RU2412292C2 - Способ обработки ткани - Google Patents

Способ обработки ткани Download PDF

Info

Publication number
RU2412292C2
RU2412292C2 RU2009100146/05A RU2009100146A RU2412292C2 RU 2412292 C2 RU2412292 C2 RU 2412292C2 RU 2009100146/05 A RU2009100146/05 A RU 2009100146/05A RU 2009100146 A RU2009100146 A RU 2009100146A RU 2412292 C2 RU2412292 C2 RU 2412292C2
Authority
RU
Russia
Prior art keywords
nanoparticles
fabric
solution
carbon
precious
Prior art date
Application number
RU2009100146/05A
Other languages
English (en)
Other versions
RU2009100146A (ru
Inventor
Тахир Хусанович Холматов (RU)
Тахир Хусанович Холматов
Original Assignee
Тахир Хусанович Холматов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тахир Хусанович Холматов filed Critical Тахир Хусанович Холматов
Priority to RU2009100146/05A priority Critical patent/RU2412292C2/ru
Publication of RU2009100146A publication Critical patent/RU2009100146A/ru
Application granted granted Critical
Publication of RU2412292C2 publication Critical patent/RU2412292C2/ru

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/003Treatment with radio-waves or microwaves
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Изобретение относится к технологии модификации тканей за счет введения наночастиц благородных металлов и/или драгоценных или полудрагоценных минералов и может быть использовано в легкой промышленности. Ткань помещают в раствор, содержащий наночастицы углерода, и подвергают его воздействию ультразвуком. В раствор также дополнительно вводят наночастицы благородных металлов и/или наночастицы драгоценных или полудрагоценных минералов. Во время или после воздействия ультразвука осуществляют СВЧ воздействие. Дополнительно возможно лазерное облучение импульсами различной длительности и импульсивности по всей поверхности ткани. Далее производят сушку ткани. Такая обработка повышает потребительские и эксплуатационные свойства ткани, ее внешний вид. 11 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области легкой промышленности и предназначено для обработки ткани с целью изменения ее качеств и свойств.
Известен способ производства волокна. Сущность способа заключается в том, что предварительно выполняют измельчение минерала пинакоидной кристаллической формы, а затем его тонкое измельчение и смешение с полимером. Далее из полученной смеси порошкообразного минерала с полимером прядут волокно [Патент РФ №2208069, МПК(7) D01F 9/18].
Известный способ является простым и эффективным, однако он не обеспечивает обработку ткани в рулонах.
Также известен способ получения углеродного материала с биоцидными свойствами, модифицированного частицами наносеребра [Патент РФ №2202400, МПК(7) B01J 20|/20]. Для осуществления процесса приготавливают раствор из наночастиц серебра, проводят выдержку углеродного материала в растворе наночастиц серебра. Данный способ является трудоемким, поскольку изготовление модифицирующего раствора требует приготовления специальных растворов, а выдержку углеродного материала в растворе наночастиц серебра проводят в течение 9 часов.
Известен также способ получения ткани из углеродных волокон путем непрерывной карбонизации ткани из целлюлозных волокон [Патент РФ №2257429, МПК(7) D01F 9/16]. В этом способе, с целью снижения температуры нагрева, ткань, непрерывно проходящую в камере карбонизации, подвергают термообработке, включающей нагревание ткани на начальном этапе до температуры 250-350 град. с некоторой средней скоростью 10-60 град/мин, дальнейшее увеличение температуры до 350-500 град. с меньшей скоростью 2-10 град/мин, а на третьем, заключительном, этапе повышают температуру ткани до 500-750 град. с третьей средней скоростью, которая составляет от 5 до 40 град/мин. При использовании данного способа применяется ткань из целлюлозных волокон (возможно использование вискозных волокон). После непрерывной карбонизации ткани в камере, в которой попутно удаляется вовне газовая фаза от переработанной целлюлозы, получается ткань из углеродных волокон. Недостаток известного решения можно усмотреть в ограниченном использовании видов обработанных тканей (целлюлоза или вискоза), а также в невозможности получения дополнительных свойств, одновременно как декоративных, так и обладающих рядом технических характеристик.
Задача, на решение которой направлено настоящее изобретение, состоит в обеспечении процесса обработки ткани в растворе, содержащем наночастицы углерода и дополнительно вводимые наночастицы, такие как наночастицы благородных металлов. Кроме этого, в раствор также могут быть введены наночастицы драгоценных или полудрагоценных минералов.
Технический результат - обеспечение декоративных свойств обрабатываемых тканей и расширение их технических характеристик.
