RU2410774C2 - Способ реэкстракции плутония из органического раствора трибутилфосфата - Google Patents

Способ реэкстракции плутония из органического раствора трибутилфосфата Download PDF

Info

Publication number
RU2410774C2
RU2410774C2 RU2009114114A RU2009114114A RU2410774C2 RU 2410774 C2 RU2410774 C2 RU 2410774C2 RU 2009114114 A RU2009114114 A RU 2009114114A RU 2009114114 A RU2009114114 A RU 2009114114A RU 2410774 C2 RU2410774 C2 RU 2410774C2
Authority
RU
Russia
Prior art keywords
plutonium
concentration
extraction
carbohydrazide
mol
Prior art date
Application number
RU2009114114A
Other languages
English (en)
Other versions
RU2009114114A (ru
Inventor
Владимир Иванович Волк (RU)
Владимир Иванович Волк
Константин Николаевич Двоеглазов (RU)
Константин Николаевич Двоеглазов
Екатерина Юрьевна Павлюкевич (RU)
Екатерина Юрьевна Павлюкевич
Петр Михайлович Гаврилов (RU)
Петр Михайлович Гаврилов
Юрий Александрович Ревенко (RU)
Юрий Александрович Ревенко
Владимир Викторович Бондин (RU)
Владимир Викторович Бондин
Сергей Иванович Бычков (RU)
Сергей Иванович Бычков
Сергей Николаевич Алексеенко (RU)
Сергей Николаевич Алексеенко
Владимир Николаевич Алексеенко (RU)
Владимир Николаевич Алексеенко
Юрий Григорьевич Кривицкий (RU)
Юрий Григорьевич Кривицкий
Валерий Иванович Марченко (RU)
Валерий Иванович Марченко
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (ОАО "ВНИИНМ")
Федеральное государственное унитарное предприятие "Горно-химический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Открытое акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (ОАО "ВНИИНМ"), Федеральное государственное унитарное предприятие "Горно-химический комбинат" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2009114114A priority Critical patent/RU2410774C2/ru
Publication of RU2009114114A publication Critical patent/RU2009114114A/ru
Application granted granted Critical
Publication of RU2410774C2 publication Critical patent/RU2410774C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Removal Of Specific Substances (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Изобретение относится к области регенерации плутония из отработанного ядерного топлива (ОЯТ) водными методами. На операциях отделения плутония от урана и на операции аффинажа плутония в качестве его восстановителя используется карбогидразид CO(N2H3)2 в концентрации от 0.2 до 1.0 моль/л. Нижний предел концентрации восстановителя обусловлен необходимостью обеспечения достаточно высокой скорости восстановления Pu(IV); верхний предел концентрации выбран из соображений экономии карбогидразида. Рабочая область концентрации азотной кислоты для проведения процесса реэкстракции плутония карбогидразидом находится в интервале от 0.25 до 1.0 моль/л НNО3. Этот интервал обеспечивает отсутствие риска полимеризации плутония при низкой кислотности и полноту его реэкстракции. Температура, при которой проводится процесс реэкстракции (от 20 до 35°С), соответствует реальным производственным условиям, специальная операция для нагревания растворов не требуется. Технический результат - достижение высокой полноты реэкстракции плутония из органического раствора трибутилфосфата без образования азотистоводородной кислоты. 2 з.п. ф-лы, 1 табл.

Description

Предлагаемое изобретение относится к области регенерации плутония из отработанного ядерного топлива (ОЯТ) водными методами. Процесс переработки ОЯТ включает операции растворения топлива в азотной кислоте, извлечения из полученного водного раствора урана в шестивалентном состоянии и плутония в четырехвалентном состоянии экстракцией органическим раствором трибутилфосфата (ТБФ) в инертном разбавителе, разделения U и Pu и аффинажной очистки Pu от продуктов деления.
Разделение U и Pu осуществляется путем контактирования органической фазы, содержащей U(VI) и Pu(IV), с водным раствором, содержащим восстановитель, который переводит плутоний в плохо экстрагируемое трехвалентное состояние (уран при этом остается в хорошо экстрагируемом шестивалентном состоянии). Восстановительная реэкстракция плутония используется также при проведении другой стандартной технологической операции - аффинажной очистки плутония после отделения его от урана, которая включает экстракцию плутония в виде Pu(IV) раствором ТБФ и реэкстракцию плутония в водную фазу слабокислотным раствором восстановителя.
На стадии разделения U и Pu на всех современных заводах по переработке ОЯТ используется раствор четырехвалентного урана в смеси с т.н. «стабилизатором» - нитратом гидразина, N2H5NO3, который предохраняет U(IV) и Pu(III) от окисления азотистой кислотой (продуктом разложения азотной кислоты) благодаря высокой скорости реакции между N2H5NO3 и HNO2.
На операции аффинажа для восстановительной реэкстракции плутония используется нитрат гидроксиламина, NH3OHNO3. Гидроксиламин неустойчив в азотнокислых растворах из-за автокаталитического окисления по реакциям
NH3OH++2HNO3→3HNO2+H++H2O
NH3OH++HNO2→N2O+Н++2H2O
и его неустойчивость возрастает в присутствии ионов железа, присутствующих в технологических растворах от коррозии аппаратуры, и ионов плутония [Марченко В.И., Журавлева Г.И., Двоеглазов К.Н., Савилова О.А. // Хим. технология. 2007. Т. 8, № 7. С.318-323]. В технологической практике для того, чтобы избежать разложения гидроксиламина вместе с ним, в состав реэкстрагирующего водного раствора при реэкстракции плутония вводится гидразин [Aochima A., Yamanouchi T., Ichimura Т., Shikakura S. // Proceed. Int. Conf. «GLOBAL'2007». Boise, Idaho, Sept. 9-13, V. 1. P. 355-360; Anzai К., Hishi Т., Hayashibara H., Koiwa Y. // Proc. «GLOBAL' 2005». Tsukuba, Japan. Oct. 9-13, 2005. Paper № 406], препятствующий накоплению азотистой кислоты вследствие значительно более высокой скорости реакции между N2H5NO3 и HNO2 по сравнению со скоростью реакции между NH3OHNO3 и HNO2.
Общий существенный недостаток обоих способов реэкстракции плутония состоит в применении в составе реэкстрагирующего раствора гидразина, продуктом взаимодействия которого с азотистой кислотой является азотистоводородная кислота, HN3, - легколетучее соединение, образующее с некоторыми компонентами технологических растворов (иодом и ионами тяжелых металлов, в частности палладия) бризантные соединения (азиды), представляющие потенциальную опасность с точки зрения безопасного проведения процесса. Азотистоводородная кислота хорошо экстрагируется трибутилфосфатом и в процессе экстракционной переработки ОЯТ основная ее часть в конечном итоге локализуется в жидких отходах среднего уровня активности (САО). Присутствие азотистоводородной кислоты в жидких САО осложняет утилизацию этого вида отходов из-за необходимости предварительного разрушения HN3 перед проведением операции их упаривания [Дзекун Е.Г., Машкин А.Н., Потапов В.П. и др. // Третья Росс.конф. по радиохимии «Радиохимия-2000». С.-Пб., 2000. Тез. докл. с.172; Митрошин И.Е., Шевцев П.П., Полунин А.К. // Вторая Всеросс.конф. по радиохимии. Димитровград, 1997. Тез. докл. с.223]. Присутствие HN3 не позволяет также объединить среднеактивные отходы с жидкими отходами высокого уровня активности для их совместной переработки и последующего захоронения, что препятствует решению в целом проблемы обращения с жидкими радиоактивными отходами, образующимися в процессе водной переработки ОЯТ.
Техническая задача предлагаемого изобретения заключается в достижении высокой полноты реэкстракции плутония из органического раствора ТБФ без образования азотистоводородной кислоты.
Указанная задача решается путем контактирования органического раствора трибутилфосфата, содержащего плутоний в четырехвалентном состоянии, с водным раствором, содержащим восстановитель, переводящий плутоний в трехвалентное состояние, причем в качестве восстановителя плутония используется карбогидразид СО(N2H3) при его концентрации от 0,2 до 1,0 моль/л. Нижний предел концентрации восстановителя обусловлен необходимостью обеспечения достаточно высокой скорости восстановления Pu(IV); верхний предел концентрации выбран из соображений экономии карбогидразида. Рабочая область концентрации азотной кислоты для проведения процесса реэкстракции плутония карбогидразидом находится в интервале от 0.25 до 1.0 моль/л HNO3. Нижнее значение этого интервала связано с необходимостью избежать риска полимеризации плутония при низкой кислотности, а верхнее значение ограничено скоростью и полнотой реэкстракции плутония. Температура, при которой проводится процесс реэкстракции (от 20 до 35°С), охватывает рабочий интервал температуры окружающей среды в реальных технологических (производственных) условиях, и при реализации процесса в этих условиях не потребуется специальной операции для нагревания растворов.
Карбогидразид хорошо растворим в разбавленной азотной кислоте, устойчив при хранении при комнатной температуре в растворах HNO3 вплоть до ее концентрации 7 моль/л, при упаривании его азотнокислых растворов разлагается без образования осадка.
Карбогидразид быстро восстанавливает Pu(IV) до Pu(III) в слабокислом водном растворе, причем скорость восстановления Pu(IV) увеличивается при уменьшении концентрации HNO3. При [HNO3]≤1 моль/л и комнатной температуре карбогидразид полностью переводит Pu(IV) в Pu(III) в течение нескольких секунд, причем образующийся Pu(III) остается устойчивым к окислению и в растворах, содержащих 50 г/л урана(VI) и 100 мг/л Tc(VII).
Карбогидразид в отличие от гидразина не образует азотистовородной кислоты при взаимодействии с азотистой кислотой. Взаимодействие карбогидразида с азотистой кислотой протекает с высокой скоростью (реакция полностью заканчивается за время смешивания реагентов при комнатной температуре), что позволяет обеспечить устойчивость Pu(III) к окислению в растворе с концентрацией HNO3 до 2 моль/л без введения традиционно применяемого стабилизатора - гидразина.
Ниже приводятся примеры осуществления способа.
Пример 1
В делительную воронку заливали 15 мл 0,5 моль/л водного раствора карбогидразида в 0,5 моль/л азотной кислоте и добавляли к нему равный объем 30 об.% раствора ТБФ в н-додекане, содержащего 1 г/л Pu(IV). Содержимое делительной воронки перемешивали встряхиванием при температуре окружающей среды (~20°С) в делительной воронке в течение 5 мин. По окончании перемешивания фазы разделяли и определяли концентрацию плутония в органической фазе радиометрическим, а в водной - спектрофотометрическим методом; в водной фазе также определяли концентрацию Н+-ионов потенциометрически. Анализ показал, что после реэкстракции в органической фазе содержится 3,9 мг/л плутония, а в водной фазе 995 мг/л. Коэффициент распределения плутония D, рассчитанный по формуле D=[Pu]орг/[Pu]водн, где [Pu]орг и [Pu]водн - концентрации плутония в органической и водной фазах соответственно равен 0.004, а степень реэкстракции плутония (α) из органической фазы в водную составила 99,6%.
Пример 2
Методика проведения экспериментов при температуре 35°С не отличалась от описанной в примере 1, за исключением того, что предварительно органическую и водную фазы перед введением в делительную воронку нагревали в отдельных сосудах до требуемой температуры. Перемешивание фаз производили механической мешалкой, а через водяную рубашку делительной воронки циркулировала вода из термостата с температурой 35°С. В делительную воронку заливали 15 мл 0,2 моль/л водного раствора карбогидразида в 0,5 моль/л азотной кислоте и добавляли к нему равный объем 30 об.% раствора ТБФ в н-додекане, содержащий 1 г/л Pu(IV). Анализ показал, что после реэкстракции в органической фазе содержится 5,9 мг/л плутония, а в водной фазе 995 мг/л. Коэффициент распределения плутония D равен 0.006, а степень реэкстракции плутония (α) из органической фазы в водную составила 99,4%.
Пример 3
В делительную воронку заливали 15 мл раствора, содержащего 0,2 моль/л карбогидразида, 74 г/л урана(VI) и 0,5 моль/л азотной кислоты, и добавляли к нему равный объем 30 об.% раствора ТБФ в н-додекане, содержащего 1 г/л плутония, 74 г/л урана(VI). Концентрацию урана(VI) и азотной кислоты в растворах определяли объемным и потенциометрическим методами соответственно. Анализ показал, что после реэкстракции в органической фазе содержится 0,59 мг/л плутония, а в водной фазе 1000 мг/л. Коэффициент распределения плутония D равен 0.0006, а степень реэкстракции плутония (α) из органической фазы в водную составила 99,94%.
Результаты этих и других экспериментов приведены в таблице. Видно, что в оптимальных условиях экспериментально определяемое значение D соответствует величине коэффициента распределения Pu(III), что указывает на полное восстановление плутония до трехвалентного состояния. Из данных таблицы следует, что применение карбогидразида в оптимальных условиях позволяет за один контакт перевести плутоний из органического раствора ТБФ в водную фазу более чем на 99% как в отсутствие, так и в присутствии урана(V1).
Таблица.
Величины коэффициента распределения (D) и степени реэкстракции (α) плутония при восстановлении Pu(IV) в двухфазной системе: органический раствор 30 об.%. ТБФ в н-додекане / водный раствор HNO3 с карбогидразидом.
КГ - карбогидразид, τ - продолжительность контакта водной и органической фаз, [U(VI)] - концентрация урана в исходном органическом растворе.
№ оп [НNО3]водн, моль/л [КГ], моль/л Т, °С [U(VI)], г/л τ, мин D α, %
1 0.25 0.2 20 0 5 0.006 99.4
2 0.5 0.2 20 0 15 0.013 98.7
3 0.5 0.2 35 0 15 0.006 99.4
4 0.5 0.4 20 0 5 0.008 99.2
5 0.5 0.5 20 0 5 0.004 99.6
6 0.5 0.2 20 74 15 0.008 99.2
7 0.5 0.2 35 74 15 0.0006 99.94
8 1.0 0.3 20 0 15 0.045 95.5
9 1.0 0.5 35 0 15 0.013 98.7
10 1.0 1.0 20 0 5 0.001 99.9
11 1.0 0.5 20 74 15 0.01 99.0
12 1.0 0.5 35 74 15 0.0009 99.9
Полнота перевода плутония в водную фазу увеличивается с ростом концентрации карбогидразида и температуры, а также и при уменьшении концентрации азотной кислоты в водном растворе. Так, при [HNO3]=0.25 моль/л полное восстановление плутония достигается уже при концентрации карбогидразида, равной 0.2 моль/л (оп.1), тогда как при [HNO3]=1.0 моль/л - только при [КГ]=1 моль/л (при температуре 20°С) (оп.11). При одной и той же кислотности (0.5 моль/л) и температуре (20°С) рост концентрации карбогидразида от 0.2 до 0.5 моль/л приводит к увеличению степени реэкстракции плутония от 98.7 до 99.6% (остаточное содержание плутония в органической фазе от 10 до 5 мг/л) (оп.2, 4, 5). Наконец, повышение температуры от 20 до 35°С в опытах с ураном позволяет снизить коэффициент распределения плутония почти на порядок и повысить полноту реэкстракции плутония до ≥99.9% (остаточное содержание плутония в органической фазе менее 1 мг/л) (оп.6, 7 и оп.11, 12).
Полученные результаты свидетельствуют о том, что в оптимальных условиях реэкстракцию плутония карбогидразидом можно проводить не только в аппаратах с большим временем пребывания в них растворов (например, смесители-отстойники), но и в центробежных экстракторах с временем пребывания растворов несколько минут.
По сравнению со способом реэкстракции плутония, где используется четырехвалентный уран, в предлагаемом способе не требуется создания отдельного технологического узла для получения раствора восстановителя и не происходит избыточного расходования карбогидразида на побочные реакции, как это имеет место при использовании урана(IV) вследствие окисления последнего азотистой кислотой в фазе ТБФ.
По сравнению со способом реэкстракции плутония с применением гидроксиламина полное восстановление плутония карбогидразидом достигается в более широком диапазоне концентрации азотной кислоты, вплоть до [НМО3]=1 моль/л (для реэкстракции гидроксиламином рекомендуется поддерживать кислотность ≤0.5 моль/л НNО3), и при меньшей температуре, 20-35°С (для гидроксиламина рекомендуется температура ~45-50°С) [Baron P., Dinh В., Mauborge В. // Proc. «ATALANTE' 2000». Avignon, France. Oct.9-13, 2000. Paper №01.04; Patigny P., Regnier J., Miquel P., Taillard D. // Proc. Int. Solv. Extr. Conf. «ISEC'74». Lyon, France. 1974. Soc. Chem. hid., London, 1974. V.3. P.2019].

