RU2411689C2 - Способ и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры - Google Patents

Способ и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры Download PDF

Info

Publication number
RU2411689C2
RU2411689C2 RU2008104893/09A RU2008104893A RU2411689C2 RU 2411689 C2 RU2411689 C2 RU 2411689C2 RU 2008104893/09 A RU2008104893/09 A RU 2008104893/09A RU 2008104893 A RU2008104893 A RU 2008104893A RU 2411689 C2 RU2411689 C2 RU 2411689C2
Authority
RU
Russia
Prior art keywords
prediction mode
layer
intra prediction
mode
macroblock
Prior art date
Application number
RU2008104893/09A
Other languages
English (en)
Other versions
RU2008104893A (ru
Inventor
Пэн ИНЬ (US)
Пэн ИНЬ
Джилл МакДональд БОЙС (US)
Джилл МакДональд БОЙС
Пурвин Бибхас ПАНДИТ (US)
Пурвин Бибхас ПАНДИТ
Original Assignee
Томсон Лайсенсинг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Томсон Лайсенсинг filed Critical Томсон Лайсенсинг
Publication of RU2008104893A publication Critical patent/RU2008104893A/ru
Application granted granted Critical
Publication of RU2411689C2 publication Critical patent/RU2411689C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
    • H04N19/29Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding involving scalability at the object level, e.g. video object layer [VOL]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/31Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the temporal domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/36Scalability techniques involving formatting the layers as a function of picture distortion after decoding, e.g. signal-to-noise [SNR] scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/53Multi-resolution motion estimation; Hierarchical motion estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4456With liquid valves or liquid trap seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6416With heating or cooling of the system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Изобретение относится к кодированию и декодированию видеосигнала и, в частности, к способам и устройству для адаптивного к макроблоку межслойного предсказания внутренней текстуры. Техническим результатом является повышение эффективности кодирования с межслойным предсказанием внутренней текстуры видеосигнала. Указанный технический результат достигается тем, что предложены кодировщики и декодеры масштабируемого видеосигнала и соответствующие способы для масштабируемого кодирования и декодирования видеосигнала. Кодировщик масштабируемого видеосигнала включает в себя кодировщик (100) для избирательного использования пространственного внутреннего предсказания для кодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя. 12 н. и 24 з.п. ф-лы, 8 ил., 4 табл.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Эта заявка испрашивает приоритет по предварительной заявке на выдачу патента США под порядковым № 60/698140, зарегистрированной 11 июля 2005 года и озаглавленной «MACROBLOCK ADAPTIVE INTER-LAYER INTRA TEXTURE PREDICTION» («СПОСОБ И УСТРОЙСТВО ДЛЯ АДАПТИВНОГО К МАКРОБЛОКУ МЕЖСЛОЙНОГО ПРЕДСКАЗАНИЯ ВНУТРЕННЕЙ ТЕКСТУРЫ»), которая включена в материалы настоящей заявки посредством ссылки во всей своей полноте.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение в целом относится к кодировщикам и декодерам видеосигнала, а более точно, к способам и устройству для адаптивного к макроблоку межслойного предсказания внутренней текстуры.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Многие разные способы масштабируемости были широко изучены и стандартизованы, в том числе масштабируемости отношения сигнал/шум (SNR), пространственной масштабируемости, временной масштабируемости и мелкоструктурной масштабируемости, в профилях масштабируемости, например, стандарта Экспертной группы 2 по киноизображению (MPEG-2) Международной организации по стандартизации/Международной электротехнической комиссии (ISO/IEC) и стандарта H.264 части 10 MPEG-4 ISO/IEC/Международного союза электросвязи, сектора телекоммуникаций (ITU-T) (в дальнейшем «стандарт H.264»). Большинство схем масштабируемого кодирования видеосигнала достигают масштабируемости за счет эффективности кодирования. Таким образом, желательно улучшить эффективность кодирования наряду с добавлением, самое большее, незначительной сложности. Наиболее широко используемыми технологиями для пространственной масштабируемости и масштабируемости SNR являются технологии межслойного предсказания, в том числе межслойное предсказание внутренней текстуры, межслойное предсказание движения и межслойное предсказание разностного сигнала.
Для пространственной и относящейся к SNR масштабируемости введена высокая степень межслойного предсказания. Макроблоки с внутренним и внешним кодированием могут предсказываться с использованием соответствующих сигналов предыдущих слоев. Более того, описание движения в каждом слое может использоваться для предсказания описания движения для последующих слоев оптимизации. Эти технологии делятся на три категории: межслойное предсказание внутренней текстуры, межслойное предсказание движения и межслойное предсказание разностного сигнала.
В JSVM2.0 предсказание внутренней текстуры с использованием информации из предыдущего слоя предусмотрено в режиме макроблока INTRA_BL (макроблока с внутренним кодированием), где разностный сигнал слоя оптимизации (разность между текущим макроблоком (MB) и (подвергнутым повышающей дискретизации) базовым слоем) преобразуется и квантуется. Режим INTRA_BL очень эффективен, когда разностный сигнал слоя оптимизации не включает слишком большое количество граничной информации.
Следующие три возможные конфигурации могут применяться для режима INTRA_BL макроблока: неограниченное межслойное предсказание внутренней текстуры, ограниченное межслойное предсказание внутренней текстуры и ограниченное межслойное предсказание текстуры для одноциклового декодирования.
Касательно конфигурации неограниченного межслойного предсказания внутренней текстуры, межслойное предсказание внутренней текстуры может применяться к любому без ограничений блоку в слое, исходя из которого делаются предсказания. В этой конфигурации декодер должен декодировать все более низкие пространственные разрешения, которые предусмотрены в битовом потоке для восстановления целевого разрешения.
Касательно конфигурации ограниченного межслойного предсказания внутренней текстуры, межслойное предсказание внутренней текстуры может применяться к макроблокам, для которых соответствующие блоки базового слоя расположены внутри макроблоков с внутренним кодированием. При этом режиме обратная MCTF требуется только для пространственного слоя, который декодируется фактически. Для ключевых кадров требуются многочисленные циклы декодирования.
Касательно конфигурации ограниченного межслойного предсказания внутренней текстуры для одноциклового декодирования, межслойное предсказание внутренней текстуры может применяться к макроблокам, для которых соответствующие блоки базового слоя расположены внутри макроблоков с внутренним кодированием для MCTF, а также для ключевых кадров. В этой конфигурации требуется только один цикл декодирования при целевом пространственном разрешении.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
По поводу этих и других недостатков и затруднений предшествующего уровня техники приняты меры настоящим изобретением, которое направлено на способы и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры.
Согласно аспекту настоящего изобретения предложен масштабируемый кодировщик видеосигнала. Масштабируемый кодировщик видеосигнала включает в себя кодировщик для избирательного использования пространственного внутреннего предсказания для кодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя.
Согласно еще одному аспекту настоящего изобретения предложен способ для масштабируемого кодирования видеосигнала. Способ включает в себя избирательное использование пространственного внутреннего предсказания для кодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя.
Согласно еще одному другому аспекту настоящего изобретения предложен масштабируемый кодировщик видеосигнала. Масштабируемый кодировщик видеосигнала включает в себя кодировщик для кодирования слоя оптимизации с использованием как режима соседнего пространственного внутреннего предсказания в слое оптимизации, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
Согласно еще одному другому аспекту настоящего изобретения предложен способ для масштабируемого кодирования видеосигнала. Способ включает в себя кодирование слоя оптимизации с использованием как режима соседнего пространственного внутреннего предсказания в слое оптимизации, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
Согласно дополнительному аспекту настоящего изобретения предложен масштабируемый декодер видеосигнала. Масштабируемый декодер видеосигнала включает в себя декодер для избирательного использования пространственного внутреннего предсказания для декодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя.
Согласно дополнительному аспекту настоящего изобретения предложен способ для масштабируемого декодирования видеосигнала. Способ включает в себя избирательное использование пространственного внутреннего предсказания для декодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя.
Согласно добавочному дополнительному аспекту настоящего изобретения предложен масштабируемый декодер видеосигнала. Масштабируемый декодер видеосигнала включает в себя декодер для декодирования слоя оптимизации с использованием как режима соседнего пространственного внутреннего предсказания в слое оптимизации, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