Указанный технический результат в способе обработки ткани, заключающемся в том, что используют раствор с наночастицами углерода, в который помещают ткань и подвергают воздействию ультразвуком, и с наночастицами благородных металлов и/или с наночастицами драгоценных или полудрагоценных минералов, и осуществляют СВЧ воздействие и ее последующую сушку.
Кроме того, для данного изобретения возможны частные случаи выполнения или использования совокупности признаков, отраженных в независимом пункте, которые состоят в том, что:
- наночастицы благородных металлов и/или наночастицы драгоценных или полудрагоценных минералов добавляют в раствор с наночастицами углерода, а СВЧ воздействие осуществляют одновременно или после воздействия ультразвуком;
- обработку ткани в растворе с наночастицами благородных металлов и/или наночастицами драгоценных или полудрагоценных минералов осуществляют изолированно и последовательно во времени от обработки ткани в растворе с наночастицами углерода;
- в качестве благородных металлов используют, например, наночастицы золота, и/или серебра, и/или платины;
- в качестве драгоценных или полудрагоценных минералов используют, наночастицы, например, алмаза, и/или рубина, и/или сапфира, и/или малахита;
- используют наночастицы углерода с различными модификациями;
- в качестве модификации наночастиц углерода используют шаровые виды;
- в качестве модификации наночастиц углерода используют пористые трубки;
- в качестве модификации наночастиц углерода используют наночастицы цилиндрического вида;
- используют различную степень пористости наночастиц углерода;
- дополнительно осуществляют лазерное воздействие, которое выполняют импульсами различной длительности и интенсивности по всей поверхности обрабатываемой ткани;
- с целью усиления свойств обрабатываемой ткани, увеличения толщины и комбинации свойств после сушки ткани от предыдущей обработки проводят ее повторную или неоднократную обработку.
Реализация способа может быть осуществлена на установке, изображенной на чертеже и содержащей ванну 1 с крышкой 2, внешние валы 3 и 4. В ванне 1 установлены внутренние валы 5 и 6, а также ультразвуковая установка 7, за которой, по ходу перемещения обрабатываемой ткани, расположена СВЧ установка 8. Над ванной 1 установлена лазерная установка 9, управляемая сканирующим приводом 10.
Обрабатываемая ткань 11 от накопителя (на чертеже не изображен) с внешнего вала 3 направляется в ванну 1. Далее ткань 11 в процесс ее обработки проходит над ультразвуковой установкой 7 и СВЧ установкой 8 вдоль внутренних валов 5 и 6 и направляется к внешнему валу 4, с которого поступает в сушильную камеру (на чертеже не изображена).
В качестве обрабатываемой ткани могут использоваться хлопчатобумажные, льняные, шерстяные, шелковые ткани, как натуральные, так и искусственные, а также синтетические ткани, нетканые материалы, находящиеся, предпочтительно, в рулоне. Ширина ткани при обработке в ванне 1 может варьироваться от 0,1 до 1-3 м. Также возможна обработка кусков ткани нестандартных размеров.
Подготовительные действия.
Для обработки выбирают нужную ткань. Участок ткани 11 от накопителя и с вала 3 заводят в ванну 1, проводят вдоль валов 5 и 6 и выводят на вал 7, а далее направляют в сушильную камеру, фиксируя ткань, например, на тянущем барабане (на чертеже не изображен).
Ванну 1 заполняют раствором 12, основу которого составляет предварительно очищенная вода или дистиллят. Начальная температура воды 20-25 град.С. В раствор 12 вводят наночастицы углерода. Размеры таких наночастиц и их структуру выбирают в зависимости от вида ткани 11, а также с учетом достижения требуемого технического результата. Диапазон наночастиц выбирается в пределах от 10 до 200 нм.
Такие размеры обеспечивают, во-первых, их равномерное распределение по объему раствора 12 на все время процесса, которое к тому же усиливается действием ультразвуковой установки 7.
Во-вторых, большое значение имеет соотношение между размерами полостей в структуре обрабатываемой ткани 11 и размерами применяемых в растворе наночастиц углерода. Так, если размеры полостей структуры ткани 11 больше размеров применяемых в растворе наночастиц углерода, то в этом случае происходит более надежное проникновение таких наночастиц в структуры ткани 11, что приводит к усилению сцепляемости наночастиц углерода с тканью 11.
Также могут быть использованы всевозможные модификации наночастиц углерода кластерного типа с различной степенью вида пористости. Так в качестве модификации наночастиц углерода могут быть использованы, например, шаровые виды. Они используются для тканей с полостями «гнездового» типа. Это приводит к общему усилению прочностных характеристик ткани и, в частности, к усилению электропроводных, бактерицидных и пожаробезопасных свойств. В качестве примера можно привести ткань из шелка, для которого целесообразно использовать минимальный размер наночастиц из вышеуказанного диапазона.
