acquisition system with Arduino DUE
RU2751458C1 (ru) Способ измерения интенсивности радиационного излучения неизвестного состава
KR102313427B1 (ko) 방사성 핵종 검출 장치 및 방법
Mitev et al. Design and tests of a detector for 222 Rn in soil-gas measurements based on 222 Rn absorbing scintillating polymers
KR101192175B1 (ko) 감마선 섬광 계수기의 에너지 교정 방법
KR102644122B1 (ko) 핵종판별을 위한 방사선 스펙트럼의 온도보상방법
JP2012103179A (ja) 放射線検出装置及びその方法
US20200166655A1 (en) Scintillator-Based Neutron And Gamma-Ray Dosimeter
Rozhdestvenskyy Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors