RU2412225C2 - Способы и композиции для определения геометрии трещины в подземных пластах - Google Patents

Способы и композиции для определения геометрии трещины в подземных пластах Download PDF

Info

Publication number
RU2412225C2
RU2412225C2 RU2008108807/03A RU2008108807A RU2412225C2 RU 2412225 C2 RU2412225 C2 RU 2412225C2 RU 2008108807/03 A RU2008108807/03 A RU 2008108807/03A RU 2008108807 A RU2008108807 A RU 2008108807A RU 2412225 C2 RU2412225 C2 RU 2412225C2
Authority
RU
Russia
Prior art keywords
radiation
proppant
sensitive material
vanadium
polymerized
Prior art date
Application number
RU2008108807/03A
Other languages
English (en)
Other versions
RU2008108807A (ru
Inventor
Роберт Р. МАКДЭНИЕЛ (US)
Роберт Р. МакДэниел
Скотт М. МАККАРТИ (US)
Скотт М. МАККАРТИ
Майкл СМИТ (US)
Майкл СМИТ
Original Assignee
Хексион Спешелти Кемикалс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хексион Спешелти Кемикалс, Инк. filed Critical Хексион Спешелти Кемикалс, Инк.
Publication of RU2008108807A publication Critical patent/RU2008108807A/ru
Application granted granted Critical
Publication of RU2412225C2 publication Critical patent/RU2412225C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • E21B47/111Locating fluid leaks, intrusions or movements using tracers; using radioactivity using radioactivity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Geophysics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к способам и композициям для определения геометрии трещины в подземных пластах. Способ определения геометрии трещины в подземных пластах предусматривает, что в трещину в пласте помещают расклинивающий агент или рабочую жидкость, которые содержат чувствительный к радиации материал, который содержит порошок, включащий ванадий, имеющий частицы с размером примерно 1-15 мкм, указанный материал является нерадиоактивным до тех пор, пока не будет подвергнут бомбардировке нейтронами во время проведения единственного каротажного прохода; облучают материал нейтронами после его размещения в трещине в пласте; измеряют гамма-излучение, испускаемое им, с получением пиковой радиации, излучаемой им; измеряют фоновую радиацию во время проведения единственного каротажного прохода, затем вычитают фоновую радиацию из указанной радиации пиковой энергии; и определяют высоту трещины в пласте по разности между фоновой радиацией и радиацией пиковой энергии. Расклинивающий агент, включающий основу и покрытие, где основа или покрытие содержат указанный выше материал. Рабочая жидкость, содержащая указанный выше расклинивающий агент. Технический результат - повышение эффективности и экологической безопасности. 4 н. и 15 з.п. ф-лы, 1 табл., 3 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способам и композициям для определения геометрии трещины в подземных пластах.
Уровень техники
Выход углеводородов, таких как газ и нефть, из подземных пластов может быть увеличен путем разрыва пласта с целью стимулирования потока этих углеводородов в пласте. В настоящее время известны различные способы разрыва пласта, например гидравлический разрыв, при котором жидкости, газы и/или их комбинации закачивают в пласт под высоким давлением (обычно вместе с расклинивающими агентами).
Гидравлический разрыв часто используют в промышленности для повышения добычи нефти и природного газа из подземных пластов. Во время операции гидравлического разрыва текучую среду, обычно называемую «подушкой», закачивают в скважину под давлением, достаточным для разрывного вскрытия окружающего скважину пласта. Как только создается трещина, начинают закачивать подушку вместе с фазой суспензии, которая содержит как жидкость, так и расклинивающий агент, до тех пор, пока в трещину вместе с суспензией не будет введен достаточный объем расклинивающего агента. Спустя необходимое время операцию закачки останавливают и, начиная с этого времени, расклинивающий агент будет расклинивать трещину в пласте, предотвращая тем самым ее закупоривание. Благодаря трещине запертые углеводороды приобретают более эффективно проводящий путь к стволу скважины, чем тот, который был до этого, в результате чего дебит скважины повышается. Кроме создания глубоко проникающих трещин операция разрыва полезна также и в том, что она предотвращает повреждение ствола скважины, способствует второстепенным операциям, а также облегчает закачку или удаление пластовой минерализованной воды или производственных отходов.
Во время операции разрыва через пласт распространяются трещины. Распространение этих трещин по вертикали полезно для определения протяженности охваченного трещинами пространства, поскольку оно имеет отношение к продуктивному интервалу. Измерение высоты трещины оказывает операторам хорошую помощь при определении успешности проведенной операции разрыва и в случае необходимости для оптимизации проведения последующих операций на других скважинах месторождения. Кроме того, информация о высоте трещины может помочь в определении причин стимуляционных проблем, таких как пониженные скорости добычи или невыгодные водные фракции. Данные о высоте трещины могут указывать на то, было ли установлено сообщение между продуктивным пластом и прилегающими к нему зонами пласта, продуцирующими воду и неуглеводородные среды. Измерения высоты позволяют также контролировать точность примененных перед эксплуатацией скважины проектных моделирований трещины. Если установлен избыточный рост высоты трещины, это позволит предположить, что длина трещины короче проектного значения.
Как было сказано выше, одной из причин прослеживания распространения трещины по вертикали является опасение того, что возможен разрыв за пределами определенной зоны добычи углеводородов в прилегающую водосборную зону. Если это произойдет, вода потечет в зону добычи углеводородов и в ствол скважины, в результате чего скважина вместо желаемых углеводородов будет выдавать в основном воду. Если при этом все же имеется намерение добывать из этой скважины углеводороды, операторы должны решить серьезную проблему безопасного удаления нежелательной воды. Решение проблем, возникающих из-за разрыва за пределами зоны, увеличивает также эксплуатационные расходы. Вдобавок к этому, если трещина распространяется в прилегающий неуглеводородный пласт, материалы, используемые для сохранения трещины после падения давления флюида, могут быть захоронены на участках за пределами участка продуктивного пласта. Короче говоря, спасти скважину, которая была подвергнута разрыву за пределами зоны добычи углеводородов, является задачей дорогостоящей.
Из-за серьезных проблем, которые могут возникнуть из-за трещин за пределами зоны, желательно определять развитие трещины пласта. Имеется несколько способов и устройств, используемых для прослеживания и оценивания роста трещины в пласте, таких как радиоактивные индикаторы в рабочей жидкости (жидкости для разрыва), температурные диаграммы, скважинные телевизионные камеры, комплекты пассивной акустики и гамма-лучевая регистрация. Большая часть способов позволяет получать некоторые прямые оценки высоты зоны разрыва в скважине.
В одном из способов, применяемых для определения развития высоты трещины в пласте, используется радиоактивный индикатор. В этом способе для создания и распространения трещин в пласт закачивают рабочую жидкость, содержащую радиоактивный индикатор. В случае применения этой радиоактивной жидкости и расклинивающих индикаторов полученные после разрыва диаграммы гамма-каротажа обнаруживают более высокие уровни радиоактивности в местах, где нанесен индикатор, позволяя, таким образом, операторам оценивать развитие трещин.
В другом способе определения высоты разрыва используются температурные диаграммы и диаграммы гамма-каротажа. Температурные диаграммы, полученные до и после стимулирования, сравнивают с целью определения интервала, охлажденного в результате закачки рабочей жидкости, и, таким образом, получают оценку зоны разрыва. Однако такой способ имеет ограничения и неопределенности. Например, температурная диаграмма может оказаться трудной для расшифровки по причине низкотемпературного контраста, обратного потока из пласта до и после обработки или движения флюида снаружи обсадной трубы. Кроме того, применение радиоактивных индикаторов приводит к экологическим проблемам, таким как загрязнение потоков подземных вод и т.п., а потому является нежелательным.
Другие способы оценки геометрии скважины включают применение скважинной телевизионной камеры или применение акустических методов. Применение скважинной телевизионной камеры ограничено тем, что она может применяться для оценки высоты разрыва только в открытых стволах. Кроме того, применение скважинной телевизионной камеры ограничено из-за очень жестких условий по температуре и давлению в более глубоко пробуренных скважинах. Акустические методы затруднены неравномерным скважинным импедансом и/или необходимостью прокачки, в то время как инструмент находится в стволе скважины.
В дополнение к проблемам, связанным с каждым типом прослеживания, существуют и проблемы, неотъемлемо присущие технологии разрыва пласта. Во время операции разрыва рабочую жидкость обычно закачивают в пласт под высоким давлением, чтобы удерживать трещины в открытом состоянии, а для фиксации открытого состояния трещин в рабочую жидкость добавляют повышенное количество песка. Одной из проблем существующей технологии является то, что способы определения того, был ли пласт подвергнут разрыву за пределами продуктивной зоны, основаны на измерениях, производимых после обработки (после того как пласт был подвергнут разрыву). В таких системах проводят операцию разрыва, заканчивают операцию, тестируют скважину и анализируют данные. При этом с существующими системами детектирования ожидание получаемых после разрыва данных может занимать значительное время, вплоть до нескольких дней, что может задерживать операции завершения скважины и повышать расходы на персонал и эксплуатацию скважины.
Другая проблема, связанная с существующим послеоперационным каротажем или измерительными устройствами, состоит в том, что расходы, связанные с прерыванием разрывных работ с целью проведения измерения трещины, не являются ни практически целесообразными, ни осуществимыми. Поскольку при проведении операции разрыва рабочую жидкость закачивают в пласт под высоким давлением, временная остановка закачивания во время операции разрыва приведет к воздействию давления на рабочую жидкость со стороны стенок трещины в пласте. А это может привести к нежелательным результатам, таким как закупоривание трещин и обращение потока жидкости в сторону скважины или накопление в скважине песка. В добавок к этому, после проведения измерений и завершения операции каротажа операторы не могут перезапустить закачивающее оборудование в состоянии операции разрыва, непосредственно перед прерыванием. Вместо этого операторы должны повторять весь процесс разрыва с дополнительными расходами и непредсказуемыми результатами.
Система мониторинга могла бы обратиться к описанным выше проблемам и позволила бы операторам скважины контролировать процесс разрыва, контролировать размеры трещин и эффективно помещать более высокие концентрации рабочих жидкостей в нужный участок пласта. Кроме того, если имеется информация, что трещина близка к тому, чтобы выйти за пределы нужной зоны, операторы могут немедленно прекратить операцию разрыва. При этом анализ проводимой операции позволит оператору определить, когда необходимо закачивать более высокие концентрации расклинивающего агента в зависимости от таких факторов как вертикальная или боковая близость контактов нефти с водой по отношению к стволу скважины, наличие или отсутствие водосборных пластов и изменения по горизонтали физических свойств породы коллектора.
Таким образом, целесообразно контролировать геометрию трещины с использованием методов и композиций, которые недороги, предсказуемы и экологически безопасны.
Раскрытие изобретения
В заявке раскрывается способ, включающий помещение в трещину в пласте расклинивающую и/или рабочую жидкость, которая содержит чувствительный к радиации материал; и облучение чувствительного к радиации материала нейтронами за один каротажный проход; измерение гамма-излучения, испускаемого чувствительным к радиации материалом; вычитание фоновой радиации из радиации с пиковой энергией, излучаемой индием и/или ванадием; и определение высоты трещины в пласте на основе измеренного гамма-излучения.
В заявке раскрывается также расклинивающий агент, содержащий основу и покрытие, расположенное на основе, при этом основа и/или покрытие содержат чувствительный к радиации материал, который содержит индий и/или ванадий.
В заявке раскрывается также композиционный расклинивающий агент, содержащий основу, содержащую органический или неорганический материал, диспергированный в нем наполнитель и чувствительный к радиации материал, содержащий ванадий и/или индий.
Описание чертежей
На фиг.1 показан один примерный вариант осуществления расклинивающего агента, содержащего твердую сердцевину, на которой находится органическое покрытие, которое содержит чувствительный к радиации материал.
На фиг.2 показан другой вариант осуществления расклинивающего агента, содержащего сердцевину, изготовленную из частиц, на которых имеется органическое покрытие, которое включает в себя чувствительный к радиации материал.
На фиг.3 показан еще один вариант осуществления расклинивающего агента, который содержит органический материал, в котором диспергированы наполнитель и чувствительный к радиации материал.
Осуществление изобретения
Следует отметить, что, в соответствии с принципами заявки, выражения «первый, «второй» и т.п.не означают какого-либо порядка или значимости, а скорее используются для того, чтобы отличить один элемент от другого, а артикли «the», «а» и «an» не означают ограничения количества, а скорее означают присутствие по меньшей мере одного из упоминаемых элементов. Далее, все раскрытые в заявке диапазоны включают крайние точки и могут независимо комбинироваться.
В заявке раскрывается способ определения геометрии трещины, в котором используются экологически безопасные материалы. Эти экологически безопасные материалы являются нерадиоактивными до тех пор, пока они не будут подвергнуты бомбардировке нейтронами, и далее будут называться «чувствительными к радиации материалами». В одном из вариантов осуществления способ включает в себя определение геометрии трещины в пласте с использованием элементов-мишеней, которые включают в себя чувствительные к радиации материалы. Чувствительные к радиации материалы имеют короткий период полураспада, который позволяет их успешное применение в пласте, в то же самое время сводя к минимуму какое-либо небезопасное экологическое воздействие: либо в результате работы с ним, либо в результате вытекания расклинивающего агента из скважины после того, как скважина возвращается в режим добычи продукта.
Как было отмечено выше, чувствительными к радиации материалами, как это определено в заявке, являются материалы, которые становятся радиоактивными при бомбардировке нейтронами. Чувствительные к радиации материалы могут успешно вводиться в рабочую жидкость или же они могут составлять часть сердцевины самого расклинивающего агента. Рабочая жидкость или расклинивающий агент, содержащий чувствительный к радиации материал, могут применяться во время операции гидравлического разрыва. Рабочую жидкость и/или расклинивающие агенты, содержащие чувствительные к радиации материалы, закачивают в трещину в процессе создания трещины. После закачки в трещину чувствительные к радиации материалы облучаются нейтронами из источника нейтронов. Излучаемую чувствительными к радиации материалами гамма-излучение детектируют с помощью каротажного прибора. Поскольку чувствительные к радиации материалы имеют короткий период полураспада, эти материалы становятся радиоактивными лишь на короткий период времени. Установление местонахождения гамма-излучения используют для определения местонахождения чувствительных к радиации материалов в трещине и используют также для определения геометрии трещины. В одном из вариантов осуществления местонахождение чувствительных к радиации материалов с успехом используют для определения высоты трещины.
Преимущество настоящего способа состоит в том, что фоновая радиация, полученная во время активации чувствительных к радиации материалов, может быть собрана за один проход и вычтена из радиации с пиковой энергией. Во всех остальных существующих промышленных способах обычно используют два каротажных прохода для определения геометрии трещины пласта. Полученная фоновая радиация включает в себя, как правило, несколько составляющих от ряда источников. Первая составляющая может быть, как правило, получена от природных радиоактивных элементов, таких как уран, калий и/или торий. С течением времени мелкозернистые пласты могут захватывать минералы и текучие среды, содержащие эти природные радиоактивные элементы. Когда чувствительные к радиации материалы в пласте активированы нейтронами, эти природные радиоактивные материалы также будут испускать излучение, которое получают в качестве фоновой радиации.
Вторую составляющую фона получают от радиоактивных индикаторов, которые ранее были помещены в пласт с целью определения высоты трещины. Таким образом, эта вторая составляющая происходит от радиоактивных индикаторов, которые были помещены в пласт в предыдущих попытках, которые предпринимались для определения геометрии трещины. Третьей составляющей фона является составляющая, индуцируемая нейтронной радиацией, которую в настоящем случае используют для активации чувствительных к радиации материалов. Это излучение испускается главным образом алюминием и кремнием, присутствующими в пласте и/или расклинивающем агенте. Фоновое излучение от железа и марганца, используемых в обсадной трубе, также может быть составной частью этой третьей составляющей.
Перед расчетом геометрии трещины желательно удалить из радиации с пиковой энергией все следы фоновой радиации. В одном из вариантов осуществления измерения радиации с пиковой энергией, так же как и измерения фоновой радиации, проводят за один проход. Измерения фоновой радиации вычитают из измерений радиации с пиковой энергией, произведенных за один проход.
Как было отмечено выше, чувствительные к радиации материалы могут помещаться в расклинивающий агент, который вводят в трещину, чтобы поддерживать трещину в открытом состоянии. В одном из вариантов осуществления расклинивающий агент может включать в себя основу, на которой находится покрытие, содержащее чувствительный к радиации материал. В другом варианте осуществления чувствительный к радиации материал может содержаться в основе. Если расклинивающий агент и/или рабочая жидкость содержат чувствительный к радиации материал, в этом случае говорят, что они помечены чувствительным к радиации материалом. Выражение «меченый» в настоящем описании подразумевает, что расклинивающий агент и/или рабочая жидкость включают в себя чувствительные к радиации материалы. Таким образом, если находящееся на основе покрытие содержит чувствительные к радиации материалы, то в этом случае говорят, что расклинивающий агент помечен чувствительным к радиации материалом. Мечение расклинивающих агентов и/или рабочей жидкости чувствительным к радиации материалом позволяет получать отношения фотопиков при активации чувствительного к радиации материала. Отношения фотопиков позволяют измерять высоту по вертикали заполненной расклинивающим агентом трещины.
Обратимся теперь к фиг.1 или фиг.2. Один из типичных вариантов выполнения расклинивающего агента 10 включает в себя основу 2, на которой находится покрытие 4, которое содержит чувствительный к радиации материал 6. Покрытие 4 может содержать органический или неорганический материал. Основа 2 может содержать органический и/или неорганический материал, и/или металл. Покрытие 4 перед его применением в подземной трещине может быть неотвержденным, частично отвержденным или полностью отвержденным. Отверждение может происходить внутри и/или снаружи подземной трещины.
В некоторых случаях покрытие 4 может включать в себя, по желанию, зернистые наполнители или волокнистые наполнители 8. Расклинивающий агент 10 на фиг.1 и 2 содержит металлическую и/или неорганическую основу 2, которая, как правило, включает в себя одну частицу или является агломератом, содержащим множество частиц. Примерами металлов, которые могут быть использованы в основах, являются сплавы с памятью формы. Сплавы с памятью формы обладают «эффектом запоминания формы». Эффект запоминания формы делает возможным переход между двумя кристаллическими состояниями, т.е. из мартенситного состояния в аустенитное состояние и наоборот. Как правило, в низкотемпературном, или мартенситном состоянии сплавы с памятью формы можно пластично деформировать и при воздействии несколько более высокой температурой переводить в аустенитное состояние, возвращая их тем самым к их форме перед деформацией.
Подходящим примером сплава с памятью формы является никелево-титановый сплав типа Nitinol®. Желательно, чтобы сплавы с памятью формы были вспененными. В одном из вариантов осуществления основа, изготовленная из сплава с памятью формы, может быть твердой перед вводом в трещину, но может расширяться с образованием пены после ввода в трещину, температура в которой обычно выше температуры на поверхности. Расширение обеспечивает лучшую проводимость для нефти и газа из трещины.
Примерами неорганических соединений, которые могут быть использованы в основе, являются неорганические оксиды, неорганические карбиды, неорганические гидроксиды, неорганические оксиды с гидроксидными покрытиями, неорганические карбонитриды, неорганические оксинитриды, неорганические бориды, неорганические борокарбиды и т.п., или комбинация, содержащая по меньшей мере одно из указанных выше неорганических материалов. Примерами подходящих неорганических соединений являются оксиды металлов, карбиды металлов, нитриды металлов, гидроксиды металлов, оксиды металлов с гидроксидными покрытиями, карбонитриды металлов, оксинитриды металлов, бориды металлов, борокарбиды металлов, и т.п., или комбинация, содержащая по меньшей мере один из указанных выше неорганических материалов. Металлами, используемыми в указанных выше неорганических материалах, могут быть переходные металлы, щелочные металлы, щелочноземельные металлы и т.п., или комбинация, содержащая по меньшей мере один из указанных выше металлов.
Примеры подходящих неорганических оксидов, которые получают синтетически, включают оксид кремния (SiO2), оксид алюминия (Al2O3), оксид титана (TiO2), оксид циркония (ZrO2), оксид церия (CeO2), оксид марганца (MnO2), оксид цинка (ZnO), оксиды железа (FeO, а-Fe2O3, γ-Fe2O3, Fe3O4 и т.п.), оксид кальция (СаО), диоксид марганца (MnO3 и Mn3O4) или комбинации, содержащие по меньшей мере один из указанных выше неорганических оксидов. Примеры подходящих синтетически получаемых неорганических карбидов включают карбид кремния (TiC), карбид тантала (ТаС), карбид вольфрама (WC), карбид гафния (HfC) и т.п., или комбинацию, содержащую по меньшей мере один из указанных выше карбидов. Примеры подходящих синтетически производимых нитридов включают нитриды кремния (Si3N4), нитрид титана (TiN) и т.п., или комбинацию, содержащую по меньшей мере одно из указанных выше соединений. Типичными неорганическими основами являются те, которые содержат природные или синтетически полученные оксид кремния и/или оксид алюминия.
Примерами подходящих природных или неорганических материалов, которые могут быть использованы в основе, являются кремнезем (песок), эшинит (редкоземельно-иттрий-титан-ниобиевый оксид-гидроксид), анатаз (оксид титана), биндгеймит (свинцово-сурьмяной оксид-гидроксид), биксбиит (марганцево-железный оксид), брукит (оксид титана), хризоберилл (бериллиево-алюминиевый оксид), колумбит (железо-марганцево-ниобиево-танталовый оксид), корунд (оксид алюминия), куприт (оксид меди), еуксенит (редкоземельно-иттриево-ниобиево-танталово-титаниевый оксид), фергусонит (редкоземельно-железо-титаниевый оксид), гаусманнит (оксид марганца), гематит (оксид железа), перовскит (кальциево-титаниевый оксид), периклаз (оксид магония), поликраз (редкоземельно-иттриево-титаниево-ниобиево-танталовый оксид), псевдобрукит (железо-титаниевый оксид), члены пирохлоровой группы, такие как, например, бетафит (редкоземельно-кальциево-натриево-ураниево-титаниево-ниобинево-танталовый оксид-гидроксид), микролит (кальциево-натриево-танталовый оксид-гидроксид-фторид), пирохлор (натриево-кальциево-ниобиевый оксид-гидроксид-фторид) и т.п., или комбинация, содержащая по меньшей мере один из указанных выше членов пирохлоровой группы; рамсделлит (оксид марганца), романешит (водный бариево-марганцевый оксид), члены группы рутила, такие, например, как касситерит (оксид олова), платтнерит (оксид свинца), пиролюзит (оксид марганца), рутил (оксид титана), стишовит (оксид кремния) и т.п., или комбинация, содержащая по меньшей мере один из указанных выше членов группы рутила; самарскит (Y) (редкоземельно-иттриево-железо-титаниевый оксид), сенармонтит (оксид сурьмы), члены шпинельной группы, такие как хромит (железо-хромовый оксид), франклинит (цинково-марганцево-железный оксид), ганит (цинково-алюминиевый оксид), магнезиохромит (магниево-хромовый оксид), магнетит (оксид железа) и шпинель (магниево-алюминиевый оксид) и т.п., или комбинация, содержащая по меньшей мере один из указанных выше членов шпинельной группы; тааффеит (бериллиево-магниево-алюминиевый оксид), танталит (железо-магниево-танталово-ниобиевый оксид), тапиолит (железо-магниево-танталово-ниобиевый оксид), уранинит (оксид урана), валентинит (оксид сурьмы), цинкит (пинково-магниевый оксид), гидроксиды такие, например, как брусит (гидроксид магния), гиббсит (гидроксид алюминия), гоетит (оксид-гидроксид железа), лимонит (водный оксид-гидроксид железа), манганит (оксид-гидроксид марганца), псиломелан (бариево-марганцевый оксид-гидроксид), ромеит (кальциево-натриево-железо-марганцево-сурьмяно-титановый оксид-гидроксид), стетефельдит (серебряно-сурьмяный оксид-гидроксид), стибиконит (оксид-гидроксид сурьмы) и т.п., или комбинация, содержащая по меньшей мере один из указанных выше природных неорганических материалов).