При использовании тканей с волоконной структурой применяют наноструктуры цилиндрического вида или пористые трубки субнанового размера. Обработка приводит к сплетению волокон ткани 11 с элементами указанных наноструктур из раствора 12, что обеспечивает большее усиление прочностных характеристик ткани 11 и ее пожаробезопасных свойств. Работа ультразвуковой установки 7 усиливает процесс диффузии наноструктур цилиндрического вида или пористых трубок углерода в ткань 11, что увеличивает процесс хаотического сплетения волокон ткани 11 и углеродных нанотрубок.
Одним из главных параметров, влияющих на свойства ткани 11, является концентрация наночастиц углерода в растворе. Увеличение концентрации приводит к усилению и появлению новых свойств обработанной ткани, например, экранизации низкочастотных электромагнитных волн и полей.
Диапазон концентрации наночастиц углерода в растворе 12 для заданных видов обработки ткани выбирается в пределах от 5 до 50 г/л. Мощность ультразвуковой установки 7 находится в пределах 200-500 Вт. Нижние пределы используются для растительных тканей, а верхние пределы применяют для искусственных тканей.
Кроме наночастиц углерода, находящихся в растворе 12 в виде нанопорошка, в раствор 12 вводят дополнительно наночастицы благородных металлов, также в виде нанопорошка. Их производят из золота, серебра, платины. Введение их в основу ткани 11 позволяет получить, помимо декоративных качеств, таких как различные цвета - золотистый, золотисто-зеленый, серебристый, изумрудный, и цветовые гаммы, которые зависят в первую очередь от концентрации этих частиц в растворе и сочетания компонентов. Кроме того, у ткани 11 появляются и новые технические свойства, такие как, например, способность экранировать высокочастотные излучения. Также обеспечиваются бактерицидные свойства ткани 11. Концентрацию наночастиц благородных металлов выбирают в диапазоне 0,5-10 мг/л.
Действие СВЧ приводит к нагреванию наночастиц благородных металлов, которые под действием УЗ проплавляют себе проход в толще материала ткани 11 и более интенсивно внедряются в ее структуру. Мощность СВЧ установки 8 в этом случае выбирают минимальной и равной 600 Вт.
В процессе обработки температура раствора 12 будет повышаться вследствие работы установок 7 и 8, что ускоряет процесс, но на качестве обработки ткани 11 это не отражается. Испарение раствора 12 можно компенсировать двумя способами: или добавлением в ванну 1 соответствующего объема воды и необходимого веса нанопродуктов, или добавлением в ванну 1 готового раствора необходимого объема с нанопродуктами. Аналогичным образом можно компенсировать унос раствора 12 с тканью 11 в сушильную камеру.
Отдельно или в сочетании в раствор 12 могут быть введены наночастицы драгоценных или полудрагоценных минералов. Пример таких минералов: алмаз, рубин, сапфир, малахит.
Эти наночастицы при обработке ткани 11 также подвергаются воздействию УЗ источника 7 и СВЧ источника 8. Мощность СВЧ источника 8 для этих наночастиц увеличивают до 900 Вт, поскольку перечисленные минералы менее теплопроводны. Эти минералы, воплощенные в наноструктуре и используемые в растворе 12 по отдельности или в любом сочетании, придают ткани 11 соответствующий цвет и обеспечивают яркие световые эффекты.
У обработанной ткани 11 изменяются не только декоративные свойства, такие как, например, алмазный блеск покрытия, игра света и радужные узоры на поверхности, но и возникают новые технические характеристики, например, снижается теплопроводность. При обработке ткани 11, например, наночастицами алмаза, у нее, кроме декоративного эффекта, проявляется такое качество, как пьезоэффект. Он возникает по следующей причине: наночастицы алмаза, находящиеся в обработанной ткани 11, при нагрузке вырабатывают электрические заряды.
Следует отметить, что обработку ткани 11 в растворе 12 с наночастицами благородных металлов и/или наночастицами драгоценных или полудрагоценных минералов можно осуществлять изолированно и последовательно во времени от обработки ткани 11 в растворе 12 с наночастицами углерода.
Для этого ткань 11, обработанную в растворе с наночастицами углерода, вводят в новую ванну с приготовленным раствором 12 с наночастицами благородных металлов и/или наночастицами драгоценных или полудрагоценных минералов, с соответствующей концентрацией.
Дополнительно, в процессе обработки, можно использовать лазерное воздействие. Такое воздействие выполняется посредством лазерной установки 9, управляемой сканирующим приводом 10 по всей поверхности ткани 11. При этом происходит усиление действия СВЧ установки 8 и формирование наночастиц различных конструкций, например слоистых. Такие частицы, оседая поочередно и внедряясь в структуру ткани 11, создают слой за слоем с заданными техническими параметрами, например, со свойствами фотопроводимости или квантоспинового эффекта.
