RU2409455C2 - Способ обработки токопроводящих материалов - Google Patents

Способ обработки токопроводящих материалов Download PDF

Info

Publication number
RU2409455C2
RU2409455C2 RU2009113481/02A RU2009113481A RU2409455C2 RU 2409455 C2 RU2409455 C2 RU 2409455C2 RU 2009113481/02 A RU2009113481/02 A RU 2009113481/02A RU 2009113481 A RU2009113481 A RU 2009113481A RU 2409455 C2 RU2409455 C2 RU 2409455C2
Authority
RU
Russia
Prior art keywords
processing
tool
working medium
electrophysical
radiation
Prior art date
Application number
RU2009113481/02A
Other languages
English (en)
Other versions
RU2009113481A (ru
Inventor
Виктор Васильевич Любимов (RU)
Виктор Васильевич Любимов
Евгений Александрович Сабинин (RU)
Евгений Александрович Сабинин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Тульский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Тульский государственный университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Тульский государственный университет"
Priority to RU2009113481/02A priority Critical patent/RU2409455C2/ru
Publication of RU2009113481A publication Critical patent/RU2009113481A/ru
Application granted granted Critical
Publication of RU2409455C2 publication Critical patent/RU2409455C2/ru

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

Изобретение относится к технологии электрофизико-химической обработки токопроводящих материалов, в том числе к нанотехнологии. Способ электрофизической и электрохимической обработки изделия включает обработку изделия в цепи электрического разрядного контура, работающего в области искрового разряда, путем контактного или бесконтактного замыкания изделия и инструмента в рабочей среде, и их перемещения относительно друг друга. В качестве инструмента используют импульсное протяженное плазменное образование, которое создают импульсами лазерного излучения длительностью в диапазоне от теоретического минимума для данного излучения до 100 нс в рабочей среде, прозрачной для лазерного излучения, и при создании которого обеспечивают пересечение или касание центра каустики сфокусированного излучения. Изобретение позволяет повысить точность электрофизической и электрохимической обработки, облегчить обработку и прокачку рабочей среды при малых зазорах и обеспечить управляемость и гибкость обработки, а также позволяет устранить влияние износа инструмента на обработку. 10 ил.

Description

Изобретение относится к технологии электрофизико-химической обработки материалов, в том числе нанотехнологии. Может использоваться для формообразования, разделения, гравирования и модифицирования поверхностных физико-механических свойств изделий.
Известны способы обработки, при которых производится съем материала с обрабатываемой заготовки за счет механического воздействия инструментом на обрабатываемое изделие. Основным недостатком подобных способов является значительный износ инструмента вследствие необходимости в инструменте более твердом, чем обрабатываемое изделие [Основы учения о резании металлов и режущий инструмент / С.А.Рубинштейн, Г.В.Левант, Н.М.Орнис, Ю.С.Тарасевич, М., Машиностроение, 1968].
Наиболее близким к предлагаемому способу обработки токопроводящих материалов является способ обработки металлов, сплавов и других токопроводящих материалов, при котором инструмент и обрабатываемое изделие включают в цепь электрического контура и ведут обработку путем контактного или бесконтактного их замыкания в рабочей среде. В данном случае также могут наблюдаться износ инструмента, недостаточная производительность и точность вследствие возможности повреждения, изменения геометрии инструмента после обработки, в случае малых зазоров - затрудненного выноса продуктов обработки из рабочего промежутка или негативных изменений рабочей среды [а.с. №70010, МПК В23 Р1/00, бюл. №7, 1971 г.].
Задачей изобретения является устранение износа инструмента, повышение точности процесса электрофизической и электрохимической обработки путем использования импульсного плазменного образования в качестве инструмента, облегчения прокачки рабочей среды при малых зазорах, обеспечения повышения управляемости и гибкости обработки с точки зрения выбора технологических схем.
Поставленная задача решается следующим образом. Способ электрофизической и электрохимической обработки изделия из токопроводящего материала включает обработку изделия в цепи электрического разрядного контура, работающего в области искрового разряда, путем контактного или бесконтактного замыкания изделия и инструмента в рабочей среде и их перемещения относительно друг друга, причем в качестве инструмента используют импульсное протяженное плазменное образование, которое создают импульсами лазерного излучения длительностью в диапазоне от теоретического минимума для данного излучения до 100 нс в рабочей среде, прозрачной для лазерного излучения, и при создании которого обеспечивают пересечение или касание центра каустики сфокусированного излучения или оси фокусирующей линзы с токоподводом.
На фиг.1 схематично представлен общий вид установки для осуществления способа обработки токопроводящих материалов. Фиг.2 иллюстрирует рабочую зону предлагаемой обработки. На фиг.3 изображена схема отрезки. На фиг.4 изображена схема формирования заданного рельефа поверхности. На фиг.5 изображена схема гравирования. На фиг.6 изображена схема вырезания для тонколистовых материалов. На фиг.7 изображена схема точения. На фиг.8 изображена схема формирования внешнего контура заготовки. На фиг.9 изображена схема формирования фасонной полости. На фиг.10 изображена схема модификации физико-химических свойств поверхности.
Установка для осуществления способа обработки токопроводящих материалов описывается следующим образом. В камере или ванне с рабочей средой 3 установки 1 расположены рабочая головка 2 и обрабатываемое изделие 4 на координатном устройстве 5.
Способ обработки токопроводящих материалов осуществляется следующим образом. На обрабатываемое изделие 4 воздействуют с приложением электрической энергии с помощью импульсного плазменного образования 8, которое создается лазерным излучением 6, сфокусированным линзой 7. Плазменное образование создают так, чтобы центр каустики сфокусированного излучения или ось линзы 7 пересекалась или касалась токоподвода 9,
Рабочая среда должна быть достаточно прозрачной для лазерного излучения, чтобы обеспечить формирование проводящего канала к обрабатываемому изделию. В случае, если рабочая среда жидкая, то она может прокачиваться через рабочую зону во время обработки. Длительность импульсов лазерного излучения варьируется в диапазоне от теоретического минимума для данного излучения до ~100 нс.
Пример 1. Невозможно генерировать импульсы лазерного излучения длительностью меньше теоретического минимума.
Пример 2. Обрабатывается металлическая лента толщиной 0,5 мм, материал ленты 12Х18Н9. Обработка ведется в деионизированной воде при длине волны лазерного излучения 1,064 мкм, длительность импульсов лазерного излучения составляет 50 нс. Подвод электрической энергии осуществляется с помощью токоподводов.
В результате обработки в ленте была сформирована прорезь шириной 120 мкм и длиной 10 мм, при погрешности размеров не более 10 мкм. У инструмента износ отсутствует, а износ токоподвода инструмента не оказывал влияния на точность обработки.
Пример 3. Обрабатывается металлическая лента толщиной 0,5 мм, материал ленты 12Х18Н9. Обработка ведется в деионизированной воде при длине волны лазерного излучения 1,064 мкм, длительность импульсов лазерного излучения составляет 1 мкс. Подвод электрической энергии осуществляется с помощью токоподводов.
В результате обработки в ленте не удалось сформировать прорезь, было получено проплавление глубиной 0,2 мм, шириной 0,5 мм и длиной 10 мм со значительным количеством застывшего расплава по краям.
За счет использования импульсного плазменного инструмента, создаваемого лазерным излучением, данный способ позволяет избавить инструмент от износа и механических повреждений или разрушения, устранить негативное влияние короткого замыкания между инструментом и обрабатываемым изделием на процесс, облегчить прокачку рабочей жидкости через рабочую зону.
Устранение износа инструмента и возможность значительно увеличить скорость прокачки рабочей среды при малых зазорах между инструментом и заготовкой, а также дискретность воздействия инструмента на заготовку могут повысить точность обработки в 1,2-2,5 раза по сравнению с прототипом.
Также подобная реализация способа обработки токопроводящих материалов охватывает большое количество кинематико-технологических схем, поскольку лазерное излучение к рабочей зоне можно подавать под различными углами и направлениями. Параметры инструмента могут регулироваться во время процесса за счет изменения параметров лазерного излучения.