В качестве основы могут быть также использованы природные органические и неорганические материалы, которые впоследствии модифицируются. Подходящими примерами органических и неорганических материалов, которые модифицируются и используются в основе, являются расслоенные глины (например, вспученный вермикулит), расслоенный графит, выдувное стекло или кремнезем, полые стеклянные сферы, вспененные стеклянные сферы, ценосферы, вспененный шлак, спеченный боксит, спеченный глинозем и т.п., или комбинация, содержащая по меньшей мере один из указанных выше органических и неорганических материалов. Типичные неорганические основы могут быть получены из песка, размолотых стеклянных бусин, спеченного боксита, спеченного глинозема, природных минеральных волокон таких как циркон и муллит и т.п., или из комбинации, содержащей по меньшей мере одну из природных неорганических основ. Полые стеклянные сферы могут быть приобретены от фирмы Diversified Industries Ltd.
Используемыми в основе органическими материалами могут быть термопластичные полимеры, термореактивные полимеры или комбинация, включающая термореактивный полимер и термопластичный полимер. Примерами подходящих органических материалов, которые могут быть использованы в качестве основы, являются предшественники полимеров (например, низкомолекулярные соединения, такие как мономеры, димеры, тримеры и т.д.), олигомеры, полимеры, сополимеры, такие как блок-сополимеры, звездчатые блок-сополимеры, тройные сополимеры, статистические сополимеры, чередующиеся сополимеры, привитые сополимеры и т.п.; дендримеры, иономеры и т.п., или комбинация, содержащая по меньшей мере один из указанных выше материалов. Если основа включает в себя термореактивный полимер, желательно, чтобы органические материалы были подвергнуты отверждению (поперечному сшиванию) с применением либо тепловой энергии, либо электромагнитного облучения, либо сочетанию воздействий, включающему по меньшей мере одно из указанных выше. Для индуцирования отверждения могут добавляться инициаторы. Могут быть также использованы и другие добавки, ускоряющие или регулирующие процесс отверждения, такие как ускорители, ингибиторы и т.п.
Примерами подходящих термореактивных полимеров для применения в основе являются эпоксидные смолы, акрилатные смолы, метакрилатные смолы, фенолформальдегиды, эпокси-модифицированные новолаки, фураны, карбамидо-альдегиды, меламино-альдегиды, полиэстерные смолы, алкидные смолы, фенолформальдегидные новолаки, фенолформальдегидные резолы, фенол-альдегиды, резольные и новолачные смолы, эпокси-модифицированные фенольные смолы, полиацетали, полиуретаны и т.п., или комбинация, содержащая по меньшей мере один из указанных выше термореактивных полимеров.
Эпокси-модифицированные новолаки раскрыты в патенте США №4923714 (Gibb et al.), включенном в настоящую заявку в качестве ссылочного материала. Фенольная часть может содержать фенольный новолачный полимер, фенольный резольный полимер;
комбинацию фенольного новолачного полимера и фенольного резольного полимера;
отвержденную комбинацию фенольного новолачного полимера и фенольного резольного полимера с образованием предварительно отвержденной смолы (типа раскрытой в патенте США №4694905 (Armbruster), включенном в настоящую заявку в качестве ссылочного материала); или способную отверждаться систему фуран/фенольная смола, которая может быть отверждена в присутствии сильной кислоты с образованием отверждаемой смолы (типа раскрытой в патенте США №4785884 (Armbruster)). Фенольные смолы упомянутых выше новолачных и резольных полимеров могут быть фенольными или бис-фенольными составными частями.
Термореактивные смолы могут быть смолами, отверждающимися на холоду. Отверждающиеся на холоду смолы представляют собой такие смолы, которые способны реагировать при комнатной температуре без применения дополнительного тепла. Отверждающиеся на холоду смолы обычно отверждают при температуре ниже 65°С.Так, например, термореактивные смолы, которые отверждают при 80°С, не являются смолами, отверждающимися на холоду. Примеры подходящих отверждающихся на холоду смол включают эпоксидные смолы, отверждаемые каким-либо амином при их применении по отдельности или совместно с полиуретаном, полиуретаны, модифицированные щелочью резолы. Отверждающиеся под действием сложных эфиров (например, ALPHASET® и BETASET®), фурановые смолы, например фурфуриловый спирт-формальдегидные, карбамидоформальдегидные и свободные метилолсодержащие меламины, схватывающиеся под действием кислоты. Для целей настоящего описания отверждающейся на холоду смолой является любая смола, которая может быть нормальным образом отверждена при комнатной температуре. Смолы ALPHASET® и BETASET® представляют собой фенольные смолы, отвержденные с помощью сложного эфира.
Уретаны раскрыты в патенте США №5733952 (Geoffrey). Меламиновые смолы раскрыты в патентах США №№5952440, 5916966 и 5296584 (Walisser). Смолы ALPHASET раскрыты в патентах США №№4426467 и Re.32812 (который является переизданием патента США №4474904), все из которых включены в настоящую заявку в качестве ссылочного материала.
Модифицированные резолы раскрыты в патенте США №5218038, включенном в настоящую заявку в качестве ссылочного материала. Такие модифицированные резолы получают реакцией альдегида со смесью незамещенного фенола и по меньшей мере одного фенольного материала, выбираемого из группы, состоящей из арилфенола, алкилфенола, алкоксифенола и арилоксифенола. Модифицированными резолами могут быть алкоксимодифицированные резолы. Типичным фенольным резолом является модифицированный содержащий о-бензиловый эфир резол, получаемый реакцией фенола и альдегида в присутствии алифатического гидроксильного соединения, содержащего две или более гидроксильные группы в молекуле. В одной из типичных модификаций способа реакцию проводят также в присутствии одноатомного спирта.
Примерами подходящих термопластичных полимеров, которые могут быть использованы в основе, являются полиолефины, полиакриловые смолы, поликарбонаты, полиалкиды, полистиролы, полиэстеры, полиариламиды, полиамидимиды, полиарилаты, полиарилсульфоны, полиэфирсульфоны, полифениленсульфиды, полисульфоны, полиимиды, полиэфиримиды, политетрафторэтилены, полиэфиркетоны, полиэфир-эфиркетоны, полиэфиркетон-кетоны, полибензоксазолы, полиоксадиазолы, полибензотиазино-фенотиазины, полибензотиазолы, полипиразинохиноксалины, полипиромеллитимды, полихиноксалины, полибензимидазолы, полиоксиндолы, полиоксоизоиндолины, полидиоксоизоиндолины, политриазины, полипиридазины, полипиперазины, полипиридины, полипиперидины, политриазолы, полипиразолы, поликарбораны, полиоксабициклононаны, полидибензофураны, полифталиды, полиацетали, полиангидриды, поливиниловые эфиры, поливиниловые тиоэфиры, поливиниловые спирты, поливинилкетоны, поливинилгалогениды, поливинилнитрилы, поливиниловые сложные эфиры, полисульфонаты, полисилазаны, полисилоксаны, фенольные смолы, эпоксидные смолы или комбинации, содержащие по меньшей мере один из указанных выше термопластичных материалов.
Природными органическими основами являются молотая или дробленая скорлупа орехов, молотая или дробленая шелуха семян, молотая или дробленая оболочка внутренней полости фруктов, переработанная древесина, молотые или дробленые кости животных и т.п., или комбинация, содержащая по меньшей мере одну из природных органических основ. Примерами подходящей молотой или дробленой оболочки являются оболочка таких орехов, как грецкий орех, орех пекан, миндаль, плод южноамериканской пальмы, бразильский орех, земляной орех (арахис), кедровый орех и орех кэшью, оболочка семян полсолнечника, фундука (лесного ореха), макадамии (австралийского ореха), соевых бобов, фисташковых орехов, тыквенных семян и т.п., или комбинация, содержащая по меньшей мере один из указанных выше орехов. Примерами подходящей молотой или дробленой оболочки семян (включая оболочку внутренней полости фруктов) являются семена фруктов, таких как слива, персики, вишня, абрикосы, олива, манго, плод хлебного дерева, гуава, плод аноны чешуйчатой, гранаты, арбуз, молотые или дробленые оболочки других растений, таких как кукуруза (например, кукурузное зерно), пшеница, рис, сорго и т.п., или комбинация, содержащая по меньшей мере один из указанных выше обработанных древесных материалов, таких, например, как те, которые получены из древесины дуба, североамериканского орешника, орехового дерева, тополя, красного дерева, включая древесину, обработанную размалыванием, скалыванием или какой-либо другой формой измельчения. Типичной природной основой является размолотая оболочка внутренней полости оливы.
Основа может иметь любую желаемую форму, такую как сферическая, эллипсоидная, кубическая, многоугольная и т.п. Как правило, желательно, чтобы основа имела сферическую форму. Основа может иметь средний размер частиц от примерно 100 до примерно 1200 мкм. В одном из вариантов осуществления основа может иметь средний размер частиц от примерно 300 до примерно 600 мкм. В другом варианте осуществления основа может иметь средний размер частиц от примерно 400 до примерно 500 мкм.
Если основа представляет собой пористую основу, в этом случае предполагается, что основа может включать в себя частицы, которые агломерированы с образованием основы из твердых частиц. В этом случае отдельные частицы, которые объединены с образованием основы могут иметь средний размер от примерно 2 до примерно 30 мкм. В одном из вариантов осуществления частицы, которые агломерируются с образованием основы, могут иметь средний размер менее чем или равный примерно 28 мкм. В другом варианте осуществления частицы, которые агломерируются с образованием основы, могут иметь средний размер менее чем или равный примерно 25 мкм. В другом варианте осуществления частицы, которые агломерируются с образованием основы, могут иметь средний размер менее чем или равный примерно 20 мкм. В еще одном варианте осуществления частицы, которые агломерируются с образованием основы, могут иметь средний размер менее чем или равный примерно 15 мкм. Может быть использовано бимодальное или более высокой модальности распределение размеров частиц. Типичные основы обладают сферической формой.
Пористые основы обычно имеют большие площади поверхности. Если основа пористая, желательно, чтобы она имела площадь поверхности большую или равную примерно 10 м2 на 1 г (м2/г). В одном из вариантов осуществления желательно, чтобы основа имела площадь поверхности большую или равную примерно 100 м2/г. В другом варианте осуществления желательно, чтобы основа имела площадь поверхности большую или равную примерно 300 м2/г.В еще варианте осуществления желательно, чтобы основа имела площадь поверхности, большую или равную примерно 500 м2/г. В еще варианте осуществления желательно, чтобы основа имела площадь поверхности, большую или равную примерно 800 м2/г.
Плотность основы можно выбирать в зависимости от применения, для которого предназначен расклинивающий агент. Желательно выбирать такие основы, которые придают расклинивающему агенту кажущуюся плотность от 0,5 до 4 г на 1 см3 (г/см3). Кажущаяся плотность определяется как плотность всего расклинивающего агента (т.е. вес единицы объема всего материала, включая характерные для расклинивающего агента пустоты).
Как отмечалось выше, на фиг.1 и 2, основа имеет расположенное на ней покрытие. Покрытие может быть органическим покрытием, неорганическим покрытием или покрытием, включающим в себя по крайней мере одно из названных покрытий, и содержит чувствительный к радиации материал. Типичные органические покрытия могут быть получены из перечисленных выше термопластичных и термореактивных полимеров.
Чувствительный к радиации материал, который включается в покрытие на основе расклинивающего агента, является чувствительным к нейтронам, вследствие чего он легко реагирует на нейтроны, поглощая при этом тепловые нейтроны и проявляя относительно большое атомное сечение. Благодаря такой чувствительности к нейтронам материала, чувствительного к радиации, обнаруживают характеристическое гамма-излучение или поглощение нейтронов, которое отлично от характеристик материалов в окружающем пласте. Эти чувствительные к радиации материалы изначально также являются нерадиоактивными и благодаря этому с ними можно безопасно работать без боязни или риска подвергнуться облучению или радиационному загрязнению на поверхности скважины до того, как они будут введены в систему, вместе с которой они будут заведены в скважину.
Хотя чувствительный к радиации материал изначально является нерадиоактивным, он представляет собой такой изотоп, который либо становится радиоактивным и возникший радиоактивный изотоп распадается, испуская гамма-излучение, которое может регистрироваться подходящим детектором, либо этот изотоп вступает в ядерную или атомную реакцию в результате поглощения одного или более нейтронов в большей степени, чем материалы окружающего пласта. Такого рода реакция может происходить под действием внешних нейтронов, излучаемых ускорителем. Если исходное вещество должно реагировать с образованием радиоактивного изотопа, этот радиоактивный изотоп имеет преимущественно известный период полураспада от приблизительно нескольких секунд до примерно 30 минут, вследствие чего для протекания реакции не требуется продолжительного облучения ускорителем, и имеется время для адекватного детектирования после того, как произойдет превращение. Преимущество заключается в том, что чувствительный к радиации материал распадается до нерадиоактивного состояния вскоре после завершения операции каротажа, что позволяет возвращать скважину в рабочий режим без опасения образования радиоактивного материала.