Параметры лазерной установки 9 выбирают с учетом свойств ткани 11, а также удельной теплоемкости используемых в растворе нанопорошков. Лазерная установка 9 может функционировать как в постоянном, так и в импульсном режиме. Постоянный режим предпочтителен для тканей из материала растительного и животного происхождения, а импульсный режим - для искусственных тканей. Мощность работы лазерной установки 9 в постоянном режиме - до 50 Вт, а в импульсном до 1000 Вт при длительности импульса 0,0001-0,001 сек и при скважности 1:100-1:10000.
Контроль процесса осуществляется как на промежуточной стадии, т.е. после предыдущей обработки, так и по окончании всего процесса, после сушки ткани 11. Проверка может быть визуальной, в частности, с помощью оптических приборов. При этом осматривается равномерность покрытия, заполнение всей поверхности ткани применяемыми наноструктурами, цвет покрытия, сравниваемый со стандартной таблицей, классифицируются получаемые цветовые гаммы. Контролируются и технические характеристики: прочность - на разрывной машине, тепловые и бактерицидные, электромагнитные и фотометрические характеристики исследуют на соответствующих стендах и поводят лабораторные испытания.
Примеры реализации процесса.
Пример 1. Вид ткани: хлопчатобумажная. Используемые наночастицы: углерод и серебро. Концентрация серебра 1,5-2,0 г/л, углерода - 45-55 г/л. Мощность ультразвуковой установки 7 равна 200 Вт. Ткань 11 перемещают со скоростью 3-5 см/сек. СВЧ установка 8 и лазерная установка 9 отключены.
При прохождении тканью 11 ультразвуковой установки 7 наночастицы углерода, а также наночастицы серебра внедряются в ткань 11, равномерно распределяясь в ней. После обработки и проведенной сушки проводят лабораторный контроль на параметры, свидетельствующие о получении бактерицидной ткани.
Пример 2. Вид ткани: искусственная, например лавсан. Используемые наночастицы: углерод и золото. Концентрация в растворе наночастиц золота 0.5-1 г/л, углерода - 50-55 г/л. Лазерная установка 9 отключена. Ультразвуковую установку 7 переводят на мощность 400 Вт. Для СВЧ установки 8 выбирают режим 600 Вт. Скорость перемещения ткани 11, как и в предыдущем примере, - 3-5 см/сек. При движении ткани 11 и в процессе работы ультразвуковой установки 7 наночастицы углерода и золота внедряются в ткань, равномерно распределяются в ней. СВЧ установка 8 обеспечивает оплавление наночастиц золота, которые внедряются в структуру ткани 11. После обработки и проведенной сушки проводят визуальный и лабораторный контроль. Результаты контроля: получена особопрочная бактерицидная и декоративная искусственная ткань.
Пример 3. Вид ткани: искусственная, нетканая. Используемые наночастицы: углерод и минерал, содержащий, например, окись титана. В растворе 12 концентрация минерала - 45-55 г/л, углерода 50-55 г/л. Включают ультразвуковую установку 7, ее мощность 400 Вт, и СВЧ установку 8, мощность которой устанавливают на 200 Вт. Лазерная установка 9 функционирует в режиме постоянного излучения, мощность 30 Вт. Устанавливают скорость перемещения ткани 11 - 3-5 см/сек. При прохождении тканью 11 ультразвуковой установки 7 наночастицы углерода и минерала с окисью титана внедряются в ткань 11 и равномерно распределяются в ней.
После обработки и сушки проводят лабораторный контроль. Результаты контроля: получена особопрочная фотопроводимая ткань. Последняя характеристика обеспечивается за счет свойств окиси титана.
Пример 4. Вид ткани: шерстяная. Наночастицы, используемые в растворе 12: углерод и алмаз. Концентрация алмаза в растворе 12 - 0,05-0,1 г/л, углерода 30-70 г/л. Включают ультразвуковую установку 7, ее мощность до 200 Вт, так как ткань 11 более подвержена диффузии за счет своей рыхлой структуры. СВЧ установка 8 и лазерная установка 9 отключены.
Ткань 11 перемещают со скоростью 1-4 см/сек. При прохождении ультразвуковой установки 7 в нее внедряются наночастицы углерода и алмаза. Под действием ультразвуковой установки 7 наночастицы равномерно распределяются в структуре шерстяной ткани 11. После обработки и сушки проводят визуальный и технический контроль. Результаты контроля: получена упроченная ткань с поверхностью, переливающейся при изменении направления света.
Для усиления свойств обрабатываемой ткани 11, увеличения ее толщины и комбинации свойств, после сушки ткани 11 от предыдущей обработки проводят повторный процесс. Также возможна и неоднократная обработка.
Использование данного способа позволяет получить ткани с декоративными различными свойствами и техническими характеристиками.
Источники информации
1. Патент РФ №2208069, МПК(7) D01F 9/18.
2. Патент РФ №2202400, МПК(7) B01J 20|/20.
3. Патент РФ №2257439, МПК(7) D01F 9/16.