Согласно еще одному добавочному аспекту настоящего изобретения предложен способ для масштабируемого декодирования видеосигнала. Способ включает в себя декодирование слоя оптимизации с использованием как режима соседнего пространственного внутреннего предсказания в слое оптимизации, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
Эти и другие аспекты, признаки и преимущества настоящего изобретения станут очевидными из последующего подробного описания примерных вариантов осуществления, которое должно читаться в связи с прилагаемыми чертежами.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Настоящее изобретение может быть лучше понято в соответствии со следующими примерными фигурами, среди которых:
фиг.1 показывает структурную схему для примерного кодировщика Объединенной масштабируемой модели видео (JVSM) 2.0, к которому могут быть применены настоящие принципы;
фиг.2 показывает структурную схему для примерного декодера, к которому могут быть применены настоящие принципы;
фиг.3 показывает блок-схему последовательности операций процесса кодирования для INTRA_BL, к которому могут быть применены настоящие принципы;
фиг.4 показывает блок-схему последовательности операций процесса декодирования для INTRA_BL, к которому могут быть применены настоящие принципы;
фиг.5 показывает блок-схему последовательности операций процесса кодирования для INTRA_BLS, к которому могут быть применены настоящие принципы;
фиг.6 показывает блок-схему последовательности операций процесса декодирования для INTRA_BLS, к которому могут быть применены настоящие принципы;
фиг.7 показывает блок-схему последовательности операций способа для примерного процесса кодирования для адаптивного к макроблоку выбора режимов INTRA_BL и INTRA_BLS в соответствии с настоящими принципами, и
фиг.8 показывает блок-схему последовательности операций примерного процесса декодирования для адаптивного к макроблоку выбора режимов INTRA_BL и INTRA_BLS в соответствии с настоящими принципами.
ПОДРОБНОЕ ОПИСАНИЕ
Настоящее изобретение направлено на способы и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры.
В большинстве схем масштабируемого кодирования видеосигнала введена высокая степень межслойного предсказания для пространственной и относящейся к SNR масштабируемости. Межслойное предсказание включает в себя межслойное предсказание внутренней текстуры, межслойное предсказание движения и межслойное предсказание разностного сигнала. В соответствии с настоящими принципами предложено новейшее межслойное предсказание внутренней текстуры. Более того, в соответствии с примерным вариантом их осуществления настоящие принципы могут сочетаться с существующим подходом в адаптивном к макроблоку способе для достижения дополнительной эффективности кодирования.
Настоящее описание иллюстрирует принципы настоящего изобретения. Соответственно, будет приниматься во внимание, что специалисты в данной области техники будут способны разработать различные компоновки, которые несмотря на то, что не описаны и не показаны в материалах настоящей заявки явным образом, воплощают принципы изобретения и включены в его сущность и объем.
Все примеры и условные формулировки, изложенные в материалах настоящей заявки, предназначены для образовательных целей, чтобы помочь читателю в понимании принципов изобретения и концепций, внесенных изобретателем в развитие данной области техники, и должны истолковываться в качестве существующих без ограничения такими ясно изложенными примерами и условиями.
Более того, все выражения в материалах настоящей заявки, излагающие принципы, аспекты и варианты осуществления изобретения, а также их конкретные примеры, предназначены для охвата как структурных, так и функциональных их эквивалентов. Дополнительно подразумевается, что такие эквиваленты включают в себя известные в настоящее время эквиваленты, а также эквиваленты, разработанные в будущем, то есть любые разработанные элементы, которые выполняют идентичную функцию, независимо от конструкции.
Таким образом, например, специалистами в данной области техники будет приниматься во внимание, что структурные схемы, представленные в материалах настоящей заявки, изображают концептуальные представления иллюстративных схем, воплощающих принципы изобретения. Подобным образом, будет приниматься во внимание, что любые блок-схемы последовательностей операций способов, диаграммы последовательностей операций, диаграммы переходов, псевдокод и тому подобное изображают различные последовательности операций, которые, по существу, могут быть представлены на машиночитаемых носителях и, значит, выполняться компьютером или процессором, показан или нет такой компьютер или процессор явным образом.
Функции различных элементов, показанных на фигурах, могут обеспечиваться благодаря использованию специализированных аппаратных средств, а также аппаратных средств, допускающих выполнение программного обеспечения в связи с надлежащим программным обеспечением. Когда предусмотрены процессором, функции могут обеспечиваться одиночным выделенным процессором, одиночным совместно используемым процессором или большим количеством отдельных процессоров, некоторые из которых могут совместно использоваться. Более того, явное использование термина «процессор» или «контроллер» не должно толковаться указывающим ссылкой исключительно на аппаратные средства, допускающие выполнение программного обеспечения, и может неявно включать в себя, без ограничения, аппаратные средства цифрового сигнального процессора («ЦСП», «DSP»), постоянное запоминающее устройство («ПЗУ», «ROM») для хранения программного обеспечения, оперативное запоминающее устройство («ОЗУ», «RAM») и энергонезависимую память.
Другие аппаратные средства, стандартные и/или сделанные на заказ, также могут быть включены в состав. Подобным образом, любые переключатели, показанные на фигурах, являются всего лишь понятийными. Их функция может выполняться благодаря работе программной логики, благодаря специализированной логике, благодаря взаимодействию программного управления и специализированной логики или даже вручную, конкретная технология является выбираемой конструктором так, как точнее понятна из контекста.
В формуле изобретения из этого документа любой элемент, выраженный в качестве средства для выполнения предписанной функции, предназначен для охвата любого способа выполнения такой функции, в том числе, например, а) сочетания элементов схемы, которые выполняют такую функцию, или b) программного обеспечения в любом виде, поэтому, заключая в себе микропрограммное обеспечение, микрокод или тому подобное, объединенные с надлежащей схемой для выполнения такого программного обеспечения, чтобы выполнять функцию. Изобретению, в качестве определенного такой формулой изобретения, свойственен тот факт, что функциональные возможности, предусмотренные различными перечисленными средствами, объединены и сведены вместе таким образом, к которому обязывает формула изобретения. Соответственно, считается, что любые средства, которые могут обеспечивать такие функциональные возможности, эквивалентны показанным в материалах настоящей заявки.
В соответствии с настоящими принципами предложены способ и устройство для межслойного предсказания внутренней текстуры. В соответствии с примерным вариантом осуществления межслойное предсказание внутренней текстуры усовершенствовано также посредством пространственного внутреннего предсказания разностного сигнала слоя оптимизации с использованием способа, заданного в подпункте 8.3 стандарта H.264 (характерный способ, заданный в подпункте 8.3, в материалах настоящей заявки также указывается ссылкой как INTRA_BLS) для пространственного внутреннего предсказания разностного сигнала слоя оптимизации.
Одна из причин для использования INTRA_BLS состоит в том, что для пространственной масштабируемости разностный сигнал слоя оптимизации вообще включает в себя много высокочастотных составляющих, таких как границы. Пространственное внутреннее предсказание должно помочь сохранять больше деталей, особенно при более высоких скоростях передачи битов. Однако подход по настоящим принципам может влечь за собой кодирование большего количества битов синтаксической структуры, чем в INTRA_BL, например, таких как mb_type, режимы внутреннего предсказания (PredMode) или шаблон cbp, если выбрано INTRA16×16 (внутреннее кодирование блока 16×16). Чтобы объединить преимущество обоих, INTRA_BL и INTRA_BLS, в соответствии с настоящими принципами предложен адаптивный к макроблоку подход для выбора INTRA_BL или INTRA_BLS. Чтобы сократить служебные данные пространственного внутреннего предсказания, в материалах настоящей заявки также предложен подход для упрощения синтаксической структуры посредством совместного рассмотрения способа внутреннего предсказания (подвергнутого повышающей дискретизации) базового слоя и наиболее вероятного режима из пространственных соседей в слое оптимизации.
Для режима INTRA_BL, на стороне декодера, межслойный разностный сигнал после обратного квантования и обратного преобразования добавляется непосредственно в (подвергнутый повышающей дискретизации) восстановленный базовый слой, чтобы сформировать восстановленный макроблок слоя оптимизации. Для режима INTRA_BLS, на стороне декодера, разностные сигналы соседних макроблоков из (подвергнутого повышающей дискретизации) восстановленного базового слоя корректируются прибавлением 128 и усечением до (0, 255), а затем используются для пространственного внутреннего предсказания для текущего макроблока, как задано в подпункте 8.3 стандарта H.264. Принятый разностный сигнал после обратного квантования и обратного преобразования затем добавляется в пространственное внутреннее предсказание. Затем выполняется вычитание 128 и усечение до (-256, 255). Подвергнутый межслойному внутреннему предсказанию разностный сигнал затем объединяется с (подвергнутым повышающей дискретизации) восстановленным базовым слоем, чтобы сформировать восстановленный макроблок слоя оптимизации.