В одном из вариантов осуществления чувствительные к радиации материалы имеют период полураспада от примерно 5 секунд до примерно 100 суток или менее. В другом варианте осуществления чувствительные к радиации материалы имеют период полураспада от примерно 10 секунд до примерно 50 минут или менее. В еще одном варианте осуществления чувствительные к радиации материалы имеют период полураспада от примерно 12 секунд до примерно 7 минут или менее. Типичный период полураспада для чувствительного к радиации материала составляет примерно 5 мин или менее. Ванадий имеет период полураспада 3,8 мин, в то время как индий имеет период полураспада 14,1 сек. Как правило, желательно, чтобы период испускания поддающейся измерению радиации имел такую продолжительность, чтобы к началу добычи углеводородов материал более не испускал радиоактивного излучения. Как правило, желательно, чтобы чувствительный к радиации материал переставал испускать поддающееся измерению радиоактивное излучение перед переходом в рабочий режим. Преимуществом является также и то, что после истечения периода полураспада чувствительного к радиации материала скважина может подвергаться повторному каротажу сколько угодно раз при повторном облучении чувствительного к радиации материала.
Как было отмечено выше, чувствительные к радиации материалы могут включать в себя ванадий и/или индий или комбинации, содержащие по крайней мере один из указанных чувствительных к радиации материалов. Чувствительные к радиации материалы могут содержать ванадий и/или индий в любых доступных формах. Среди этих форм могут быть металлы, сплавы, соли, композиты, суспензии и т.п. Ванадий и индий имеют то преимущество, что они обладают очень высокой чувствительностью в природном состоянии. В одном из вариантов осуществления металлические частицы ванадия и/или индия диспергируют в органическом и/или неорганическом материале перед нанесением их на основу. В другом варианте осуществления соли ванадия и/или индия могут быть диспергированы в органическом и/или неорганическом материале перед нанесением их на основу.
Типичными ванадиевыми солями, которые могут быть использованы в качестве чувствительных к радиации материалов, являются ванадилсульфат, ортованадат натрия или калия, метаванадат натрия или калия, хлористые соли ванадия и т.п., или комбинация, содержащая по меньшей мере одну из указанных выше ванадиевых солей. Могут использоваться и другие содержащие ванадий соединения. Примерами пригодных для использования соединений ванадия являются оксиды ванадия, такие, например, как триоксид ванадия, пентоксид ванадия и т.п., или комбинация, содержащая по меньшей мере один из указанных оксидов. Другие примеры соединений ванадия, которые могут использоваться по отдельности или в сочетании одно с другим, включают металлический ванадий, ванадиевые сплавы, такие как ванадий/алюминиевые сплавы и феррованадий, или порошок карбонитрида ванадия, такой как NITROVAN vanadium, который поставляет Statcor, Inc., Питтсбург, Пенсильвания.
Типичными солями индия являются хлорид индия, сульфат индия и т.п., или комбинация, содержащая по меньшей мере одну из указанных солей индия. В одном из вариантов осуществления соли индия или ванадия могут быть диспергированы в покрытии расклинивающего агента и после введения расклинивающего агента в пласт могут быть подвергнуты реакции с образованием металла.
Если в покрытиях используют чувствительные к радиации материалы, такие как соли и/или соединения индия или ванадия, они могут применяться в количествах до примерно 55 вес.% в расчете на общий вес расклинивающего агента. В одном из вариантов осуществления чувствительные к радиации материалы применяют в количествах до примерно 25 вес.% в расчете на общий вес расклинивающего агента. В другом варианте осуществления чувствительные к радиации материалы применяют в количествах до примерно 15 вес.% в расчете на общий вес расклинивающего агента. В еще одном варианте осуществления чувствительные к радиации материалы применяют в количествах до 5 вес.% в расчете на вес расклинивающего агента. Чувствительные к радиации материалы могут применяться в количествах до не более чем 0,01 вес.% в расчете на общий вес расклинивающего агента.
В другом варианте осуществления, когда чувствительные к радиации материалы, такие как металлический ванадий, соли и/или соединения ванадия, используют в расклинивающем агенте или в рабочей жидкости, они могут применяться в количествах до не более чем примерно 0,3 вес.% в виде металлического ванадия, преимущественно от 0,01 до 5 вес.%, предпочтительно от 0,05 до 2 вес.% и, более предпочтительно, от 0,1 до 1 вес.% в расчете на общий вес расклинивающего агента. В одном из предпочтительных вариантов осуществления ванадиевым соединением является порошок карбонитрида ванадия, или NITROVAN vanadium, с размером частиц примерно 1-15 мкм, преимущественно от 1 до 10 мкм, предпочтительно от 0,05 до 2 вес.% и, более предпочтительно, от 0,1 до 1 вес.% в расчете на общий вес расклинивающего агента.
Наряду с ванадием и/или индием в покрытие могут также добавляться и другие чувствительные к радиации материалы. Примерами подходящих чувствительных к радиации материалов, которые наряду с ванадием и/или индием могут добавляться к расклинивающему агенту и/или к рабочей жидкости, могут быть иридий-191, иридий-193, кадмий-113, диспрозий, европий, лютеций, марганец, золото, гольмий, рений, самарий, вольфрам и т.д., или комбинация, содержащая по меньшей мере одно из указанных выше материалов.
В одном из вариантов осуществления, как это описано на фиг.3, основа может включать в себя композит неорганических и органических материалов. Такую основу называют композиционной основой. Композиционная основа может содержать сочетание неорганических и органических материалов. При этом органические материалы могут быть химически связаны с неорганическими материалами. Химической связью может быть ковалентная связь, водородная связь, ионная связь и т.п. Примером подходящей реакции между органическим и неорганическим материалом, которая включает в себя ковалентное связывание, является золь-гель реакция. В результате химического связывания между органическими и неорганическими материалами могут быть получены основы, представляющие собой нанокомпозиты. На композиционные основы в некоторых случаях могут наноситься описанные выше органические покрытия и/или неорганические покрытия.
В одном из вариантов осуществления композиционная основа также может содержать чувствительные к радиации материалы. В другом варианте осуществления чувствительный к радиации материал может быть введен во время изготовления основы, в частности при изготовлении керамической основы. В еще одном варианте осуществления, когда на композиционную основу наносят органическое и/или неорганическое покрытие, то чувствительные к радиации материалы могут включать в себя как композиционную основу, так и находящееся на ней покрытие.
Композиционная основа может содержать чувствительные к радиации материалы в количестве до примерно 35 вес.% в расчете на общий вес расклинивающего агента. Типичное количество чувствительных к радиации материалов составляет примерно 5 вес.% в расчете на общий вес расклинивающего агента.
В одном из вариантов осуществления чувствительные к радиации материалы могут смешиваться с расклинивающими агентами, которые не содержат чувствительного к радиации материала до ввода в трещину. Смесь расклинивающих агентов, включающих чувствительный к радиации материал, с расклинивающими агентами, которые не содержат чувствительного к радиации материала, называют «композицией расклинивающих агентов». Композиция расклинивающих агентов обычно должна содержать чувствительные к радиации материалы в количестве до 55 вес.% в расчете на общий вес композиции расклинивающих агентов. Типичное количество чувствительных к радиации материалов в композиции расклинивающих агентов составляет от примерно 5 до примерно 10 вес.% в расчете на общий вес композиции расклинивающих агентов и предпочтительно от примерно 0,01 до примерно 5 вес.% в расчете на общий вес композиции расклинивающих агентов.
В другом варианте осуществления могут смешиваться расклинивающие агенты, содержащие разные чувствительные к радиации материалы. Например, первый расклинивающий агент может содержать первый чувствительный к радиации материал, в то время как второй расклинивающий агент может содержать второй чувствительный к радиации материал. Например, первый расклинивающий агент может включать в себя некоторое содержащее ванадий соединение, а второй расклинивающий агент включает в себя другое содержащее ванадий соединение или соединение, содержащее индий.
Как было отмечено выше, основа может по желанию быть сплошной (т.е. без сколько-нибудь значительной пористости) или пористой. Как правило, пористая основа делает возможной пропитку органическим материалом, что придает основе способность изгибаться и поглощать удар и напряжение без деформации. Способность какого-либо полимера пропитывать основу сводит также к минимуму склонность расклинивающего агента к растрескиванию, снижая тем самым образование пыли. Благодаря пропитыванию пористой неорганической основы каким-либо органическим материалом плотность расклинивающего агента может быть доведена до уровней, соответствующих различным условиям растрескивания. В общем случае основа может иметь пористость, большую или равную приблизительно 20% от общего объема основы. В другом варианте осуществления основа может иметь пористость, большую или равную приблизительно 70% от общего объема основы. В еще одном варианте осуществления основа может иметь пористость, большую или равную приблизительно 70% от общего объема основы.
Содержание основы в расклинивающих агентах может составлять от примерно 10 до примерно 90 вес.% в расчете на общий вес расклинивающих агентов. В одном из вариантов осуществления основа содержится в количестве от примерно 20 до примерно 80 вес.% в расчете на общий вес расклинивающих агентов. В другом варианте осуществления основа содержится в количестве от примерно 30 до примерно 75 вес.% в расчете на общий вес расклинивающих агентов. В еще одном варианте осуществления основа содержится в количестве от примерно 35 до примерно 65 вес.% в расчете на общий вес расклинивающих агентов.
В другом варианте осуществления чувствительные к радиации материалы могут содержаться в рабочей жидкости, но не в расклинивающих агентах. Когда чувствительный к радиации материал присутствует в рабочей жидкости, он может либо находиться в форме взвешенных коллоидных частиц, либо быть растворенным в рабочей жидкости. Рабочая жидкость может содержать чувствительные к радиации материалы в количестве от примерно 0,01 до примерно 35 вес.% в расчете на общий вес рабочей жидкости. В одном из вариантов осуществления рабочая жидкость может содержать чувствительные к радиации материалы в количестве от примерно 2 до примерно 25 вес.% в расчете на общий вес рабочей жидкости. В еще одном варианте осуществления рабочая жидкость может содержать чувствительные к радиации материалы в количестве от примерно 3 до примерно 15 вес.% в расчете на общий вес рабочей жидкости. Типичное количество чувствительных к радиации материалов составляет примерно 5 вес.% в расчете на общий вес рабочей жидкости.
В еще одном варианте осуществления как рабочая жидкость, так и расклинивающие агенты, содержащиеся в рабочей жидкости, могут содержать чувствительные к радиации материалы. В одном из вариантов осуществления рабочая жидкость и расклинивающие агенты могут содержать одни и те же катионы. Например, рабочая жидкость может содержать растворенный ванадилсульфат, в то время как расклинивающие агенты, содержащиеся в рабочей жидкости, могут содержать триоксид ванадия. При облучении нейтронами как ванадилсульфат, так и триоксид ванадия могут испускать гамма-излучение, которое может быть использовано для расчета геометрии трещины.
В еще одном варианте осуществления рабочая жидкость и расклинивающие агенты, содержащиеся в рабочей жидкости, могут содержать разные катионы. Например, рабочая жидкость может содержать первый чувствительный к радиации материал, в то время как расклинивающие агенты, содержащиеся в рабочей жидкости, могут содержать второй чувствительный к радиации материал. Например, рабочая жидкость может содержать ванадилсульфат, а расклинивающие агенты могут содержать соль индия. В одном из родственных вариантов осуществления рабочая жидкость может содержать соль чувствительного к радиации материала, в то время как расклинивающие агенты могут содержать чувствительный к радиации материал, который содержит частицы металла. Например, рабочая жидкость может содержать ванадилсульфат, в то время как расклинивающий агент может содержать частицы индия.