Claims (12)

1. Способ обработки ткани, заключающийся в том, что используют раствор с наночастицами углерода, в который помещают ткань и подвергают воздействию ультразвуком и наночастицами благородных металлов и/или наночастицами драгоценных или полудрагоценных минералов, и осуществляют СВЧ-воздействие и ее последующую сушку.
2. Способ по п.1, отличающийся тем, что наночастицы благородных металлов и/или наночастицы драгоценных или полудрагоценных минералов добавляют в раствор с наночастицами углерода, а СВЧ-воздействие осуществляют одновременно или после воздействия ультразвуком.
3. Способ по п.1, отличающийся тем, что обработку ткани в растворе с наночастицами благородных металлов и/или наночастицами драгоценных или полудрагоценных минералов осуществляют изолированно и последовательно во времени от обработки ткани в растворе с наночастицами углерода.
4. Способ по п.1, отличающийся тем, что в качестве благородных металлов используют, например, наночастицы золота, и/или серебра, и/или платины.
5. Способ по п.1, отличающийся тем, что в качестве драгоценных или полудрагоценных минералов используют наночастицы, например, алмаза, и/или рубина, и/или сапфира, и/или малахита.
6. Способ по п.1, отличающийся тем, что используют наночастицы углерода с различными модификациями.
7. Способ по п.6, отличающийся тем, что в качестве модификации наночастиц углерода используют шаровые виды.
8. Способ по п.6, отличающийся тем, что в качестве модификации наночастиц углерода используют пористые трубки.
9. Способ по п.6, отличающийся тем, что в качестве модификации наночастиц углерода используют модификации цилиндрического вида.
10. Способ по любому из пп.6-9, отличающийся тем, что используют различную степень пористости наночастиц углерода.
11. Способ по п.1, отличающийся тем, что дополнительно осуществляют лазерное воздействие, которое выполняют импульсами различной длительности и интенсивности по всей поверхности обрабатываемой ткани.
12. Способ по п.1 отличающийся тем, что, с целью усиления свойств обрабатываемой ткани, увеличения толщины и комбинации свойств, после сушки ткани от предыдущей обработки проводят ее повторную или неоднократную обработку.
RU2009100146/05A 2009-01-12 2009-01-12 Способ обработки ткани RU2412292C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009100146/05A RU2412292C2 (ru) 2009-01-12 2009-01-12 Способ обработки ткани