Claims (1)

  1. Способ электрофизической и электрохимической обработки изделия из токопроводящего материала, включающий обработку изделия в цепи электрического разрядного контура, работающего в области искрового разряда, путем контактного или бесконтактного замыкания изделия и инструмента в рабочей среде, и их перемещения относительно друг друга, отличающийся тем, что в качестве инструмента используют импульсное протяженное плазменное образование, которое создают импульсами лазерного излучения длительностью в диапазоне от теоретического минимума для данного излучения до 100 нc в рабочей среде прозрачной для лазерного излучения и при создании которого обеспечивают пересечение или касание центра каустики сфокусированного излучения или оси фокусирующей линзы с токоподводом.
RU2009113481/02A 2009-04-13 2009-04-13 Способ обработки токопроводящих материалов RU2409455C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009113481/02A RU2409455C2 (ru) 2009-04-13 2009-04-13 Способ обработки токопроводящих материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009113481/02A RU2409455C2 (ru) 2009-04-13 2009-04-13 Способ обработки токопроводящих материалов

Publications (2)

Publication Number Publication Date
RU2009113481A RU2009113481A (ru) 2010-10-20
RU2409455C2 true RU2409455C2 (ru) 2011-01-20

Family

ID=44023620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009113481/02A RU2409455C2 (ru) 2009-04-13 2009-04-13 Способ обработки токопроводящих материалов

Country Status (1)

Country Link
RU (1) RU2409455C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2618594C1 (ru) * 2016-03-22 2017-05-04 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" (ФГУП "ГКНПЦ им. М.В. Хруничева") Способ получения искусственной шероховатости на поверхности детали комбинированным методом обработки

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2618594C1 (ru) * 2016-03-22 2017-05-04 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" (ФГУП "ГКНПЦ им. М.В. Хруничева") Способ получения искусственной шероховатости на поверхности детали комбинированным методом обработки

Also Published As

Publication number Publication date
RU2009113481A (ru) 2010-10-20

Similar Documents

Publication Publication Date Title
Manjaiah et al. Review on non-conventional machining of shape memory alloys
Zeng et al. A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures
Banu et al. Electrical discharge machining (EDM): a review
Kunieda et al. Electrochemical micromachining using flat electrolyte jet
Chen et al. Study of micro groove machining by micro ECM
Shih et al. A study of electrical discharge grinding using a rotary disk electrode
JP5538065B2 (ja) 形彫り放電加工装置
Okada et al. Fundamental study on micro-deburring by large-area EB irradiation
CN107532293A (zh) 保护膜及其制造方法
WO2021086455A3 (en) Methods and apparatuses of oscillatory pulsed electrochemical machining
CN112658446A (zh) 一种激光诱导等离子体微细加工装置及方法
Jangra Study of unmachined area in intricate machining after rough cut in WEDM
Mahamood et al. Advanced noncontact cutting and joining technologies
RU2409455C2 (ru) Способ обработки токопроводящих материалов
Wang et al. Fabrication of disk microelectrode arrays and their application to micro-hole drilling using electrochemical micromachining
Takashima et al. Study on electrochemical machining of oil pocket on sliding surface with electrolyte suction tool
Zhang et al. Effect of electrochemical dissolving in laser drilling assisted with jet electrochemical machining
TWI665043B (zh) 電化學加工金屬工件之裝置
Khan et al. The effect of EDM with external magnetic field on surface roughness of stainless steel
Zhang et al. Comparison of different laser-assisted electrochemical methods based on surface morphology characteristics
Hackert et al. Generating plane and microstructured surfaces applying Jet Electrochemical Machining
JP2014163413A (ja) エンボスロールの製作方法及びそのエンボスロール
JP5721481B2 (ja) 保護膜の製造方法
Jain et al. Fabrication of tapered micro-pillars on titanium alloy using electric discharge micromachining
CN111805022A (zh) 等离子体辅助电解加工方法及实施装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110414