Для измерения гамма-излучения, испускаемого чувствительным к радиации материалом после его бомбардировки нейтронами, может использоваться подходящий гамма-лучевой спектрометр или зонд. Для получения желаемой диаграммы в скважину помещают по крайней мере часть прибора, например по крайней мере гамма-лучевой детектор. Прибор может быть такого рода, чтобы генерировать желаемые отношения внутри ствола, либо же спектры гамма-излучения могут передаваться на поверхность и на основании спектральных данных будут определяться отношения. Может использоваться детектор низкого разрешения, например NaI(Ti), или эквивалентный детектор, или детектор высокого разрешения, например собственно германиевый, Ge(Li) или эквивалентный детектор. Поскольку желательно получать точное измерение пиковой площади или площадей, как правило, используют прибор высокого разрешения. Диаграммы можно получать в непрерывном режиме с передвигающимся прибором, либо в стационарном режиме, когда прибор останавливают в выбранных местах ствола скважины.
По желанию на детекторе может быть использован коллиматор. В одном из вариантов осуществления для измерения ориентации трещины используют вращающийся коллиматор. Такие коллиматоры характеризуются тенденцией повышать чувствительность измерения, поскольку такие устройства уменьшают число гамма-лучей, входящих в детектор из мест, расположенных выше или ниже в скважине, т.е. гамма-лучей от расклинивающего агента, находящегося вне обсадной трубы, но выше или ниже местоположения детектора в данный момент. В одном из вариантов осуществления можно использовать детектор без коллиматора.
В одном из вариантов осуществления, в одном способе определения высоты трещины, в пласт вводят меченые расклинивающие агенты и/или меченую рабочую жидкость. Меченые расклинивающие агенты и/или меченая рабочая жидкость обычно содержат индий или ванадий. Меченые расклинивающие агенты и/или меченую рабочую жидкость после этого бомбардируют нейтронами в процессе каротажного прохода. Каротажный проход представляет собой такой проход, при котором каротажный прибор вводят в скважину и инициируют нейтронную бомбардировку трещины в пласте. После этого проводят гамма-спектроскопию по облученному индию и ванадию, получая число отсчетов гамма-квантов выше и ниже пиковых энергий (называемых также внепиковыми энергиями), поступающих от ванадия и/или индия. Измеряют также число отсчетов гамма-квантов при пиковых энергиях для индия и/или ванадия. Внепиковые измерения используют для удаления части фоновой радиации от пиковых энергий. Удаление фона осуществляется с использованием программного обеспечения для спектроскопии.
Перед получением пиковых энергий для индия и/или ванадия, которые закачивают в трещину, удаляют также дополнительную фоновую радиацию, возникающую от присутствия таких материалов, как алюминий, кремний, железо и т.п. Такие материалы, как алюминий, кремний, железо и т.п., обычно присутствуют в пласте и в обсадной трубе и также генерируют гамма-радиацию в результате нейтронной бомбардировки. Удаление (вычитание) этой составляющей в фоновой радиации вместе с радиацией внепиковых энергий обычно оставляет пиковые энергии введенных индия и ванадия. Эти пиковые энергии могут быть использованы для оценки геометрии трещины. В типичном варианте осуществления положения пиковых энергий введенных индия и/или ванадия могут быть использованы для определения высоты трещины.
В одном из методов оценки радиации, обусловленной такими материалами, как алюминий, кремний, железо и т.п., трещину пласта облучают нейтронами в процессе одного каротажного прохода. Во время этого прохода осуществляют гамма-спектроскопию по всему спектру энергии. После каротажного прохода вся радиация, обусловленная материалами с коротким периодом полураспада, такая как радиация от ванадия и/или индия, постепенно исчезает, оставляя радиацию, излучаемую теми элементами, которые естественным образом присутствуют в подвергнутом разрыву пласте.
Чтобы измерить высоту трещины за один проход, желательно произвести измерения, которые охватывают весь спектр энергий гамма-лучей, излучаемых ванадием и/или индием, а также другими материалами, которые естественным образом присутствуют в подвергнутом разрыву пласте. Измерения радиации производят с использованием детектора, имеющегося в каротажном приборе. Как было отмечено выше, измерения, полученные при внепиковых энергиях, вычитают из измерений, произведенных при пиковых энергиях, удаляя тем самым фоновую радиацию. Фоновая радиация включает в себя сигналы, которые были получены в результате активации обычно присутствующих в пластах ядер, таких как алюминий, кремний, железо и т.п. Следует отметить, что небольшая радиация может также испускаться материалами, используемыми в обсадной трубе, и ее нужно удалять. Эта фоновая радиация от материалов, присутствующих в стволе скважины и пласте, генерируется в результате воздействия нейтронов таким же образом, как и радиация, поступающая от ванадия и/или индия, которые закачивают в трещину пласта. После каротажного прохода радиация, излучаемая при активации ванадия и/или индия, затухнет по причине короткого периода полураспада этих материалов, оставляя естественную фоновую радиацию от материалов, таких как алюминий, кремний, железо и т.п., которые присутствуют в земляных пластах. Фоновая радиация может быть затем измерена и вычтена из измеренных пиковых энергий индия и/или ванадия с целью оценки высоты трещины.
В другом варианте осуществления, в другом способе определения высоты трещины, в пласт могут вводиться меченые расклинивающие агенты, имеющие разные плотности. Тогда гравитационное разделение меченых расклинивающих агентов может быть использовано для определения геометрии трещины. Более тяжелые расклинивающие агенты будут оседать на дно трещины, в то время как более легкие расклинивающие агенты устремятся к верху трещины. В одном из вариантов осуществления расклинивающие агенты, имеющие более высокие плотности, могут быть помечены первьм чувствительным к радиации материалом, а расклинивающие агенты, имеющие более низкие плотности, могут быть помечены вторым чувствительным к радиации материалом. После этого сигналы радиации, получаемые от меченых расклинивающих агентов, могут использоваться для определения высоты и других геометрических особенностей трещины. Например, если более плотные расклинивающие агенты содержат ванадий, а более легкие расклинивающие агенты содержат индий, то сигналы гамма-радиации от ванадия и сигналы гамма-радиации от индия могут быть использованы для определения высоты трещины.
В еще одном варианте осуществления, в другом способе определения высоты трещины, для определения высоты трещины могут быть использованы расклинивающие агенты, способные быть ориентированными. Расклинивающий агент может наряду с чувствительным к радиации материалом содержать также какой-либо активный материал, который может быть использован для ориентирования расклинивающего агента. Активный материал, который содействует ориентации расклинивающего агента, может активироваться каким-либо внешним активирующим сигналом, таким, например, как радиосигналы, электрические поля, магнитные поля, ультразвуковые сигналы и т.п. В одном из вариантов осуществления меченный расклинивающий агент может содержать электропроводящие частицы, такие, например, как частицы проводящего металла, углеродные нанотрубки и т.п., которые могут позволить расклинивающему агенту переориентироваться под действием приложенного электрического поля. Таким образом, после введения в пласт меченых расклинивающих агентов активные материалы могут быть активированы применением соответствующего внешнего активирующего сигнала, способствующего переориентации. После достижения желаемой ориентации меченые расклинивающие агенты бомбардируют нейтронами с целью излучения ими гамма-лучей. Измеренные гамма-лучи коррелируют с ориентацией, давая информацию относительно геометрии трещины. Если меченые расклинивающие агенты способны быть ориентированными, каротажный прибор может включать в себя аппарат, способный ориентировать взвешенные частицы, а также измерять возникающую в результате этого ориентацию меченых частиц.
Указанный способ обладает тем преимуществом, что для определения высоты трещины в нем используется один проход каротажного прибора. После облучения чувствительный к радиации материал может быть оставлен в скважине благодаря его крайне короткому периоду полураспада. Это позволяет повторно определять геометрию трещины спустя значительные интервалы времени после проведения разлома. Например, определение геометрии трещины может быть вначале произведено сразу же после проведения гидроразрыва, а через несколько месяцев может быть произведено еще одно определение геометрии трещины с целью наблюдения за изменениями в трещине благодаря тому, что чувствительные к радиации материалы могут быть оставлены в пласте без какого-либо вреда для почвы, или подземных вод, или для персонала на поверхности.
Другие способы определения высоты трещины требуют, как правило, двух или более проходов каротажного прибора. Настоящий способ имеет также преимущество и в том, что он препятствует загрязнению почвы и подземных вод радиоактивными материалами. Загрязнение потоков подземных вод и почвы может быть предотвращено благодаря тому, что применяемые в настоящем способе чувствительные к радиации материалы имеют короткий период полураспада. Кроме того, в случае возникновения обратного потока из скважины риск того, что персонал подвергнется воздействию радиации значительно снижен.
В настоящем способе устранено также применение радиоактивных индикаторов. Применение радиоактивных индикаторов обычно загрязняет потоки подземных вод и является экологически вредным. В других способах, где применяются радиоактивные индикаторы, для удаления естественной гамма-радиации, происходящей от присутствующих в пластах материалов, необходимо проведение каротажного прохода для определения фона. Удаление этого фона является особенно важным, когда либо излучение закачиваемого радиоактивного материала постепенно исчезает, и/или когда этот материал был плохо размещен, и/или когда этот материал был помещен глубоко в пласт, что создало трудности для его обнаружения.
Для лучшего понимания настоящего изобретения, включая присущие ему преимущества, предложены следующие примеры. Разумеется, эти примеры даются с иллюстративной целью и не должны рассматриваться как ограничивающие объем изобретения какими-либо конкретными материалами или условиями.
ПРИМЕРЫ
Предварительно отвержденное смоляное покрытие образовано предварительным смешением раствора 70 г Oilwell resin 262E, представляющую собой жидкую фенолформальдегидную резольную смолу, с соединением ванадиевого сплава (3,75 г 80%-ного или 6,0 г 50%-ного). Предварительно смешанный раствор добавляют после этого к 1 кг основы рабочей жидкости, предварительно нагретой до температуры от 193 до 204°С. Основу и предварительно смешанный раствор затем смешивают между собой путем непрерывного перемешивания. Через 2 мин 30 сек в цикл вводят поверхностно-активное вещество (Chembetaine). В момент времени 3 мин 40 сек перемешивание прекращают и материал с нанесенным покрытием помещают в печь, нагретую до 160°С, для завершающего прокаливания в течение 3 мин 40 сек. Материал с покрытием выгружают из печи и охлаждают до комнатной температуры.
Используя описанную выше последовательность операций, приготовляют для последующих испытаний ряд сплавленных соединений ванадия (с варьируемым размером частиц). Результаты приведены в таблице.
Сплавленное соединение ванадия Размер частиц1 % концентрация М на основе М2 Размер ячейки основы3 % потерь при прокаливании4 Стойкость к раздроблению (% крошки)5
80% феррованадииевый сплав ~40 мкм 0,211 20/40 3,90 9,4
50% аллюминиевованадиевый сплав ~10 мкм 0,305 20/40
80% нитрид/карбид ванадия ~3 мкм 20/40 3,82 12,8
80% натрид/карбид ванадия ~3 мкм 0,255 20/40 3,73 2,3
1 Размер частиц определен с помощью анализатора Coulter Particle Size Analyzer.
2 Анализ на металлы произведен методом атомной абсорбции с использованием кислотного разложения.
3 Размер ячеи частицы основы, определенный методом API (Американский нефтяной институт) RP-56 раздел 4.
4 Потери при прокаливании, при котором образец прокаливают при 927°С в течение 2 час и регистрируют потери веса.
5 Стойкость к раздроблению, определенная методом API RP-56 раздел 4.
Хотя изобретение описано со ссылками на типичные варианты осуществления, специалистам понятно, что не выходя за рамки объема изобретения, можно производить различные изменения и заменять элементы изобретения их эквивалентами. Кроме того, множество модификаций могут быть произведены с целью адаптирования какой-либо конкретной ситуации или материала к доктрине изобретения без отхода от его основного объема. Таким образом, предполагается, что изобретение не ограничено конкретным вариантом осуществления, раскрытым в качестве наилучшего способа, предназначенного для осуществления изобретения, но что изобретение будет включать в себя все варианты осуществления в рамках объема прилагаемой формулы изобретения.