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009100146/05A RU2412292C2 (ru) 2009-01-12 2009-01-12 Способ обработки ткани

Publications (2)

Publication Number Publication Date
RU2009100146A RU2009100146A (ru) 2010-07-20
RU2412292C2 true RU2412292C2 (ru) 2011-02-20

Family

ID=42685360

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009100146/05A RU2412292C2 (ru) 2009-01-12 2009-01-12 Способ обработки ткани

Country Status (1)

Country Link
RU (1) RU2412292C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032358A1 (de) * 2015-08-27 2017-03-02 Amperetex Gmbh Verfahren und dazugehörige anlage zur herstellung von leitfähigen fasern und filamenten aus natur- oder kunstfasern
WO2018038627A1 (ru) * 2016-08-24 2018-03-01 Анна Владимировна КАМЛЕР Трехмерный антибактериальный материал, способ его получения (варианты), установка для реализации способа
RU201996U1 (ru) * 2020-02-07 2021-01-26 ООО "Информационно-выставочное агентство "ИнфоМедФарм Диалог" Устройство для нанесения наночастиц на текстиль

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ306261B6 (cs) * 2012-09-26 2016-11-02 Technická univerzita v Liberci Způsob ukotvení nanočástic kovu a/nebo oxidu kovu k textilii z anorganických vláken, textilie z anorganických vláken s ukotvenými nanočásticemi kovu a/nebo oxidu kovu, a vícevrstvý textilní substrát obsahující vrstvu tvořenou touto textilií

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017032358A1 (de) * 2015-08-27 2017-03-02 Amperetex Gmbh Verfahren und dazugehörige anlage zur herstellung von leitfähigen fasern und filamenten aus natur- oder kunstfasern
RU2723118C2 (ru) * 2015-08-27 2020-06-08 Амперетекс Гмбх Способ и оборудование для изготовления токопроводящих волокон и элементарных нитей
WO2018038627A1 (ru) * 2016-08-24 2018-03-01 Анна Владимировна КАМЛЕР Трехмерный антибактериальный материал, способ его получения (варианты), установка для реализации способа
EA036413B1 (ru) * 2016-08-24 2020-11-09 Анна Владимировна КАМЛЕР Трехмерный антибактериальный материал, способ его получения (варианты), установка для реализации способа
RU201996U1 (ru) * 2020-02-07 2021-01-26 ООО "Информационно-выставочное агентство "ИнфоМедФарм Диалог" Устройство для нанесения наночастиц на текстиль

Also Published As

Publication number Publication date
RU2009100146A (ru) 2010-07-20

Similar Documents

Publication Publication Date Title
RU2412292C2 (ru) Способ обработки ткани
Sivan et al. Alternating current electrospinning: The impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers
Zhou et al. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning
CN106069992B (zh) 制备荧光蚕丝纳米碳点或石墨烯量子点添食育蚕法及制品
Khan et al. In situ deposition of TiO 2 nanoparticles on polyester fabric and study of its functional properties
Wang et al. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets
Zhang et al. Lysine-doped polypyrrole/spider silk protein/poly (l-lactic) acid containing nerve growth factor composite fibers for neural application
CN1730803A (zh) 一种纳米功能纺织品整理加工方法
WO2023016142A1 (zh) 一种夜光储能长效光动力抗菌型面料及其制备方法
CN110373892A (zh) 一种石墨烯改性兔毛纤维及其制备方法
Han et al. Butterfly wings as natural photonic crystal scaffolds for controllable assembly of CdS nanoparticles
Ma et al. Preparation and properties of photochromic regenerated silk fibroin/Tungsten trioxide nanoparticles hybrid fibers
Ripoll et al. Cosmeto-textile from formulation to characterization: an overview
CN104018270B (zh) 一种中国书画载体夏布
CN104032511B (zh) 一种将夏布制作成中国书画载体的方法
Yan et al. The unique UV–Vis reflection features of the nacre of Hyriopsis cumingii shells, and its formation mechanisms
RU2552467C1 (ru) Способ модификации текстильных материалов наночастицами металлов
Kaniuk et al. Correlation between porosity and physicochemical and biological properties of electrospinning PLA/PVA membranes for skin regeneration
Lawrynowicz et al. Self-cleaning and UV-blocking cotton–Fabricating effective ZnO structures for photocatalysis
Cai et al. Reactive dyeing of ramie yarn washed by liquid ammonia
Van Hong Thien et al. Wet chemical process to enhance osteoconductivity of electrospun chitosan nanofibers
Huang et al. Effect of polydopamine deposition on wool fibers on the construction of melanin
Hu et al. Ultrasound and microwave technology for flake-TiO2 growth and immobilization on cotton fabrics in micro-dissolution process
Chu et al. Fluorescent silkworm silk prepared via incorporation of green, yellow, red, and near-infrared fluorescent quantum dots
Cheng et al. A low-dosage chemicals, short process alternative approach to reactive dyeing of golden cocoon-like silk fibers with robust color fastness

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130113