Для предоставления возможности адаптивного к макроблоку выбора режима INTRA_BL и режима INTRA_BLS флаг, указываемый здесь как intra_bls_flag, используется, чтобы сигнализировать, какой режим используется для каждого макроблока. В стандарте H.264 для масштабируемого кодирования видеосигнала, если наложено ограничение для предоставления возможности режима INTRA_BLS, только когда соответствующий макроблок базового слоя закодирован как с внутренним кодированием. В таком случае base_mode_flag используется, чтобы указывать, может ли mb_type для текущего макроблока логически выводиться из соответствующего базового макроблока. intra_base_flag используется для указания, используется ли режим INTRA_BL. Когда соответствующий макроблок базового слоя закодирован как с внутренним кодированием, тогда base_mode_flag, являющийся равным единице, может использоваться для логического вывода, что intra_base_flag является равным 1, каковое означает, что может кодироваться только base_mode_flag, равный 1. Для сигнализации режима INTRA_BLS base_mode_flag может устанавливаться в 0, а intra_base_flag может устанавливаться в 1.
Обращаясь к фиг.1, примерный кодировщик версии 2.0 Объединенной масштабируемой модели видео (JVSM) (в дальнейшем «JSVM2.0»), к которому может быть применено настоящее изобретение, в целом указан номером 100 ссылки. Кодировщик 100 JSVM2.0 использует три пространственных слоя и временную фильтрацию с компенсацией движения. Кодировщик 100 JSVM включает в себя двумерный (2D) прореживатель 104, 2D-прореживатель 106 и модуль 108 временной фильтрации с компенсацией движения (MCTF), каждый из которых имеет вход для приема данных 102 видеосигнала.
Выход 2D-прореживателя 106 соединен сигнальной связью со входом модуля 110 MCTF. Первый выход модуля 110 MCTF соединен сигнальной связью со входом кодировщика 112 движения, а второй выход модуля 110 MCTF соединен сигнальной связью со входом модуля 116 предсказания. Первый выход кодировщика 112 движения соединен сигнальной связью с первым входом мультиплексора 114. Второй выход кодировщика 112 движения соединен сигнальной связью с первым входом кодировщика 124 движения. Первый выход модуля 116 предсказания соединен сигнальной связью со входом пространственного преобразователя 118. Выход пространственного преобразователя 118 соединен сигнальной связью со вторым входом мультиплексора 114. Второй выход модуля 116 предсказания соединен сигнальной связью со входом интерполятора 120. Выход интерполятора соединен сигнальной связью с первым входом модуля 122 предсказания. Первый выход модуля 122 предсказания соединен сигнальной связью со входом пространственного преобразователя 126. Выход пространственного преобразователя 126 соединен сигнальной связью со вторым входом мультиплексора 114. Второй выход модуля 122 предсказания соединен сигнальной связью со входом интерполятора 130. Выход интерполятора 130 соединен сигнальной связью с первым входом модуля 134 предсказания. Выход модуля 134 предсказания соединен сигнальной связью с пространственным преобразователем 136. Выход пространственного преобразователя соединен сигнальной связью со вторым входом мультиплексора 114.
Выход 2D-прореживателя 104 соединен сигнальной связью со входом модуля 128 MCTF. Первый выход модуля 128 MCTF соединен сигнальной связью со вторым входом кодировщика 124 движения. Первый выход кодировщика 124 движения соединен сигнальной связью с первым входом мультиплексора 114. Второй выход кодировщика 124 движения соединен сигнальной связью с первым входом кодировщика 132 движения. Второй выход модуля 128 MCTF соединен сигнальной связью со вторым входом модуля 122 предсказания.
Первый выход модуля 108 MCTF соединен сигнальной связью со вторым входом кодировщика 132 движения. Выход кодировщика 132 движения соединен сигнальной связью с первым входом мультиплексора 114. Второй выход модуля 108 MCTF соединен сигнальной связью со вторым входом модуля 134 предсказания. Выход мультиплексора 114 выдает выходной битовый поток 138.
Для каждого пространственного слоя выполняется временное разложение с компенсацией движения. Это разложение обеспечивает временную масштабируемость. Информация о движении из нижних пространственных слоев может использоваться для предсказания движения в верхних слоях. Для кодирования текстуры пространственное предсказание между следующими один за другим пространственными слоями может применяться для устранения избыточности. Разностный сигнал, являющийся следствием внутреннего предсказания или внешнего предсказания с компенсацией движения, кодируется с преобразованием. Разностный сигнал качества базового слоя обеспечивает минимальное качество восстановления в каждом пространственном слое. Этот базовый слой может кодироваться в совместимый со стандартом H.264 поток, если не применяется никакое межслойное предсказание. Для масштабируемости качества слои оптимизации качества дополнительно кодируются. Эти слои оптимизации могут выбираться для обеспечения крупно- или мелкоструктурной масштабируемости качества (SNR).
Обращаясь к фиг.2, примерный масштабируемый декодер видеосигнала, к которому может быть применено настоящее изобретение, в целом указан номером 200 ссылки. Вход демультиплексора 202 доступен в качестве входа в масштабируемый декодер 200 видеосигнала для приема масштабируемого битового потока. Первый выход демультиплексора 202 соединен сигнальной связью со входом масштабируемого по SNR энтропийного декодера 204 с обратным пространственным преобразованием. Первый выход масштабируемого по SNR энтропийного декодера 204 с обратным пространственным преобразованием соединен сигнальной связью с первым входом модуля 206 предсказания. Выход модуля 206 предсказания соединен сигнальной связью с первым входом модуля 208 обратной MCTF.
Второй выход масштабируемого по SNR энтропийного декодера 204 с обратным пространственным преобразованием соединен сигнальной связью с первым входом декодера 210 вектора движения (MV). Выход декодера 210 MV соединен сигнальной связью со вторым входом модуля 208 обратной MCTF.
Второй выход демультиплексора 202 соединен сигнальной связью со входом масштабируемого по SNR энтропийного декодера 212 с обратным пространственным преобразованием. Первый выход масштабируемого по SNR энтропийного декодера 212 с обратным пространственным преобразованием соединен сигнальной связью с первым входом модуля 214 предсказания. Первый выход модуля 214 предсказания соединен сигнальной связью со входом модуля 216 интерполяции. Выход модуля 216 интерполяции соединен сигнальной связью со вторым входом модуля 206 предсказания. Второй выход модуля 214 предсказания соединен сигнальной связью с первым входом модуля 218 обратной MCTF.
Второй выход масштабируемого по SNR энтропийного декодера 212 с обратным пространственным преобразованием соединен сигнальной связью с первым входом декодера 220 MV. Первый выход декодера 220 MV соединен сигнальной связью со вторым входом декодера 210 MV. Второй выход декодера 220 MV соединен сигнальной связью со вторым входом модуля 218 обратной MCTF.
Третий выход демультиплексора 202 соединен сигнальной связью со входом масштабируемого по SNR энтропийного декодера 222 с обратным пространственным преобразованием. Первый выход масштабируемого по SNR энтропийного декодера 222 с обратным пространственным преобразованием соединен сигнальной связью со входом модуля 224 предсказания. Первый выход модуля 224 предсказания соединен сигнальной связью со входом модуля 226 интерполяции. Выход модуля 226 интерполяции соединен сигнальной связью со вторым входом модуля 214 предсказания.
Второй выход модуля 224 предсказания соединен сигнальной связью с первым входом модуля 228 обратной MCTF. Второй выход масштабируемого по SNR энтропийного декодера 222 с обратным пространственным преобразованием соединен сигнальной связью со входом декодера 230 MV. Первый выход декодера 230 MV соединен сигнальной связью со вторым входом декодера 220 MV. Второй выход декодера 230 MV соединен сигнальной связью со вторым входом модуля 228 обратной MCTF.
Выход модуля 228 обратной MCTF доступен в качестве выхода декодера 200 для выдачи сигнала слоя 0. Выход модуля 218 обратной MCTF доступен в качестве выхода декодера 200 для выдачи сигнала слоя 1. Выход модуля 208 обратной MCTF доступен в качестве выхода декодера 200 для выдачи сигнала слоя 2.
Таблица 1 иллюстрирует, каким образом интерпретируется синтаксическая структура для режима INTRA_BL и режима INTRA_BLS, когда режимом соответствующего базового слоя является режим с внутренним кодированием. Если режимом соответствующего слоя не является режим с внутренним кодированием, INTRA_BL указывается посредством base_mode_flag=0 и intra_base_flag=1, а INTRA_BLS не разрешен.
Таблица 1
base_mode_flag intra_base_flag
INTRA_BL 1 1 (выводится логически)
INTRA_BLS 0 1
Обращаясь к фиг.3, последовательность операций кодирования для INTRA_BL, к которой могут применяться настоящие принципы, в целом указана номером 300 ссылки. Должно быть принято во внимание, что последовательность 300 операций кодирования для INTRA_BL была модифицирована для добавления поля синтаксической структуры в заголовке макроблока, как описано относительно функционального этапа 317.
Начальный этап 305 передает управление на функциональный этап 310. Функциональный этап 310 осуществляет повышающую дискретизацию соответствующего макроблока базового слоя и передает управление на функциональный этап 315. Функциональный этап 315 вычисляет разностный сигнал между текущим макроблоком в слое оптимизации и соответствующим подвергнутым повышающей дискретизации макроблоком базового слоя и передает управление на функциональный этап 317. Функциональный этап 317 записывает синтаксическую структуру «intra_bls_flag» на уровне макроблока и передает управление на функциональный этап 320. Функциональный этап 320 преобразует и квантует разностный сигнал и передает управление на функциональный этап 325. Функциональный этап 325 осуществляет энтропийное кодирование преобразованного и квантованного разностного сигнала, чтобы сформировать кодированный битовый поток, и передает управление на конечный этап 330.
Обращаясь к фиг.4, последовательность операций декодирования для INTRA_BL, к которой могут применяться настоящие принципы, указана номером 400 ссылки. Должно быть принято во внимание, что последовательность 400 операций декодирования для INTRA_BL была модифицирована для чтения поля синтаксической структуры в заголовке макроблока, как описано относительно функционального этапа 412.
Начальный этап 405 передает управление на функциональный этап 410 и функциональный этап 415. Функциональный этап 410 осуществляет энтропийное декодирование кодированного битового потока, чтобы выдавать несжатый битовый поток, и передает управление на функциональный этап 412. Функциональный этап 412 считывает синтаксическую структуру «intra_bls_flag» на уровне макроблока и передает управление на функциональный этап 420. Функциональный этап 420 осуществляет обратное преобразование и обратное квантование несжатого битового потока, чтобы выдавать декодированный разностный сигнал, и передает управление на функциональный этап 425. Функциональный этап 415 осуществляет повышающую дискретизацию соответствующего макроблока базового слоя и передает управление на функциональный этап 425.
Функциональный этап 425 объединяет декодированный разностный сигнал и подвергнутый повышающей дискретизации макроблок базового слоя, передает управление на функциональный этап 430. Функциональный этап 430 восстанавливает соответствующий макроблок в слое оптимизации и передает управление на конечный этап 435.
Обращаясь к фиг.5, последовательность операций кодирования для INTRA_BLS, к которой могут применяться настоящие принципы, указана номером 500 ссылки.
Начальный этап 505 передает управление на функциональный этап 510. Функциональный этап 510 осуществляет повышающую дискретизацию соответствующего макроблока базового слоя и соседей соответствующего макроблока базового слоя и передает управление на функциональный этап 515. Функциональный этап 515 вычисляет разностный сигнал между текущим макроблоком и пространственным соседом текущего макроблока в слое оптимизации и соответствующим подвергнутым повышающей дискретизации макроблоком базового слоя, затем прибавляет 128 и усекает до {0, 255} и передает управление на функциональный этап 520. Функциональный этап 520 применяет пространственное внутреннее предсказание по пространственным соседям текущего макроблока и передает управление на функциональный этап 525. Функциональный этап 525 вычисляет разностный сигнал после пространственного внутреннего предсказания и передает управление на функциональный этап 530. Функциональный этап 530 преобразует и квантует разностный сигнал и передает управление на функциональный этап 535. Функциональный этап 535 осуществляет энтропийное кодирование преобразованного и квантованного разностного сигнала, чтобы сформировать кодированный битовый поток, и передает управление на конечный этап 540.
Обращаясь к фиг.6, последовательность операций декодирования для INTRA_BLS, к которой могут применяться настоящие принципы, указана номером 600 ссылки.
Начальный этап 605 передает управление на функциональный этап 610 и функциональный этап 635. Функциональный этап 610 осуществляет повышающую дискретизацию соответствующего макроблока базового слоя и соседей соответствующего макроблока базового слоя и передает управление на функциональный этап 615. Функциональный этап 615 вычисляет разностный сигнал между пространственными соседями текущего макроблока в слое оптимизации и соответствующим подвергнутым повышающей дискретизации макроблоком базового слоя, затем прибавляет 128 и усекает до {-256, 255} и передает управление на функциональный этап 620. Функциональный этап 620 применяет пространственное внутреннее предсказание по пространственным соседям текущего макроблока и передает управление на функциональный этап 625.
Функциональный этап 635 осуществляет энтропийное декодирование кодированного битового потока, чтобы выдавать несжатый битовый поток, и передает управление на функциональный этап 640. Функциональный этап 640 осуществляет обратное преобразование и обратное квантование несжатого битового потока, чтобы выдавать декодированный разностный сигнал предсказания, и передает управление на функциональный этап 625.
Функциональный этап 625 объединяет декодированный разностный сигнал предсказания с пространственным внутренним предсказанием исходя из пространственных соседей текущего макроблока, чтобы выдавать сумму, и передает управление на функциональный этап 630. Функциональный этап 630 вычитает 128 из суммы, чтобы получить разность, усекает разность до {-256, 256} и добавляет усеченную разность к соответствующему подвергнутому повышающей дискретизации макроблоку базового слоя, передает управление на конечный этап 635.
Обращаясь к фиг.7, примерная последовательность операций кодирования для адаптивного к макроблоку выбора режимов INTRA_BL и INTRA_BLS указана номером 700 ссылки.
Начальный этап 705 передает управление на функциональный этап 710, функциональный этап 715 и функциональный этап 720. Функциональные этапы 710, 720 и 730 проверяют INTRA_BL, INTRA_BLS и другие режимы предсказания соответственно и передают управление на функциональный этап 725. Функциональный этап 725 выбирает наилучший режим предсказания из числа INTRA_BL, INTRA_BLS и других режимов предсказания и передает управление на конечный этап 730.
Обращаясь к фиг.8, примерная последовательность операций декодирования для адаптивного к макроблоку выбора режимов INTRA_BL и INTRA_BLS указана номером 800 ссылки.
Начальный этап 805 передает управление на этап 810 принятия решения. Этап 810 принятия решения определяет, кодировался или нет текущий макроблок с использованием режима INTRA_BL. Если нет, то управление передается на этап 815 принятия решения. Иначе управление передается на функциональный этап 830.
Этап 815 принятия решения определяет, кодировался или нет текущий макроблок с использованием режима INTRA_BLS. Если нет, то управление передается на функциональный этап 820. Иначе управление передается на функциональный этап 835.
Функциональный этап 830 декодирует текущий макроблок с использованием режима INTRA_BL и передает управление на функциональный этап 825.
Функциональный этап 835 декодирует текущий макроблок с использованием режима INTRA_BLS и передает управление на функциональный этап 825.
Функциональный этап 820 декодирует текущий макроблок с использованием другого режима предсказания (иного, чем INTRA_BL или INTRA_BLS) и передает управление на функциональный этап 825.
Функциональный этап 825 выводит декодированный текущий макроблок и передает управление на конечный этап 840.
Таблица 2 указывает синтаксическую структуру для задания предсказания intra_4×4 блока сигнала яркости 4×4 с индексом luma4×4BlkIdx=0..15.
Таблица 2
Figure 00000001
Intra4х4PredMode[ luma4х4BlkIdx ] выводится применением следующей процедуры, где A и B - левый и верхний соседи блока сигнала яркости 4х4:
Figure 00000002
В стандарте H.264 PredMode соседнего пространственного блока используется для сокращения служебных данных, чтобы кодировать предсказание intra4х4. В варианте осуществления, относящемся к схеме масштабируемого кодирования видеосигнала для слоя оптимизации, если соответствующий макроблок базового слоя закодирован как с внутренним кодированием, предлагается кодировать PredMode intra4х4 на основании как PredMode intra4х4 подвергнутого повышающей дискретизации базового слоя, так и его соседнего пространственного блока PredMode в слое оптимизации, как показано в равенстве 1, где F - произвольная функция.
Intra4х4PredMode = F (intraMхMPredModeA, intraMхMPredModeB, intraMхMPredModeBase) (1)
Таблица 3 показывает синтаксическую структуру, удовлетворяющую равенству (1) и используемую для задания RredMode intra4х4 на основании обоих, PredMode intra4х4 базового слоя и PredMode его соседнего пространственного блока в слое оптимизации, когда соответствующий макроблок базового слоя закодирован как с внутренним кодированием.
Таблица 3
Figure 00000003
Intra4х4PredMode[ luma4х4Blkldx ] выводится применением следующей процедуры:
Figure 00000004
Figure 00000005
Таблица 4 показывает синтаксическую структуру, удовлетворяющую равенству (1) и используемую для задания PredMode intra4х4. В таблице 4 intra4х4PredMode принудительно применяется к равноценному predIntra4х4PredMode, если predIntra4х4PredMode= =intraMхMPredModeBase.
Таблица 4
Figure 00000006
Intra4х4PredMode[ luma4х4Blkldx ] выводится применением следующей процедуры:
Figure 00000007
Должно быть принято во внимание, что несмотря на то, что вышеприведенные описание и примеры относятся к использованию PredMode intra4х4, настоящие принципы не являются настолько ограниченными, и, соответственно, при заданных доктринах настоящих принципов, предусмотренных в материалах настоящей заявки, рядовой специалист в этой и относящихся к делу областях техники будет предполагать этот и другие режимы, к которым могут применяться настоящие принципы, наряду с сохранением объема настоящего изобретения. Например, настоящие принципы также могут применяться, но не в качестве ограничения, к PredMode intra8х8.
Далее будет дано описание некоторых из многочисленных сопутствующих преимуществ/признаков настоящего изобретения. Например, одним из преимуществ/признаков является масштабируемый кодировщик видеосигнала, который включает в себя кодировщик для избирательного использования пространственного внутреннего предсказания для кодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и макроблоком соответствующего подвергнутой повышающей дискретизации базового слоя. Еще одно преимущество/признак состоит в масштабируемом кодировщике видеосигнала, как описанный выше, в котором пространственное внутреннее предсказание, используемое для кодирования разностного сигнала слоя оптимизации, совместимо с существующими технологиями внутреннего пространственного предсказания. Еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, как описанный выше, при этом кодировщик добавляет поле синтаксической структуры в заголовок макроблока, чтобы указывать, какой режим предсказания используется для разностного сигнала слоя оптимизации. Более того, еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, как описанный выше, при этом кодировщик модифицирует существующую синтаксическую структуру, чтобы обеспечивать логический вывод в отношении того, какой режим предсказания используется для разностного сигнала слоя оптимизации, когда режимом предсказания базового слоя является с внутренним кодированием. Кроме того, еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, который модифицировал существующую синтаксическую структуру, как описано выше, при этом кодировщик использует режим предсказания иной, чем пространственное внутреннее предсказание, для кодирования разностного сигнала слоя оптимизации, когда режим предсказания базового слоя ограничен межслойным. Кроме того, еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, как описанный выше, при этом упомянутый кодировщик определяет, какой режим предсказания следует использовать в слое оптимизации из числа разных имеющихся в распоряжении режимов предсказания, включающих в себя режим остаточного сигнала слоя оптимизации без пространственного внутреннего предсказания, режим разностного сигнала слоя оптимизации с пространственным внутренним предсказанием и режим пикселя слоя оптимизации с пространственным внутренним предсказанием. Дополнительно еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала для определения, какой режим предсказания следует использовать в слое оптимизации, как описано выше, при этом кодировщик определяет, какой режим предсказания следует использовать для слоя оптимизации, из разных имеющихся в распоряжении режимов предсказания на основании апостериорных критериев для принятия решения, или на последней статистике разных имеющихся в распоряжении режимов предсказания и свойств остаточного сигнала слоя оптимизации и пикселей слоя оптимизации. Более того, еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, который включает в себя кодировщик для кодирования слоя оптимизации с использованием как режима соседнего пространственного внутреннего предсказания в слое оптимизации, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя. Кроме того, еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, как описанный выше, при этом кодировщик добавляет флаг в заголовок макроблока без сигнализирования режима предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое оптимизации, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя. Кроме того, еще одним преимуществом/признаком является масштабируемый кодировщик видеосигнала, как описанный выше, при этом кодировщик вынуждает текущий режим внутреннего предсказания быть таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, без отправки соответствующей синтаксической структуры, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя. Дополнительно еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, который включает в себя декодер для избирательного использования пространственного внутреннего предсказания для декодирования, на адаптивной к макроблоку основе, разностного сигнала слоя оптимизации, сформированного между макроблоком слоя оптимизации и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя. Более того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, как описанный выше, в котором пространственное внутреннее предсказание, используемое для декодирования разностного сигнала слоя оптимизации, совместимо с существующими технологиями внутреннего пространственного предсказания. Кроме того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, как описанный выше, при этом декодер определяет, какой режим предсказания следует использовать для разностного сигнала слоя оптимизации, с использованием поля синтаксической структуры в заголовке макроблока. Кроме того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, как описанный выше, при этом декодер оценивает логический вывод, предусмотренный в модифицированной существующей синтаксической структуре, в отношении того, какой режим предсказания использовался для кодирования разностного сигнала слоя оптимизации, когда режимом предсказания базового слоя является режим с внутренним кодированием. Дополнительно еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, который модифицирует существующую синтаксическую структуру, как описано выше, при этом декодер использует режим предсказания иной, чем пространственное внутреннее предсказание, для кодирования разностного сигнала слоя оптимизации, когда режим предсказания базового слоя ограничен межслойным. Более того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, при этом декодер определяет режим предсказания для использования в разностном сигнале слоя оптимизации на основании синтаксически проанализированной синтаксической структуры, режим предсказания определяется из числа любого из режима остаточного сигнала слоя оптимизации без пространственного внутреннего предсказания, режима разностного сигнала слоя оптимизации с пространственным внутренним предсказанием и режима пикселя слоя оптимизации с пространственным внутренним предсказанием. Кроме того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, который включает в себя декодер для декодирования слоя оптимизации с использованием как режима соседнего пространственного внутреннего предсказания в слое оптимизации, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя. Дополнительно еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, как описанный выше, при этом декодер вынуждает текущий режим внутреннего предсказания быть таким же, как режим подвергнутого повышающей дискретизации соответствующего базового слоя, без приема соответствующей синтаксической структуры, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя. Более того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, как описанный выше, при этом декодер определяет, какой режим внутреннего предсказания следует использовать для слоя оптимизации, на основании флага в заголовке макроблока. Кроме того, еще одним преимуществом/признаком является масштабируемый декодер видеосигнала, как описанный выше, при этом декодер определяет режим внутреннего предсказания для слоя оптимизации являющимся таким же, как режим подвергнутого повышающей дискретизации соответствующего базового слоя, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим подвергнутого повышающей дискретизации соответствующего базового слоя.
Эти и другие признаки и преимущества настоящего изобретения могут быть без труда выяснены рядовым специалистом в относящейся к делу области техники на основании доктрин, приведенных в материалах настоящей заявки. Должно быть понятно, что доктрины настоящего изобретения могут быть реализованы в различных видах аппаратных средств, программного обеспечения, микропрограммного обеспечения, процессорах специального назначения или их комбинации.
Наиболее предпочтительно доктрины настоящего изобретения реализуются в качестве комбинации аппаратных средств и программного обеспечения. Более того, программное обеспечение может быть реализовано в качестве прикладной программы, реально воплощенной в устройстве хранения программ. Прикладная программа может выгружаться в и выполняться машиной, содержащей любую подходящую архитектуру. Предпочтительно машина реализована на компьютерной платформе, содержащей аппаратные средства, такие как один или более центральных процессоров («ЦП», «CPU»), оперативное запоминающее устройство («ОЗУ») и интерфейсы ввода/вывода («I/O»). Компьютерная платформа также может включать в себя операционную систему и микрокомандный код. Различные последовательности операций и функции, описанные в материалах настоящей заявки, могут быть либо частью микрокомандного кода, либо частью прикладной программы, или любой их комбинацией, которая может выполняться ЦП. В дополнение различные другие периферийные устройства могут быть присоединены к компьютерной платформе, такие как дополнительное устройство хранения данных и печатающее устройство.
Кроме того, должно быть понятно, что, так как некоторые из составляющих компонентов и способов системы, изображенных на прилагаемых чертежах, предпочтительно реализованы в программном обеспечении, реальные связи между компонентами системы или функциональными этапами последовательности операций могут отличаться в зависимости от способа, которым запрограммировано настоящее изобретение. При заданных доктринах, приведенных в материалах настоящей заявки, специалист в относящейся к делу области техники будет способен предполагать эти и подобные реализации или конфигурации настоящего изобретения.
Несмотря на то что иллюстративные варианты осуществления были раскрыты в материалах настоящей заявки со ссылкой на прилагаемые чертежи, должно быть понятно, что настоящее изобретение не ограничено такими отдельно взятыми вариантами осуществления и что различные изменения и модификации могут быть осуществлены в нем рядовым специалистом в относящейся к делу области техники, не выходя из объема и сущности настоящего изобретения. Все такие изменения и модификации подразумеваются включенными в объем настоящего изобретения, как изложено в прилагаемой формуле изобретения.

Claims (36)

1. Устройство масштабируемого кодирования видео, содержащее кодировщик (100) для избирательного использования пространственного внутреннего предсказания для кодирования, используя адаптивный к макроблоку подход для выбора режима предсказания INTRA_BL или INTRA_BLS, разностного сигнала слоя расширения, сформированного между макроблоком слоя расширения и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя.
2. Устройство по п.1, в котором пространственное внутреннее предсказание, используемое для кодирования разностного сигнала слоя расширения, является совместимым с технологиями пространственного внутреннего предсказания по стандарту Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T).
3. Устройство по п.1, в котором упомянутый кодировщик (100) добавляет поле синтаксической структуры в заголовок макроблока, чтобы указывать, какой режим предсказания используется для разностного сигнала слоя расширения.
4. Устройство по п.1, в котором кодировщик (100) модифицирует синтаксическую структуру по стандарту Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T), чтобы выдать логический вывод в отношении того, какой режим предсказания используется для разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с внутрикадровым предсказанием.
5. Устройство по п.4, в котором упомянутый кодировщик (100) использует режим предсказания, иной, чем пространственное внутреннее предсказание, для кодирования разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с межкадровым предсказанием.
6. Устройство по п.1, в котором упомянутый кодировщик (100) определяет, какой режим предсказания следует использовать в слое расширения из числа разных имеющихся в распоряжении режимов предсказания, причем разные имеющиеся в распоряжении режимы предсказания содержат режим разностного сигнала слоя расширения без пространственного внутреннего предсказания, режим разностного сигнала слоя расширения с пространственным внутренним предсказанием и режим пикселей слоя расширения с пространственным внутренним предсказанием.
7. Устройство по п.6, в котором упомянутый кодировщик (100) определяет, какой режим предсказания следует использовать для слоя расширения из упомянутых разных имеющихся в распоряжении режимов предсказания, на основании апостериорных критериев принятия решения или прошлой статистики разных имеющихся в распоряжении режимов предсказания и свойств разностного сигнала слоя расширения и пикселей слоя расширения.
8. Способ масштабируемого кодирования видеосигнала, содержащий этап, на котором избирательно используют (710, 715, 720) пространственное внутреннее предсказание для кодирования, используя адаптивный к макроблоку подход для выбора режима предсказания INTRA_BL или INTRA_BLS, разностного сигнала слоя расширения, сформированного между макроблоком слоя расширения и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя, причем пространственное внутреннее предсказание, используемое для кодирования разностного сигнала слоя расширения, является совместимым с технологиями пространственного внутреннего предсказания по стандарту (900) Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T).
9. Способ по п.8, дополнительно содержащий этап, на котором добавляют (317) поле синтаксической структуры в заголовок макроблока, чтобы указывать, какой режим предсказания используется для разностного сигнала слоя расширения.
10. Способ по п.8, дополнительно содержащий этап, на котором модифицируют (200) синтаксическую структуру по стандарту Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T), чтобы выдать логический вывод в отношении того, какой режим предсказания используется для разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с внутрикадровым предсказанием.
11. Способ по п.10, дополнительно содержащий этап, на котором используют (720) режим предсказания, иной, чем пространственное внутреннее предсказание, для кодирования разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с межкадровым предсказанием.
12. Способ по п.8, дополнительно содержащий этап, на котором определяют (710, 715, 720), какой режим предсказания следует использовать в слое расширения, из числа разных имеющихся в распоряжении режимов предсказания, причем разные имеющиеся в распоряжении режимы предсказания содержат режим разностного сигнала слоя расширения без пространственного внутреннего предсказания, режим разностного сигнала слоя расширения с пространственным внутренним предсказанием и режим пикселей слоя расширения с пространственным внутренним предсказанием.
13. Способ по п.12, дополнительно содержащий этап, на котором определяют (715), какой режим предсказания следует использовать для слоя расширения из разных имеющихся в распоряжении режимов предсказания, на основании апостериорных критериев принятия решения или прошлой статистики разных имеющихся в распоряжении режимов предсказания и свойств разностного сигнала слоя расширения и пикселей слоя расширения.
14. Устройство масштабируемого кодирования видео, содержащее кодировщик (100) для кодирования слоя расширения с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, при этом упомянутый кодировщик (100) добавляет флаг в заголовок макроблока без сигнализирования о режиме предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое расширения, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
15. Устройство по п.14, в котором упомянутый кодировщик (100) вынуждает текущий режим внутреннего предсказания быть таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, без отправки соответствующей синтаксической структуры, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
16. Способ масштабируемого кодирования видеосигнала, содержащий этапы, на которых кодируют (310, 315) слой расширения с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, и дополнительно добавляют (317) флаг в заголовок макроблока без сигнализирования режима предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое расширения, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
17. Способ по п.16, дополнительно содержащий этап, на котором вынуждают (520) текущий режим внутреннего предсказания быть таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, без отправки соответствующей синтаксической структуры, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
18. Устройство масштабируемого декодирования видео, содержащее декодер (200) для избирательного использования пространственного внутреннего предсказания для декодирования, используя адаптивный к макроблоку подход для выбора режима предсказания INTRA_BL или INTRA_BLS, разностного сигнала слоя расширения, сформированного между макроблоком слоя расширения и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя.
19. Устройство по п.18, в котором пространственное внутреннее предсказание, используемое для декодирования слоя расширения, является совместимым с технологиями пространственного внутреннего предсказания по стандарту Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T).
20. Устройство по п.18, в котором упомянутый декодер (200) определяет, какой режим предсказания использовать для разностного сигнала слоя расширения, используя поле синтаксической структуры в заголовке макроблока.
21. Устройство по п.18, в котором декодер (200) оценивает логический вывод, обеспеченный в модифицированной синтаксической структуре по стандарту Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T), в отношении того, какой режим предсказания использовался для кодирования разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с внутрикадровым предсказанием.
22. Устройство по п.21, в котором упомянутый декодер (200) использует режим предсказания, иной, чем пространственное внутреннее предсказание, для декодирования разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с межкадровым предсказанием.
23. Устройство по п.18, в котором упомянутый декодер (200) определяет режим предсказания для использования с разностным сигналом слоя расширения на основании проанализированной синтаксической структуры, причем режим предсказания определяется из числа любого из режима остаточного сигнала слоя расширения без пространственного внутреннего предсказания, режима разностного сигнала слоя расширения с пространственным внутренним предсказанием и режима пикселей слоя расширения с пространственным внутренним предсказанием.
24. Способ масштабируемого декодирования видеосигнала, содержащий этапы, на которых избирательно используют (830, 835) пространственное внутреннее предсказание для декодирования, используя адаптивный к макроблоку подход для выбора режима предсказания INTRA_BL или INTRA_BLS, разностного сигнала слоя расширения, сформированного между макроблоком слоя расширения и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя, и дополнительно определяют (412), какой режим предсказания следует использовать для разностного сигнала слоя расширения, с использованием поля синтаксической структуры в заголовке макроблока.
25. Способ по п.24, в котором пространственное внутреннее предсказание, используемое для декодирования разностного сигнала слоя расширения, является совместимым с технологиями пространственного внутреннего предсказания по стандарту (900) Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T).
26. Способ по п.24, дополнительно содержащий этап, на котором оценивают (1000, 1100) вывод, обеспеченный в модифицированной синтаксической структуре по стандарту Н.264 Международного союза электросвязи, сектора телекоммуникаций (ITU-T), в отношении того, какой режим предсказания использовался для кодирования разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с внутрикадровым предсказанием.
27. Способ по п.26, дополнительно содержащий этап, на котором используют (720) режим предсказания, иной, чем пространственное внутреннее предсказание, для декодирования разностного сигнала слоя расширения, когда режимом предсказания базового слоя является режим с межкадровым предсказанием.
28. Способ по п.24, дополнительно содержащий этап, на котором определяют (900, 1000, 1100), на основании проанализированной синтаксической структуры, какой режим предсказания следует использовать в разностном сигнале слоя расширения, из числа режима разностного сигнала слоя расширения без пространственного внутреннего предсказания, режима разностного сигнала слоя расширения с пространственным внутренним предсказанием и режима пикселя слоя расширения с пространственным внутренним предсказанием.
29. Устройство масштабируемого декодирования видео, содержащее декодер (200) для декодирования слоя расширения с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, причем упомянутый декодер (200) вынуждает текущий режим внутреннего предсказания быть таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, без приема соответствующей синтаксической структуры, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
30. Устройство по п.29, в котором упомянутый декодер (200) определяет, какой режим внутреннего предсказания следует использовать для слоя расширения, на основании флага в заголовке макроблока.
31. Устройство по п.29, в котором упомянутый декодер (200) определяет режим внутреннего предсказания для слоя расширения как являющийся таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
32. Способ масштабируемого декодирования видеосигнала, содержащий этапы, на которых декодируют (415, 425) слой расширения с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, вынуждают (415, 425) текущий режим внутреннего предсказания быть таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, без приема соответствующей синтаксической структуры, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
33. Способ масштабируемого декодирования видеосигнала, содержащий этапы, на которых декодируют (415, 425) слой расширения с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, определяют (412), какой режим внутреннего предсказания следует использовать для слоя расширения, на основании флага в заголовке макроблока и добавляют флаг в заголовок макроблока без сигнализирования о режиме предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое расширения, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
34. Способ масштабируемого декодирования видеосигнала, содержащий этапы, на которых декодируют (415, 425) слой расширения с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, определяют (415, 425) режим внутреннего предсказания для слоя расширения как являющийся таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, когда режим соседнего пространственного внутреннего предсказания является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя, и добавляют флаг в заголовок макроблока без сигнализирования о режиме предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое расширения, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
35. Видеосигнал для масштабируемого кодирования видеосигнала, содержащий: разностный сигнал слоя расширения, сформированный между макроблоком слоя расширения и соответствующим макроблоком подвергнутого повышающей дискретизации базового слоя, избирательно кодированный с использованием пространственного внутреннего предсказания на адаптивной к макроблоку основе, и дополнительно содержащий добавленный флаг в заголовке макроблока без сигнализирования о режиме предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое расширения, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
36. Видеосигнал для масштабируемого кодирования видеосигнала, содержащий: слой расширения, кодированный с использованием как режима соседнего пространственного внутреннего предсказания в слое расширения, так и режима предсказания подвергнутого повышающей дискретизации соответствующего базового слоя и дополнительно содержащий добавленный флаг в заголовке макроблока без сигнализирования о режиме предсказания, когда режим соседнего пространственного внутреннего предсказания, используемый в слое расширения, является таким же, как режим предсказания подвергнутого повышающей дискретизации соответствующего базового слоя.
RU2008104893/09A 2005-07-11 2006-05-18 Способ и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры RU2411689C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69814005P 2005-07-11 2005-07-11
US60/698,140 2005-07-11

Publications (2)

Publication Number Publication Date
RU2008104893A RU2008104893A (ru) 2009-08-20
RU2411689C2 true RU2411689C2 (ru) 2011-02-10

Family

ID=37637458

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008104893/09A RU2411689C2 (ru) 2005-07-11 2006-05-18 Способ и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры

Country Status (12)

Country Link
US (1) US8374239B2 (ru)
EP (1) EP1902586B1 (ru)
JP (1) JP5008664B2 (ru)
KR (1) KR101326610B1 (ru)
CN (1) CN101248674B (ru)
AU (1) AU2006269728B2 (ru)
BR (1) BRPI0612643A8 (ru)
MX (1) MX2008000522A (ru)
RU (1) RU2411689C2 (ru)
TW (1) TW200718216A (ru)
WO (1) WO2007008286A1 (ru)
ZA (1) ZA200800261B (ru)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340177B2 (en) 2004-07-12 2012-12-25 Microsoft Corporation Embedded base layer codec for 3D sub-band coding
US8442108B2 (en) 2004-07-12 2013-05-14 Microsoft Corporation Adaptive updates in motion-compensated temporal filtering
US8374238B2 (en) 2004-07-13 2013-02-12 Microsoft Corporation Spatial scalability in 3D sub-band decoding of SDMCTF-encoded video
US7956930B2 (en) 2006-01-06 2011-06-07 Microsoft Corporation Resampling and picture resizing operations for multi-resolution video coding and decoding
US8711925B2 (en) 2006-05-05 2014-04-29 Microsoft Corporation Flexible quantization
US8199812B2 (en) 2007-01-09 2012-06-12 Qualcomm Incorporated Adaptive upsampling for scalable video coding
KR101365575B1 (ko) * 2007-02-05 2014-02-25 삼성전자주식회사 인터 예측 부호화, 복호화 방법 및 장치
US20090161757A1 (en) * 2007-12-21 2009-06-25 General Instrument Corporation Method and Apparatus for Selecting a Coding Mode for a Block
US8750390B2 (en) 2008-01-10 2014-06-10 Microsoft Corporation Filtering and dithering as pre-processing before encoding
US8160132B2 (en) 2008-02-15 2012-04-17 Microsoft Corporation Reducing key picture popping effects in video
US8953673B2 (en) 2008-02-29 2015-02-10 Microsoft Corporation Scalable video coding and decoding with sample bit depth and chroma high-pass residual layers
US8711948B2 (en) 2008-03-21 2014-04-29 Microsoft Corporation Motion-compensated prediction of inter-layer residuals
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
BRPI0915971A2 (pt) * 2008-07-25 2019-02-26 Sony Corp aparelho e método de processamento de imagem
US9571856B2 (en) 2008-08-25 2017-02-14 Microsoft Technology Licensing, Llc Conversion operations in scalable video encoding and decoding
US8213503B2 (en) 2008-09-05 2012-07-03 Microsoft Corporation Skip modes for inter-layer residual video coding and decoding
TWI440363B (zh) 2009-02-19 2014-06-01 Sony Corp Image processing apparatus and method
TWI463878B (zh) 2009-02-19 2014-12-01 Sony Corp Image processing apparatus and method
TWI468020B (zh) * 2009-02-19 2015-01-01 Sony Corp Image processing apparatus and method
WO2011005063A2 (en) * 2009-07-10 2011-01-13 Samsung Electronics Co., Ltd. Spatial prediction method and apparatus in layered video coding
JP5625342B2 (ja) * 2009-12-10 2014-11-19 ソニー株式会社 画像処理方法、画像処理装置、プログラム
FR2954035B1 (fr) * 2009-12-11 2012-01-20 Thales Sa Procede d'estimation de la qualite video a une resolution quelconque
KR101040087B1 (ko) * 2010-01-13 2011-06-09 전자부품연구원 H.264 svc를 위한 효율적인 부호화 방법
JP5428886B2 (ja) * 2010-01-19 2014-02-26 ソニー株式会社 情報処理装置、情報処理方法、及びそのプログラム
JP5703781B2 (ja) 2010-09-03 2015-04-22 ソニー株式会社 画像処理装置および方法
CN103098471B (zh) * 2010-09-14 2016-07-06 三星电子株式会社 用于多层画面编码/解码的设备和方法
EP2628298A1 (en) * 2010-10-12 2013-08-21 Dolby Laboratories Licensing Corporation Joint layer optimization for a frame-compatible video delivery
JP5490046B2 (ja) * 2011-03-22 2014-05-14 株式会社東芝 伝送装置
JP2013012846A (ja) * 2011-06-28 2013-01-17 Sony Corp 画像処理装置及び画像処理方法
KR102176539B1 (ko) * 2011-10-26 2020-11-10 인텔렉추얼디스커버리 주식회사 인트라 예측 모드 스케일러블 코딩 방법 및 장치
KR102029401B1 (ko) 2011-11-11 2019-11-08 지이 비디오 컴프레션, 엘엘씨 깊이-맵 추정 및 업데이트를 사용한 효율적인 멀티-뷰 코딩
EP2777273B1 (en) 2011-11-11 2019-09-04 GE Video Compression, LLC Efficient multi-view coding using depth-map estimate for a dependent view
EP2781091B1 (en) 2011-11-18 2020-04-08 GE Video Compression, LLC Multi-view coding with efficient residual handling
JP2013126157A (ja) * 2011-12-15 2013-06-24 Sony Corp 画像処理装置及び画像処理方法
US20150092844A1 (en) * 2012-03-16 2015-04-02 Electronics And Telecommunications Research Institute Intra-prediction method for multi-layer images and apparatus using same
CN104247423B (zh) * 2012-03-21 2018-08-07 联发科技(新加坡)私人有限公司 可伸缩视频编码系统的帧内模式编码方法和装置
WO2013168952A1 (ko) * 2012-05-08 2013-11-14 엘지전자 주식회사 인터 레이어 예측 방법 및 이를 이용하는 장치
WO2013176495A1 (ko) * 2012-05-25 2013-11-28 엘지전자 주식회사 인터 레이어 예측 방법 및 이를 이용하는 장치
WO2014002375A1 (ja) * 2012-06-26 2014-01-03 三菱電機株式会社 動画像符号化・復号装置及び方法
US9955154B2 (en) * 2012-06-29 2018-04-24 Intel Corporation Systems, methods, and computer program products for scalable video coding based on coefficient sampling
JP2015167267A (ja) * 2012-07-03 2015-09-24 シャープ株式会社 画像復号装置、および画像符号化装置
US9319684B2 (en) * 2012-08-21 2016-04-19 Qualcomm Incorporated Alternative transform in scalable video coding
WO2014047881A1 (en) 2012-09-28 2014-04-03 Intel Corporation Inter-layer intra mode prediction
EP2904803A1 (en) 2012-10-01 2015-08-12 GE Video Compression, LLC Scalable video coding using derivation of subblock subdivision for prediction from base layer
CN102883164B (zh) * 2012-10-15 2016-03-09 浙江大学 一种增强层块单元的编解码方法、对应的装置
US9247256B2 (en) 2012-12-19 2016-01-26 Intel Corporation Prediction method using skip check module
US10542286B2 (en) 2012-12-19 2020-01-21 ARRIS Enterprise LLC Multi-layer video encoder/decoder with base layer intra mode used for enhancement layer intra mode prediction
CN104885457B (zh) * 2013-01-02 2017-03-29 杜比实验室特许公司 用于视频信号的向后兼容编码和解码的方法和装置
US10516898B2 (en) 2013-10-10 2019-12-24 Intel Corporation Systems, methods, and computer program products for scalable video coding based on coefficient sampling
FR3012935A1 (fr) * 2014-05-20 2015-05-08 Thomson Licensing Procede et dispositif de codage d'images video, procede et dispositif de decodage d'un flux de donnees, programme d'ordinateur et support de stockage correspondants
CN106507111B (zh) * 2016-11-17 2019-11-15 上海兆芯集成电路有限公司 使用残差补偿的视频编码方法以及使用该方法的装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122875A (en) 1991-02-27 1992-06-16 General Electric Company An HDTV compression system
GB9301270D0 (en) 1993-01-22 1993-03-17 Unilever Plc Dilution-thickening,personal washing composition
CA2127151A1 (en) 1993-09-21 1995-03-22 Atul Puri Spatially scalable video encoding and decoding
US5922664A (en) 1995-01-30 1999-07-13 Colgate-Palmolive Co. Pourable detergent concentrates which maintain or increase in viscosity after dilution with water
CA2215795A1 (en) 1995-04-10 1996-10-17 Unilever Plc Improvements relating to light duty cleaning
BR9603346A (pt) 1996-08-08 1998-05-05 Unilever Nv Processo sinérgico de limpeza pessoal
US6603883B1 (en) * 1998-09-08 2003-08-05 Canon Kabushiki Kaisha Image processing apparatus including an image data encoder having at least two scalability modes and method therefor
US6271187B1 (en) 1999-12-01 2001-08-07 Ecolab Inc. Hand soap concentrate, use solution and method for modifying a hand soap concentrate
EP1249131B1 (en) * 1999-12-22 2004-03-17 General Instrument Corporation Video compression for multicast environments using spatial scalability and simulcast coding
US6493387B1 (en) * 2000-04-10 2002-12-10 Samsung Electronics Co., Ltd. Moving picture coding/decoding method and apparatus having spatially scalable architecture and signal-to-noise ratio scalable architecture together
JP4965429B2 (ja) * 2004-04-02 2012-07-04 トムソン ライセンシング 複雑度スケーラブルなビデオエンコーダの方法及び装置
US7132963B2 (en) * 2004-09-13 2006-11-07 Ati Technologies Inc. Methods and apparatus for processing variable length coded data
KR20060027779A (ko) * 2004-09-23 2006-03-28 엘지전자 주식회사 영상 블록의 시간상 및 공간상 상관관계를 이용한영상신호의 엔코딩 및 디코딩 방법과 장치
US20060153295A1 (en) * 2005-01-12 2006-07-13 Nokia Corporation Method and system for inter-layer prediction mode coding in scalable video coding
EP1711018A1 (en) * 2005-04-08 2006-10-11 Thomson Licensing Method and apparatus for encoding video pictures, and method and apparatus for decoding video pictures
KR100703774B1 (ko) * 2005-04-13 2007-04-06 삼성전자주식회사 인트라 코딩을 선택적으로 적용하여 인트라 bl 예측모드의 비디오 신호를 인코딩 및 디코딩하는 방법 및 장치
KR100896279B1 (ko) * 2005-04-15 2009-05-07 엘지전자 주식회사 영상 신호의 스케일러블 인코딩 및 디코딩 방법
US7974341B2 (en) * 2005-05-03 2011-07-05 Qualcomm, Incorporated Rate control for multi-layer video design
US20090187960A1 (en) * 2008-01-17 2009-07-23 Joon Hui Lee IPTV receiving system and data processing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN S., FRANCOIS Е, Extended Spatial Scalability with picture-level adaptation, JOINT VIDEO TEAM (JVT) OF ISO/IEC MPEG & ITU-T VCEG, JVT-O008, 15TH MEETING, Busan, 16-22 April 2005, c.c.1-20. *
YIN P. et al, Complexity Scalable Video Codec, ISO/IEC JTC1/SC29/WG11 DOC. №M11241, PALMA October 2004. DUGAD R. et al, A scheme for spatial scalability using nonscalable encoders, INTERNATIONAL TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY vol.13, no.10, 10 October 2003, c.993-999. РИЧАРДСОН ЯН. Видеокодирование H.264 и MPEG-4 - стандарты нового поколения. - М.: Техносфера, 2005, официальный перевод издания 2003, с.186-205, 222-233. *

Also Published As

Publication number Publication date
MX2008000522A (es) 2008-03-06
CN101248674B (zh) 2013-12-04
AU2006269728A1 (en) 2007-01-18
BRPI0612643A8 (pt) 2018-08-14
JP2009500981A (ja) 2009-01-08
TW200718216A (en) 2007-05-01
BRPI0612643A2 (pt) 2010-11-23
JP5008664B2 (ja) 2012-08-22
EP1902586A4 (en) 2010-12-01
RU2008104893A (ru) 2009-08-20
US20090074061A1 (en) 2009-03-19
KR20080023727A (ko) 2008-03-14
ZA200800261B (en) 2009-08-26
EP1902586A1 (en) 2008-03-26
WO2007008286A1 (en) 2007-01-18
EP1902586B1 (en) 2014-09-24
CN101248674A (zh) 2008-08-20
AU2006269728B2 (en) 2011-11-03
US8374239B2 (en) 2013-02-12
KR101326610B1 (ko) 2013-11-08

Similar Documents

Publication Publication Date Title
RU2411689C2 (ru) Способ и устройство для адаптивного к макроблоку межслойного предсказания внутренней текстуры
RU2406253C2 (ru) Способ и устройство для взвешенного предсказания для масштабируемого кодирования видеосигнала
US8311121B2 (en) Methods and apparatus for weighted prediction in scalable video encoding and decoding
CN101601300B (zh) 用自适应增强层预测对位深度可分级视频数据进行编码和/或解码的方法和设备
JP5869493B2 (ja) ビデオ符号化および復号化のためのテンプレート・マッチング予測の適応型残差更新のための方法および装置
US8867618B2 (en) Method and apparatus for weighted prediction for scalable video coding
KR100984612B1 (ko) 비디오 화상에 대한 글로벌 모션 보상
US9113167B2 (en) Coding a video signal based on a transform coefficient for each scan position determined by summing contribution values across quality layers
US8428143B2 (en) Coding scheme enabling precision-scalability
KR100964641B1 (ko) 복합형 비디오 부호화에서의 예측 에러의 적응 부호화 기술
CN101529911B (zh) 用于对多层比特流数据进行信号指示的方法和系统
CN105430405A (zh) 视频解码装置、视频解码方法以及程序
MXPA06002496A (es) Codificacion y descodificacion de plano de bit para estado de prediccion ac e informacion de tipo de codificacion de campo/marco de macrobloque.
CN101507282A (zh) 用于组合多层比特流中的层的方法和系统
CN105103563A (zh) 在可伸缩视频编码中的量化矩阵信令和表示的方法和装置
TWI796637B (zh) 視訊編解碼之二次轉換發信方法和裝置
CN111726622B (zh) 视频编解码的方法、装置及介质
KR102507024B1 (ko) 디지털 이미지/비디오 자료를 인코딩 및 디코딩하는 방법 및 장치
JP2017073598A (ja) 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
US20100215103A1 (en) Method and apparatus for weighted prediction for scalable video coding
KR20080013843A (ko) 동영상의 무손실 부호화, 복호화 방법 및 장치
GB2512828A (en) Method and apparatus for encoding or decoding an image with inter layer motion information prediction

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20190927

PC41 Official registration of the transfer of exclusive right

Effective date: 20191206