Claims (19)

1. Способ определения геометрии трещины в подземных пластах, характеризующийся тем, что:
в трещину в пласте помещают расклинивающий агент или рабочую жидкость, которые содержат чувствительный к радиации материал, причем чувствительный к радиации материал содержит порошок, включащий ванадий, имеющий частицы с размером примерно 1-15 мкм, и чувствительный к радиации материал является нерадиоактивным до тех пор, пока не будет подвергнут бомбардировке нейтронами во время проведения единственного каротажного прохода;
облучают чувствительный к радиации материал нейтронами после его размещения в трещине в пласте;
измеряют гамма-излучение, испускаемое чувствительным к радиации материалом, с получением пиковой радиации, излучаемой чувствительным к радиации материалом;
измеряют фоновую радиацию во время проведения единственного каротажного прохода, затем вычитают фоновую радиацию из указанной радиации пиковой энергии; и
определяют высоту трещины в пласте по разности между фоновой радиацией и радиацией пиковой энергии.
2. Способ по п.1, в котором чувствительный к радиации материал после облучения имеет период полураспада, менее или равный приблизительно 100 суткам.
3. Способ по п.1, в котором чувствительный к радиации материал после облучения имеет период полураспада от примерно 10 с до примерно 50 мин.
4. Способ по п.1, в котором расклинивающий агент включает в себя покрытие, которое содержит чувствительный к радиации материал.
5. Способ по п.1, в котором расклинивающий агент включает в себя основу, которая содержит чувствительный к радиации материал.
6. Способ по п.1, в котором порошок, включающий ванадий, является порошком карбонитрида ванадия.
7. Способ по п.6, в котором количество порошка карбонитрида ванадия, рассчитанного как металлический ванадий, составляет от 0,01 до 5 вес.% в расчете на общий вес расклинивающего агента.
8. Способ по п.1, в котором расклинивающий агент включает в себя первый расклинивающий агент, содержащий чувствительный к радиации материал, и второй расклинивающий агент, не содержащий чувствительного к радиации материала.
9. Способ определения геометрии трещины в подземном пласте, характеризующийся тем, что:
а) в трещину в пласте помещают расклинивающий агент или рабочую жидкость, которые содержат чувствительный к радиации материал, причем чувствительный к радиации материал содержит порошок, включающий ванадий, имеющий частицы с размером примерно 1-15 мкм, и чувствительный к радиации материал является нерадиоактивным до тех пор, пока не будет подвергнут бомбардировке нейтронами во время проведения единственного каротажного прохода;
б) облучают чувствительный к радиации материал нейтронами после его размещения в трещине в пласте с образованием облученного материала, имеющего период полураспада от примерно 10 с до примерно 50 мин;
в) измеряют гамма-излучение, испускаемое чувствительным к радиации материалом;
г) измеряют фоновую радиацию во время проведения единственного каротажного прохода, затем вычитают фоновую радиацию из указанной радиации пиковой энергии;
д) определяют высоту трещины в пласте по разности между фоновой радиацией и радиацией пиковой энергии; и е) повторяют операции (б)-(д) после истечения периода полураспада чувствительного к радиации материала с целью повторного определения высоты трещины в пласте.
10. Расклинивающий агент, включающий в себя основу и покрытие, расположенное на основе, при этом основа или покрытие содержит чувствительный к радиации материал, содержащий порошок, включающий ванадий, имеющий частицы с размером примерно 1-15 мкм, причем чувствительный к радиации материал является нерадиоактивным до тех пор, пока не будет подвергнут бомбардировке нейтронами.
11. Расклинивающий агент по п.10, в котором покрытием является органическое покрытие, неорганическое покрытие или их комбинация.
12. Расклинивающий агент по п.10, в котором чувствительный к радиации материал после облучения имеет период полураспада от примерно 10 с до примерно 50 мин.
13. Расклинивающий агент по п.10, который содержит от 0,01 до примерно 35 вес.% чувствительного к радиации материала.
14. Расклинивающий агент по п.10, в котором основа содержит органическую частицу, имеющую диспергированный в ней наполнитель, при этом чувствительный к радиации материал диспергирован в основе.
15. Расклинивающий агент по п.10, в котором порошок, включающий ванадий, выбирают из группы, состоящей из металлического ванадия, феррованадиевого сплава, алюминиево-ванадиевого сплава, карбонитрида ванадия и их комбинаций.
16. Расклинивающий агент по п.10, в котором порошком, включающим ванадий, является порошок карбонитрида ванадия.
17. Расклинивающий агент по п.16, в котором количество порошка карбонитрида ванадия, рассчитанного как металлический ванадий, составляет от 0,01 до 5 вес.% в расчете на общий вес расклинивающего агента.
18. Расклинивающий агент по п.11, в котором покрытие содержит полимеризованную эпоксидную смолу, полиакрилат, полиметакрилат, полимеризованный фенолформальдегид, полимеризованный эпоксимодифицированный новолак, полимеризованный фуран, полимеризованный карбамидо-альдегид, полимеризованный меламино-альдегид, полиэстер, полиалкид, полимеризованный фенолформальдегидный новолак, полимеризованный фенолформальдегидный резол, полимеризованный фенол-альдегид, полимеризованный резол, полимеризованный новолак, полимеризованную эпоксимодифицированную фенольную смолу, полимеризованную уретановую смолу, полисилоксаны или комбинацию, включающую в себя по меньшей мере один из указанных материалов.
19. Рабочая жидкость, содержащая расклинивающий агент по п.10.
RU2008108807/03A 2005-08-09 2006-08-09 Способы и композиции для определения геометрии трещины в подземных пластах RU2412225C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US70679105P 2005-08-09 2005-08-09
US60/706,791 2005-08-09