Claims (3)

1. Способ реэкстракции плутония из органического раствора трибутилфосфата (ТБФ), содержащего плутоний в четырехвалентном состоянии, в водный азотнокислый раствор путем контактирования указанного органического раствора с водным раствором, содержащим восстановитель, переводящий плутоний в трехвалентное состояние, отличающийся тем, что в качестве восстановителя плутония используют карбогидразид, причем процесс проводят при концентрации карбогидразида в реэкстрагирующем растворе от 0,2 до 1,0 моль/л.
2. Способ по п.1, отличающийся тем, что реэкстракцию плутония проводят при концентрации азотной кислоты в водном растворе от 0,25 до 1,0 моль/л.
3. Способ по п.1, отличающийся тем, что реэкстракцию плутония проводят при температуре от 25 до 35°С.
RU2009114114A 2009-04-13 2009-04-13 Способ реэкстракции плутония из органического раствора трибутилфосфата RU2410774C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009114114A RU2410774C2 (ru) 2009-04-13 2009-04-13 Способ реэкстракции плутония из органического раствора трибутилфосфата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009114114A RU2410774C2 (ru) 2009-04-13 2009-04-13 Способ реэкстракции плутония из органического раствора трибутилфосфата

Publications (2)

Publication Number Publication Date
RU2009114114A RU2009114114A (ru) 2010-10-20
RU2410774C2 true RU2410774C2 (ru) 2011-01-27

Family

ID=44023731

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009114114A RU2410774C2 (ru) 2009-04-13 2009-04-13 Способ реэкстракции плутония из органического раствора трибутилфосфата

Country Status (1)

Country Link
RU (1) RU2410774C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2540342C2 (ru) * 2013-07-01 2015-02-10 Открытое акционерное общество "Радиевый институт имени В.Г. Хлопина" Способ переработки облученного ядерного топлива
RU2765790C1 (ru) * 2021-04-15 2022-02-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ разделения нептуния и плутония в азотнокислых растворах (варианты)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106893878B (zh) * 2017-03-02 2018-11-30 中国原子能科学研究院 一种从放射性乏燃料中回收钚的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Копырин А.А. и др. Технология производства и радиохимической переработки ядерного топлива. - М.: Атомэнергоиздат, 2006, с.206-208, 233. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2540342C2 (ru) * 2013-07-01 2015-02-10 Открытое акционерное общество "Радиевый институт имени В.Г. Хлопина" Способ переработки облученного ядерного топлива
RU2765790C1 (ru) * 2021-04-15 2022-02-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ разделения нептуния и плутония в азотнокислых растворах (варианты)

Also Published As

Publication number Publication date
RU2009114114A (ru) 2010-10-20

Similar Documents

Publication Publication Date Title
RU2558332C9 (ru) Способ переработки отработанного ядерного топлива, не требующий восстановительной реэкстракции плутония
RU2706954C2 (ru) Способ обработки водного азотнокислого раствора, полученного при растворении отработавшего ядерного топлива, выполняемый в одном цикле и не требующий какой-либо операции, включающей восстановительную реэкстракцию плутония
CN107922314B (zh) 新型不对称n,n-二烷基酰胺及其合成方法与应用
RU2410774C2 (ru) Способ реэкстракции плутония из органического раствора трибутилфосфата
EP0885444B1 (en) Nuclear fuel reprocessing
RU2514947C2 (ru) Способ реэкстракции плутония из органического раствора трибутилфосфата
US3276850A (en) Method of selectively reducing plutonium values
Sadeghi et al. Recovery of uranium from carbonaceous radioactive waste of the UF6 production line in a uranium conversion plant: Laboratory and pilot plant studies
US2951740A (en) Processing of neutron-irradiated uranium
EP2223305B1 (en) Use of a wash solution in continuous reprocessing of nuclear fuel and a system thereof
US4197274A (en) Process for reducing plutonium
RU2080666C1 (ru) Способ обработки высокоактивных азотнокислых рафинатов от регенерации топлива аэс
Govindan et al. Partitioning of uranium and plutonium by acetohydroxamic acid
JPH0453277B2 (ru)
RU2366012C2 (ru) Способ переработки облученного ядерного топлива
JP2971729B2 (ja) ウラン、プルトニウム及びネプツニウムの共抽出方法
Alekseenko et al. Stripping of Pu and Tc from tributyl phosphate solutions with carbohydrazide
KR840000811B1 (ko) 습식처리인산으로부터 우라늄을 회수하는 방법
RU2354728C2 (ru) Способ экстракционной переработки регенерированного урана
RU2774155C1 (ru) Способ экстракционного выделения трансплутониевых и редкоземельных элементов
Manohar et al. Removal of dissolved Tri n-butyl phosphate from aqueous streams of reprocessing origin: engineering scale studies
RU2077600C1 (ru) Способ извлечения осколочного родия из азотнокислых водных растворов
Chandramouli et al. Chemical head-end steps for aqueous reprocessing of carbide fuels
RU2303306C2 (ru) Способ упаривания высокоактивного рафината от переработки облученного ядерного топлива атомных электростанций
RU2400846C1 (ru) Способ растворения некондиционного и/или отработавшего ядерного топлива