Publications (2)

Publication Number Publication Date
RU2008108807A RU2008108807A (ru) 2009-09-20
RU2412225C2 true RU2412225C2 (ru) 2011-02-20

Family

ID=37728046

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008108807/03A RU2412225C2 (ru) 2005-08-09 2006-08-09 Способы и композиции для определения геометрии трещины в подземных пластах

Country Status (11)

Country Link
US (3) US7726397B2 (ru)
EP (1) EP1913234A4 (ru)
CN (1) CN101238270B (ru)
AU (1) AU2006278239B2 (ru)
BR (1) BRPI0615152A2 (ru)
CA (2) CA2618128C (ru)
EG (1) EG25641A (ru)
MX (1) MX2008001674A (ru)
NO (1) NO20080656L (ru)
RU (1) RU2412225C2 (ru)
WO (1) WO2007019585A2 (ru)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2398296C2 (ru) * 2008-09-12 2010-08-27 Институт ядерных исследований РАН (ИЯИ РАН) СПОСОБ ВЫДЕЛЕНИЯ РАДИООЛОВА В СОСТОЯНИИ БЕЗ НОСИТЕЛЯ ИЗ ИНТЕРМЕТАЛЛИДА Ti-Sb (ВАРИАНТЫ)
RU2412225C2 (ru) 2005-08-09 2011-02-20 Хексион Спешелти Кемикалс, Инк. Способы и композиции для определения геометрии трещины в подземных пластах
US20120031613A1 (en) * 2005-08-09 2012-02-09 Momentive Specialty Chemicals Inc. Methods and compositions for determination of fracture geometry in subterranean formations
US20110272146A1 (en) * 2005-08-09 2011-11-10 Green John W Methods and compositions for determination of fracture geometry in subterranean formations
US7933718B2 (en) * 2006-08-09 2011-04-26 Momentive Specialty Chemicals Inc. Method and tool for determination of fracture geometry in subterranean formations based on in-situ neutron activation analysis
RU2313838C1 (ru) * 2006-12-29 2007-12-27 Институт ядерных исследований РАН ИЯИ РАН Способ получения радиоолова в состоянии без носителя и мишень для его осуществления (варианты)
US20080179057A1 (en) * 2007-01-26 2008-07-31 Bj Services Company Well Treating Agents of Metallic Spheres and Methods of Using the Same
WO2009012455A1 (en) 2007-07-18 2009-01-22 Oxane Materials, Inc. Proppants with carbide and/or nitride phases
US8234072B2 (en) * 2008-02-20 2012-07-31 Carbo Ceramics, Inc Methods of identifying high neutron capture cross section doped proppant in induced subterranean formation fractures
US8214151B2 (en) 2008-02-20 2012-07-03 Carbo Ceramics Inc. Methods of identifying high neutron capture cross section doped proppant in induced subterranean formation fractures
US8100177B2 (en) * 2008-02-20 2012-01-24 Carbo Ceramics, Inc. Method of logging a well using a thermal neutron absorbing material
WO2010011402A2 (en) 2008-05-20 2010-01-28 Oxane Materials, Inc. Method of manufacture and the use of a functional proppant for determination of subterranean fracture geometries
US10061055B2 (en) 2008-06-25 2018-08-28 Schlumberger Technology Corporation Absolute elemental concentrations from nuclear spectroscopy
WO2010002727A2 (en) * 2008-07-02 2010-01-07 Schlumberger Canada Limited Downhole neutron activation measurement
RU2403639C2 (ru) * 2008-08-29 2010-11-10 Институт ядерных исследований РАН (ИЯИ РАН) Композиция материала мишени для получения радионуклидов и способ ее приготовления (варианты)
RU2393564C2 (ru) * 2008-09-12 2010-06-27 Учреждение Российской Академии Наук Институт Ядерных Исследований Ран (Ияи Ран) Мишень для получения радионуклидов и способ ее изготовления (варианты)
US8044342B2 (en) * 2009-03-04 2011-10-25 Halliburton Energy Services, Inc. Method and system for calculating extent of a formation treatment material in a formation
US9389158B2 (en) 2010-02-12 2016-07-12 Dan Angelescu Passive micro-vessel and sensor
US9772261B2 (en) 2010-02-12 2017-09-26 Fluidion Sas Passive micro-vessel and sensor
US9869613B2 (en) 2010-02-12 2018-01-16 Fluidion Sas Passive micro-vessel and sensor
US10408040B2 (en) 2010-02-12 2019-09-10 Fluidion Sas Passive micro-vessel and sensor
EP2534504B1 (en) * 2010-02-12 2020-07-15 Dan Angelescu Passive micro-vessel and sensor
EP2542759A4 (en) 2010-03-04 2015-11-18 Peter E Rose COLLOID CRYSTALLINE QUANTUM POINTS AS A TRACER IN UNDERGROUND FORMATIONS
WO2011109721A1 (en) 2010-03-04 2011-09-09 Altarock Energy, Inc. Downhole deployable tools for measuring tracer concentrations
US8648309B2 (en) 2010-10-04 2014-02-11 Carbo Ceramics Inc. Spectral identification of proppant in subterranean fracture zones
WO2012071226A1 (en) 2010-11-23 2012-05-31 Conocophillips Company Electrical methods seismic interface box
WO2012082471A1 (en) 2010-12-14 2012-06-21 Conocophillips Company Autonomous electrical methods node
CA2822361C (en) 2010-12-15 2016-10-18 Conocophillips Company Electrical methods fracture detection via 4d techniques
CN102071919B (zh) * 2010-12-28 2013-04-24 中国石油大学(华东) 一种油气井纤维辅助控水压裂方法
US8773132B2 (en) 2011-01-05 2014-07-08 Conocophillips Company Fracture detection via self-potential methods with an electrically reactive proppant
US8672023B2 (en) * 2011-03-29 2014-03-18 Baker Hughes Incorporated Apparatus and method for completing wells using slurry containing a shape-memory material particles
US9290690B2 (en) 2011-05-03 2016-03-22 Preferred Technology, Llc Coated and cured proppants
US9725645B2 (en) 2011-05-03 2017-08-08 Preferred Technology, Llc Proppant with composite coating
US8763700B2 (en) 2011-09-02 2014-07-01 Robert Ray McDaniel Dual function proppants
CA2838957C (en) * 2011-07-08 2019-05-21 Conocophillips Company Depth/orientation detection tool and methods thereof
CN102304358B (zh) * 2011-07-12 2013-08-14 原子高科股份有限公司 一种放射性标记的覆膜陶粒支撑剂及其制备方法
US10767465B1 (en) * 2011-08-09 2020-09-08 National Technology & Engineering Solutions Of Sandia, Llc Simulating current flow through a well casing and an induced fracture
US8805615B2 (en) 2011-09-08 2014-08-12 Carbo Ceramics Inc. Lithology and borehole condition independent methods for locating tagged proppant in induced subterranean formation fractures
US8800652B2 (en) * 2011-10-09 2014-08-12 Saudi Arabian Oil Company Method for real-time monitoring and transmitting hydraulic fracture seismic events to surface using the pilot hole of the treatment well as the monitoring well
US9012836B2 (en) * 2011-10-27 2015-04-21 Weatherford Technology Holdings, Llc Neutron logging tool with multiple detectors
US9562187B2 (en) 2012-01-23 2017-02-07 Preferred Technology, Llc Manufacture of polymer coated proppants
US9038715B2 (en) 2012-05-01 2015-05-26 Carbo Ceramics Use of PNC tools to determine the depth and relative location of proppant in fractures and the near borehole region
US9010421B2 (en) 2012-06-15 2015-04-21 Schlumberger Technology Corporation Flowpath identification and characterization
CA2880070C (en) * 2012-07-25 2020-04-14 Ge Oil & Gas Logging Services, Inc. Method for inspecting a subterranean tubular
CA2886416C (en) * 2012-10-04 2020-08-25 Ge Oil & Gas Logging Services, Inc. Method for detecting fractures in a subterranean formation
US10359447B2 (en) 2012-10-31 2019-07-23 Formfactor, Inc. Probes with spring mechanisms for impeding unwanted movement in guide holes
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
BR112015015733A2 (pt) 2013-01-04 2017-07-11 Carbo Ceramics Inc partículas de areia revestidas com resina eletricamente condutivas e métodos para detectar, localizar e caracterizar as partículas de areia eletricamente condutivas
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
US9518214B2 (en) 2013-03-15 2016-12-13 Preferred Technology, Llc Proppant with polyurea-type coating
US10100247B2 (en) 2013-05-17 2018-10-16 Preferred Technology, Llc Proppant with enhanced interparticle bonding
MX2015017048A (es) * 2013-08-19 2016-08-11 Halliburton Energy Services Inc Generacion de pulsos sismicos mediante fuerzas de compresion para mapear fracturas.
DE102013223891B4 (de) * 2013-11-22 2015-09-17 Joanneum Research Forschungsgesellschaft Mbh Kartuschendepositionssammler und Verfahren zur Eintragsmessung atmospärischer Stoffe
CA2926076C (en) 2013-11-22 2018-05-01 Halliburton Energy Services, Inc. Traceable polymeric additives for use in subterranean formations
US9428985B2 (en) 2013-12-24 2016-08-30 Baker Hughes Incorporated Swellable downhole structures including carbon nitride materials, and methods of forming such structures
US9790422B2 (en) 2014-04-30 2017-10-17 Preferred Technology, Llc Proppant mixtures
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture
CA2955691C (en) 2014-08-25 2019-02-12 Halliburton Energy Services, Inc. Crush-resistant proppant particulates for use in subterranean formation operations
WO2016089387A1 (en) 2014-12-03 2016-06-09 Halliburton Energy Services, Inc. Smart fracturing fluid
WO2016122449A1 (en) * 2015-01-26 2016-08-04 Halliburton Energy Services, Inc. Traceable micro-electro-mechanical systems for use in subterranean formations
US10665117B2 (en) 2015-03-06 2020-05-26 Timothy Just Drone encroachment avoidance monitor
US9862881B2 (en) 2015-05-13 2018-01-09 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
AR104606A1 (es) 2015-05-13 2017-08-02 Preferred Tech Llc Partícula recubierta
GB2540162B (en) * 2015-07-07 2018-02-21 Inst Energiteknik Tracers
WO2017129244A1 (de) 2016-01-28 2017-08-03 Wacker Chemie Ag Modifizierte reaktivharzzusammensetzungen und deren verwendung zur beschichtung von stützmitteln
CA3037299C (en) 2016-10-27 2021-08-31 Halliburton Energy Services, Inc. Electrically controlled propellant materials for subterranean zonal isolation and diversion
US11208591B2 (en) 2016-11-16 2021-12-28 Preferred Technology, Llc Hydrophobic coating of particulates for enhanced well productivity
US10696896B2 (en) 2016-11-28 2020-06-30 Prefferred Technology, Llc Durable coatings and uses thereof
US10684384B2 (en) 2017-05-24 2020-06-16 Baker Hughes, A Ge Company, Llc Systems and method for formation evaluation from borehole
US10385261B2 (en) 2017-08-22 2019-08-20 Covestro Llc Coated particles, methods for their manufacture and for their use as proppants
CN107656318B (zh) * 2017-08-25 2019-03-15 中国石油天然气股份有限公司 地质时间的确定方法和装置
WO2019103939A1 (en) 2017-11-22 2019-05-31 Mauro Arrambide Methods and means for fracture mapping in a well bore
RU2695411C1 (ru) * 2018-08-24 2019-07-23 Общество с ограниченной ответственностью "Газпромнефть Научно-Технический Центр" (ООО "Газпромнефть НТЦ") Способ определения геометрии трещин при гидроразрыве пласта (грп)
CN109577958A (zh) * 2018-11-02 2019-04-05 中国石油天然气股份有限公司 一种脉冲中子测井时间谱评价示踪陶粒压裂缝宽的方法
CN109577959B (zh) * 2019-01-23 2022-03-11 四川富利斯达石油科技发展有限公司 一种利用示踪剂测定相邻压裂段裂缝连通性的方法
KR20210037095A (ko) * 2019-09-27 2021-04-06 (주)제이비에이치 방열 입자 및 그 제조 방법

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34373A (en) * 1862-02-11 Improvement in oil-tanks
US199704A (en) * 1878-01-29 Improvement in dish-washers
US102345A (en) * 1870-04-26 Improvement in hoisting-machines
US3004161A (en) * 1957-05-22 1961-10-10 Jersey Prod Res Co Method of well logging
US3019341A (en) * 1957-11-04 1962-01-30 Well Surveys Inc Tracer logging by neutron activation
US3002091A (en) * 1958-11-03 1961-09-26 Frederick E Armstrong Method of tracing the flow of liquids by use of post radioactivation of tracer substances
US4034218A (en) * 1975-10-09 1977-07-05 Schlumberger Technology Corporation Focused detection logging technique
US4220205A (en) * 1978-11-28 1980-09-02 E. I. Du Pont De Nemours And Company Method of producing self-propping fluid-conductive fractures in rock
US4342911A (en) * 1979-12-28 1982-08-03 French Lewis L Focused nuclear interface survey instrument and method of determining density changes in mining and storage wells
US4426467A (en) 1981-01-12 1984-01-17 Borden (Uk) Limited Foundry molding compositions and process
US4471435A (en) * 1981-08-03 1984-09-11 Dresser Industries, Inc. Computer-based system for acquisition of nuclear well log data
US4439677A (en) * 1981-11-05 1984-03-27 Atlantic Richfield Company Wellbore fracture tracing
USRE32812E (en) 1982-01-21 1988-12-27 Borden (Uk) Limited Foundry moulds and cores
US4474904A (en) 1982-01-21 1984-10-02 Lemon Peter H R B Foundry moulds and cores
US4879181B1 (en) * 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4722220A (en) * 1984-09-28 1988-02-02 Schlumberger Technology Corp. Quantitative determination by elemental logging of subsurface formation properties
US4654266A (en) 1985-12-24 1987-03-31 Kachnik Joseph L Durable, high-strength proppant and method for forming same
US4731531A (en) * 1986-01-29 1988-03-15 Halliburton Company Method of logging a well using a non-radioactive material irradiated into an isotope exhibiting a detectable characteristic
US4694905A (en) 1986-05-23 1987-09-22 Acme Resin Corporation Precured coated particulate material
US4785884A (en) 1986-05-23 1988-11-22 Acme Resin Corporation Consolidation of partially cured resin coated particulate material
US4923714A (en) 1987-09-17 1990-05-08 Minnesota Mining And Manufacturing Company Novolac coated ceramic particulate
US4926940A (en) * 1988-09-06 1990-05-22 Mobil Oil Corporation Method for monitoring the hydraulic fracturing of a subsurface formation
US4958073A (en) * 1988-12-08 1990-09-18 Schlumberger Technology Corporation Apparatus for fine spatial resolution measurments of earth formations
US5243190A (en) * 1990-01-17 1993-09-07 Protechnics International, Inc. Radioactive tracing with particles
US5182051A (en) 1990-01-17 1993-01-26 Protechnics International, Inc. Raioactive tracing with particles
US5182061A (en) * 1990-07-20 1993-01-26 Nisshinbo Industries, Inc. Method of vibration-molding friction member
US5218038A (en) 1991-11-14 1993-06-08 Borden, Inc. Phenolic resin coated proppants with reduced hydraulic fluid interaction
CA2085932C (en) 1992-05-20 2003-07-29 Wayne Richard Walisser Resole melamine dispersions as adhesives
US5322126A (en) 1993-04-16 1994-06-21 The Energex Company System and method for monitoring fracture growth during hydraulic fracture treatment
US5413179A (en) * 1993-04-16 1995-05-09 The Energex Company System and method for monitoring fracture growth during hydraulic fracture treatment
US5442173A (en) * 1994-03-04 1995-08-15 Schlumberger Technology Corporation Method and system for real-time monitoring of earth formation fracture movement
US5619411A (en) * 1994-12-02 1997-04-08 Halliburton Company Enhanced vertical resolution processing of dual-spaced density tools
US5572021A (en) * 1995-05-01 1996-11-05 Halliburton Company Methods of detecting the locations of well treating fluids
US5916966A (en) 1995-06-06 1999-06-29 Borden Chemical, Inc. Stabilized phenolic resin melamine dispersions and methods of making same
US5733952A (en) 1995-10-18 1998-03-31 Borden Chemical, Inc. Foundry binder of phenolic resole resin, polyisocyanate and epoxy resin
US6528157B1 (en) * 1995-11-01 2003-03-04 Borden Chemical, Inc. Proppants with fiber reinforced resin coatings
NO965327L (no) * 1995-12-14 1997-06-16 Halliburton Co Sporbare brönnsementsammensetninger og metoder
US5847384A (en) * 1997-04-11 1998-12-08 Western Atlas International, Inc. Method for determining irregularities in a wellbore wall using a gamma-gamma well logging instrument
US5973321A (en) * 1997-06-11 1999-10-26 Western Atlas International, Inc. Method for determining multiple thermal neutron decay components from the capture gamma ray spectrum measured by a pulsed neutron instrument
US5921317A (en) * 1997-08-14 1999-07-13 Halliburton Energy Services, Inc. Coating well proppant with hardenable resin-fiber composites
US5952440A (en) 1997-11-03 1999-09-14 Borden Chemical, Inc. Water soluble and storage stable resole-melamine resin
ATE319772T1 (de) * 1998-07-22 2006-03-15 Hexion Specialty Chemicals Inc Stützmittelverbund, verbundstoff- filtrationsmedium und verfahren zu deren herstellung und verwendung
US6649682B1 (en) * 1998-12-22 2003-11-18 Conforma Clad, Inc Process for making wear-resistant coatings
US6288842B1 (en) 2000-02-22 2001-09-11 3M Innovative Properties Sheeting with composite image that floats
WO2002063341A1 (en) 2001-02-02 2002-08-15 Dbi Corporation Downhole telemetry and control system
US6691780B2 (en) 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US9540562B2 (en) 2004-05-13 2017-01-10 Baker Hughes Incorporated Dual-function nano-sized particles
WO2007013883A2 (en) * 2004-10-04 2007-02-01 Hexion Specialty Chemicals Inc. Method of estimating fracture geometry, compositions and articles used for the same
CA2593969C (en) 2005-02-04 2011-07-19 Oxane Materials, Inc. A composition and method for making a proppant
RU2412225C2 (ru) * 2005-08-09 2011-02-20 Хексион Спешелти Кемикалс, Инк. Способы и композиции для определения геометрии трещины в подземных пластах
US7404441B2 (en) 2006-02-27 2008-07-29 Geosierra, Llc Hydraulic feature initiation and propagation control in unconsolidated and weakly cemented sediments
US7482578B2 (en) 2006-06-12 2009-01-27 Lonkar Services, Ltd. Gamma radiation spectral logging system and method for processing gamma radiation spectra
US7933718B2 (en) 2006-08-09 2011-04-26 Momentive Specialty Chemicals Inc. Method and tool for determination of fracture geometry in subterranean formations based on in-situ neutron activation analysis
US7450053B2 (en) 2006-09-13 2008-11-11 Hexion Specialty Chemicals, Inc. Logging device with down-hole transceiver for operation in extreme temperatures
US7877246B2 (en) 2006-09-22 2011-01-25 Schlumberger Technology Corporation System and method for performing oilfield simulation operations
US8096361B2 (en) 2006-12-29 2012-01-17 Schlumberger Technology Corporation Stimulated oil production using reactive fluids
WO2009035436A1 (en) 2007-09-12 2009-03-19 Hexion Specialty Chemicals, Inc. Wellbore casing mounted device for determination of fracture geometry and method for using same
US8119576B2 (en) 2008-10-10 2012-02-21 Halliburton Energy Services, Inc. Ceramic coated particulates

Also Published As

Publication number Publication date
CA2618128A1 (en) 2007-02-15
US8129318B2 (en) 2012-03-06
US20100234249A1 (en) 2010-09-16
WO2007019585A2 (en) 2007-02-15
AU2006278239A1 (en) 2007-02-15
CA2618128C (en) 2012-10-09
US9243491B2 (en) 2016-01-26
RU2008108807A (ru) 2009-09-20
EP1913234A4 (en) 2015-04-01
CN101238270B (zh) 2013-05-01
CN101238270A (zh) 2008-08-06
BRPI0615152A2 (pt) 2013-01-01
EG25641A (en) 2012-04-19
US20070034373A1 (en) 2007-02-15
NO20080656L (no) 2008-04-17
US20120135894A1 (en) 2012-05-31
CA2747034A1 (en) 2007-02-15
US7726397B2 (en) 2010-06-01
EP1913234A2 (en) 2008-04-23
MX2008001674A (es) 2008-04-07
WO2007019585A3 (en) 2007-11-08
AU2006278239B2 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
RU2412225C2 (ru) Способы и композиции для определения геометрии трещины в подземных пластах
RU2491421C2 (ru) Способ и композиция для определения геометрии трещин подземных пластов
US20110272146A1 (en) Methods and compositions for determination of fracture geometry in subterranean formations
CA2582695C (en) Method of estimating fracture geometry, compositions and articles used for the same
US20190242232A1 (en) Identification of proppant in subterranean fracture zones using a ratio of capture to inelastic gamma rays
EP2252766B1 (en) Method of logging a well using a thermal neutron absorbing material
US9038715B2 (en) Use of PNC tools to determine the depth and relative location of proppant in fractures and the near borehole region
US11131788B2 (en) Capture gamma ray spectroscopy for analyzing gravel-packs, frac-packs and cement
WO2010056605A1 (en) Method and tool for determination of fracture geometry in subterranean formations based on in-situ neutron activation analysis

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner