RU2408955C1 - P-i-n-диодный преобразователь нейтронного излучения - Google Patents

P-i-n-диодный преобразователь нейтронного излучения Download PDF

Info

Publication number
RU2408955C1
RU2408955C1 RU2009124600/28A RU2009124600A RU2408955C1 RU 2408955 C1 RU2408955 C1 RU 2408955C1 RU 2009124600/28 A RU2009124600/28 A RU 2009124600/28A RU 2009124600 A RU2009124600 A RU 2009124600A RU 2408955 C1 RU2408955 C1 RU 2408955C1
Authority
RU
Russia
Prior art keywords
diode
neutron radiation
radiation
matrix
substrate
Prior art date
Application number
RU2009124600/28A
Other languages
English (en)
Inventor
Владимир Викторович Амеличев (RU)
Владимир Викторович Амеличев
Игорь Валерьевич Годовицын (RU)
Игорь Валерьевич Годовицын
Петр Павлович Мальцев (RU)
Петр Павлович Мальцев
Сергей Александрович Поломошнов (RU)
Сергей Александрович Поломошнов
Павел Александрович Прокопочкин (RU)
Павел Александрович Прокопочкин
Александр Николаевич Сауров (RU)
Александр Николаевич Сауров
Роберт Дмитриевич Тихонов (RU)
Роберт Дмитриевич Тихонов
Original Assignee
Федеральное государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского Государственного института электронной техники" (ФГУ НПК "ТЦ" МИЭТ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского Государственного института электронной техники" (ФГУ НПК "ТЦ" МИЭТ) filed Critical Федеральное государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского Государственного института электронной техники" (ФГУ НПК "ТЦ" МИЭТ)
Priority to RU2009124600/28A priority Critical patent/RU2408955C1/ru
Application granted granted Critical
Publication of RU2408955C1 publication Critical patent/RU2408955C1/ru

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к полупроводниковым приборам для преобразования воздействий радиационного излучения, преимущественно нейтронного, в электрический сигнал, измерение которого позволяет определить уровень радиации или набранную дозу облучения. P-I-N-диодный преобразователь нейтронного излучения - полупроводниковый прибор для преобразования воздействий радиационного излучения, преимущественно нейтронного, в электрический сигнал содержит высокоомную подложку кремния n-типа проводимости и несколько инжектирующих электродов p-типа проводимости, при этом эмиттеры p-типа проводимости p-i-n-диодного преобразователя нейтронного излучения расположены в виде матрицы на лицевой стороне подложки, а значение длины базы варьируется глубиной травления кремния на обратной стороне подложки, в области между эмиттером и контактом к области n-типа проводимости. Предложенное изобретение позволяет обеспечить у реального изделия широкий диапазон рабочих доз облучения за счет интегрального исполнения кремниевых p-i-n-диодов в виде матрицы на единой подложке с изменяемой длиной области базы и размеров электродов. 5 з.п. ф-лы, 12 ил.

Description

Изобретение относится к полупроводниковым приборам для преобразования воздействий радиационного излучения в электрический сигнал, измерение которого позволяет определить уровень радиации или набранную дозу облучения, предпочтительно нейтронного.
Дозиметры для индивидуального применения на основе p-i-n-диодов являются портативными приборами широкого применения. Они обеспечивают контроль за радиационной обстановкой и личную безопасность персонала. В настоящее время датчики радиации на основе p-i-n-диодов продолжают совершенствоваться с учетом современных достижений технологии микроэлектроники.
В патенте (Pin diode with a thick intrinsic zone and a device comprising such a diode: United States Patent 3,982,267: МПК H01L 29/66 (20060101); H01L 29/868 (20060101); H01L 029/34/ Henry; Raymond (Paris, FR); Assignee: Thomson-CSF (Paris, FR - No.: 05/568,363; Filed: April 15, 1975; Publicated: September 21, 1976. - pp.5, fig.5.) предлагается проводить групповое изготовление p-i-n-диодов с толстым слоем собственной проводимости с последующим разделением на отделенные образцы. Поверхность приборов над границей раздела между p- и i-областями обрабатывается для уменьшения токов утечки ниже предела, доступного для измерения. Предложенный способ изготовления p-i-n-диодов с толстым слоем собственной проводимости позволяет почувствовать воздействие радиоактивного, например, нейтронного излучения, но обладает малой чувствительностью.
В патенте (Sensitive silicon pin diode fast neutron dosimeter: United States Patent 4,163,240: МПК G01T 3/08 (20060101); G01T 3/00(20060101); H01L 027/14/ Swinehart; Philip R. (Columbus, OH), Swartz; John M. (Westerville, OH); Assignee: The Harshaw Chemical Company (Cleveland, OH). - No.: 05/779,346; Filed: March 21, 1977; Publicated: July 31, 1979. - pp.6, fig.3) предложен метод управления и улучшения чувствительности кремниевых p-i-n-диодов для дозиметрии быстрых нейтронов. Положительный эффект достигается за счет выбора высокоомного кремния с временем жизни неосновных носителей заряда более 250 мкс и предварительным выбором соотношения площади боковой поверхности и объема прибора. Это позволяет повысить чувствительность до 10 мВ/рад в индивидуальном дозиметре при уровне поглощенной дозы нейтронов от 0,1 рад до 10 рад. Предложенная структура кремниевых p-i-n-диодов повышает чувствительность, но в каждом приборе имеется только один уровень поглощенной дозы нейтронов.
Преобразователь нейтронного и гамма-излучения в патенте (Детектор нейтронного и гамма-излучений: RU 2231809C: МПК (IPC1-7) G01T 1/24; G01T 3/08 / Игнатьев О.В. (RU); Шульгин Б.В. (RU); Пулин А.Д. (RU); Петров В.Л. (RU); Шульгин Д.Б. (RU); Райков Д.В. (RU); Пулин А.А. (RU); опубликовано 2004-06-27) содержит три датчика для регистрации нейтронов с разной энергией и гамма-излучения, размещенных в едином корпусе. Датчики используют p-i-n-сенсорные элементы в чехлах из радиатора-конвертора на основе карбида или нитрида бора. Датчики для быстрых нейтронов содержат водородсодержащие замедлители. Преобразователь расширяет диапазон измерений и повышает точность регистрации гамма-излучения. Предложенный преобразователь нейтронного излучения имеет большие размеры из-за раздельного изготовления p-i-n-сенсорных элементов в чехлах.
Планарная структура p-i-n-диода, его функционирование и результаты исследования потоков нейтронов, протонов и гамма-лучей с его помощью даны в статье Rosenfeld А.В. and al. / Neutron dosimetry with planar silicon pin diodes // IEEE transactions on nuclear science, v.50, №6, Dec. 2003, p.2367. Датчики для измерения потоков нейтронов без потери энергии на ионизацию базируются на кремниевых планарных p-i-n-диодах различной геометрии. Прямое падение напряжения кремниевого p-i-n-диода увеличивается из-за радиационной деградации кристаллографической решетки и повышения удельного сопротивления материала, при этом время жизни основных носителей заряда также снижается. Чувствительность кремниевого p-i-n-диода зависит от качества начального материала кремния и его геометрии. Линейное расположение четырех кремниевых p-i-n-диодов показало изменение чувствительности при удалении инжектирующих p-n-переходов от контакта к подложке: для первого - 0,2 мВ/рад, второго - 8,4 мВ/рад, третьего - 9,4 мВ/рад, четвертого - 8,6 мВ/рад. Планарные кремниевые p-i-n-диоды кольцевой и прямоугольной формы демонстрируют высокую нейтронную чувствительность, которая увеличивается с увеличением основной длины базы в плане и увеличением тока считывания. Расположение инжектирующих p-n-переходов на разном расстоянии от контакта к подложке дает невоспроизводимость чувствительности.
Наиболее близким аналогом предлагаемой конструкции является устройство для измерения дозы облучения нейтронами в режиме текущего времени, описанное в патенте (Sensitive silicon pin diode fast neutron dosimeter: United States Patent 7, 361,134: МПК A61N 5/00 (20060101) / Rozenfeld; Anatoly (Redfern, AU), Zaider; Marc (New York, NY); Assignee: University of Wollongong (Wollongong, AU). - No.: 10/350,357; Filed: January 24, 2003; Publicated: April 22, 2008. - pp.13, fig.8) - прототип. Метод измерения основан на линейном расположении трех или более датчиков излучения в аппаратуре около источника излучения. Различие показаний датчиков должно позволить определить местонахождение источника излучения и его интенсивность в реальном масштабе времени. Неодинаковая чувствительность диодов, расположенных на разном расстоянии от контакта к подложке, ограничивает возможность определения расположения пучка радиоактивных частиц, например, нейтронов, по методу, предложенному в патенте.
Как видно из приведенных данных, исследованные конструкции кремниевых p-i-n-диодов не обеспечивают измерение потоков радиоактивных частиц, из-за выхода в насыщение. При этом накапливаются дефекты в структуре кремния, которые ограничивают чувствительность. Датчик с широким динамическим диапазоном чувствительности требуется в применениях, где диапазон дозы радиоактивных частиц не известен. Такой диапазон чувствительности почти невозможно достигнуть в одиночном объемном кремниевом p-i-n-диоде.
Технической задачей, на решение которой направлено заявляемое изобретение, является расширение диапазона измерений дозы излучения.
Техническая задача решается тем, что p-i-n-диодный преобразователь нейтронного излучения содержит высокоомную подложку кремния n-типа проводимости и несколько инжектирующих электродов p-типа проводимости, отличающийся тем, что эмиттеры p-типа проводимости p-i-n-диодного преобразователя нейтронного излучения расположены в виде матрицы на лицевой стороне подложки, а значение длины базы варьируется глубиной травления кремния на обратной стороне подложки, в области между эмиттером и контактом к базе n-типа проводимости. Также техническая задача решается тем, что в p-i-n-диодном преобразователе нейтронного излучения ячейки матрицы имеют объемную структуру и контакты к n-областям расположены в углублениях. Также техническая задача решается тем, что в p-i-n-диодном преобразователе нейтронного излучения ячейки матрицы имеют планарную структуру, причем контакт к каждой n-области имеет кольцевую структуру, внутри которой расположен контакт к p-области. Также техническая задача решается тем, что в p-i-n-диодном преобразователе нейтронного излучения ячейки матрицы имеют планарную структуру и контакты к p- и n-областям имеют форму полосок. Также техническая задача решается тем, что в p-i-n-диодном преобразователе нейтронного излучения ячейки матрицы имеют объемную структуру, контакты к p- и n-областям имеют форму полосок, которые смещены относительно друг друга. Также техническая задача решается тем, что в p-i-n-диодном преобразователе нейтронного излучения ячейки матрицы имеют объемную структуру, причем контакт к каждой n-области имеет кольцевую структуру, внутренняя граница которой смещена относительно внешней границы p-области.
Технический результат при осуществлении изобретения состоит в получении высокой чувствительности в широком диапазоне доз облучения. Предложенное решение позволяет обеспечить у реального изделия широкий диапазон рабочих доз облучения за счет интегрального исполнения кремниевых p-i-n-диодов в виде матрицы на единой подложке с изменяемой длиной области базы и размеров электродов.
Сущность изобретения заключается в изменении конструкции чувствительного элемента, изготовленного по микросистемной технологии, на основе матрицы кремниевых p-i-n-диодов, обеспечивающей разные рабочие диапазоны доз облучения. Качество повышается за счет повышения чувствительности кремниевыми p-i-n-диодами к дозе облучения при определенной величине протекающего в приборе тока. Это достигается за счет выбора необходимой площади эмиттера диода в матрице. Длина области базы изменяется в отдельных элементах матрицы. В объемной конструкции диодов проводится травление обратной стороны по отношению к области, инжектирующей неосновные носители заряда, а в планарной конструкции и со смещенными электродами изменяется расстояние между электродами. При разной длине области базы насыщение падения напряжения происходит при разных дозах облучения, что позволяет получить несколько диапазонов, соответствующих определенным дозам облучения.
Структура диодов может быть при этом как объемная, так и планарная.
На фиг.1 представлена схематически конструкция матричного p-i-n-диодного преобразователя нейтронного излучения, на фиг.2 представлена конструкция объемного матричного p-i-n-диодного преобразователя нейтронного излучения, на фиг.3 представлен вид сверху двух ячеек планарного кольцевого матричного p-i-n-диодного преобразователя нейтронного излучения, на фиг.4 представлен поперечный разрез двух ячеек планарного кольцевого матричного p-i-n-диодного преобразователя нейтронного излучения, на фиг.5 представлена конструкция планарного матричного p-i-n-диодного преобразователя нейтронного излучения с полосковыми электродами, на фиг.6 представлена конструкция планарного матричного p-i-n-диодного преобразователя нейтронного излучения с полосковыми электродами, на фиг.7 представлен вид сверху ячейки объемного матричного p-i-n-диодного преобразователя нейтронного излучения со смещенными полосковыми электродами, на фиг.8 представлен поперечный разрез ячейки объемного матричного p-i-n-диодного преобразователя нейтронного излучения со смещенными полосковыми электродами, на фиг.9 представлен вид сверху ячейки объемного матричного p-i-n-диодного преобразователя нейтронного излучения со смещенными кольцевыми электродами, на фиг.10 представлен поперечный разрез ячейки объемного матричного p-i-n-диодного преобразователя нейтронного излучения со смещенными кольцевыми электродами, на фиг.11 представлен вид снизу ячейки объемного матричного p-i-n-диодного преобразователя нейтронного излучения со смещенными кольцевыми электродами, результирующая характеристика величины изменения напряжения на p-i-n-диодах в зависимости от величины дозы облучения нейтронами представлена на фиг.12.
На фиг.1 показана схематически конструкция матричного p-i-n-диодного преобразователя нейтронного излучения, где прибор состоит из подложки кремния (1), близкого к собственной проводимости, из четырех инжектирующих эмиттерных электродов с p-типом проводимости (2) на лицевой стороне подложки и из углублений в форме трапеции, пирамиды или параллелепипеда на обратной стороне подложки (3), которые определяют толщину H1, H2, H3, H4 слоя базы около инжектирующих электродов.
На фиг.2 представлен поперечный разрез объемного p-i-n-диодного преобразователя нейтронного излучения, где прибор состоит из области базы (4), близкой к собственной проводимости, из инжектирующих эмиттерных областей с p-типом проводимости (6) на лицевой стороне подложки, из металлических контактов (5, 7) к p-областям, из слоя окисла (8), обеспечивающего пассивацию поверхности кремния, из диффузионного слоя (9) с n-типом проводимости на обратной стороне подложки и из металлизации (10) для обеспечения контакта к n-слою.
На фиг.3 представлен поперечный разрез планарного кольцевого матричного p-i-n-диодного преобразователя нейтронного излучения, где прибор состоит из областей базы (11, 13, 16, 18), близких к собственной проводимости, из инжектирующих эмиттерных областей с p-типом проводимости (19) на лицевой стороне подложки, из металлических контактов (12, 17) к p-областям, из слоя окисла (20), обеспечивающего пассивацию поверхности кремния, из диффузионного слоя (15) с n-типом проводимости, расположенных вокруг областей p-типа проводимости на лицевой стороне подложки с расстоянием между p- и n-областями L1, L2 и из металлизации (14) для обеспечения контакта к n-слою. Отличием планарного кольцевого матричного p-i-n-диодного преобразователя нейтронного излучения на фиг.3 от объемного p-i-n-диодного преобразователя нейтронного излучения на фиг.2 является упрощенная технология, заключающаяся в отсутствии необходимости формирования контакта на обратной стороне подложки.
На фиг.4 представлен вид сверху планарного кольцевого матричного p-i-n-диодного преобразователя нейтронного излучения, где прибор состоит из инжектирующих эмиттерных областей с p-типом проводимости (19) на лицевой стороне подложки, из диффузионного слоя (15) с n-типом проводимости, расположенных вокруг областей p-типа проводимости на лицевой стороне подложки с расстояниями L1, L2 между p- и n-областями.
На фиг.5 представлен поперечный разрез планарного полоскового матричного p-i-n-диодного преобразователя нейтронного излучения, где прибор состоит из областей базы (11, 13, 16, 18) n-типа, близких к собственной проводимости, из инжектирующих эмиттерных областей с p-типом проводимости (19) на лицевой стороне подложки, из металлических контактов (12, 17) к p-областям, из слоя окисла (20), обеспечивающего пассивацию поверхности кремния, из диффузионного слоя (15) с n-типом проводимости, расположенным параллельно с областями p-типа проводимости на лицевой стороне подложки с расстоянием между p- и n-областями L1, L2 и из металлизации (14) для обеспечения контакта к n-слою. Отличиями планарного полоскового матричного p-i-n-диодного преобразователя нейтронного излучения на фиг.5 от объемного p-i-n-диодного преобразователя нейтронного излучения на фиг.2 являются упрощенная технология, заключающаяся в отсутствии необходимости формирования контакта на обратной стороне подложки, и возможность задания оси чувствительности преобразователя нейтронного излучения.
На фиг.6 представлен вид сверху планарного полоскового матричного p-i-n-диодного преобразователя нейтронного излучения, где прибор состоит из инжектирующих областей с p-типом проводимости (19) на лицевой стороне подложки, из диффузионного слоя (15) с n-типом проводимости, расположенным параллельно с областями p-типа проводимости на лицевой стороне подложки с расстояниями L1, L2 между p- и n-областями.
На фиг.7 показан вид сверху ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенными полосковыми электродами. На фиг.8 представлен поперечный разрез в плоскости А-А изображенной на фиг.7 ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенными полосковыми электродами. Ячейка матрицы выполнена в кремниевой подложке (101) и состоит из инжектирующей эмиттерной области с p-типом проводимости (103) на лицевой стороне подложки и металлического контакта (102) к p-области. Второй электрод прибора выполняется на обратной стороне подложки в виде диффузионного слоя (104) с n-типом проводимости и металлического контакта (105) к n-слою. Электрод смещается относительно инжектирующего электрода на расстояние C. Для пассивации поверхности ячейки матрицы p-i-n-диодного преобразователя нейтронного излучения на лицевой и обратной поверхности подложки формируется слой из оксида кремния (106). Отличиями ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенными полосковыми электродами на фиг.7 от ячейки объемного p-i-n-диодного преобразователя нейтронного излучения на фиг.2 являются возможность задания оси чувствительности преобразователя и возможность увеличения расстояния между электродами без необходимости травления углубления.
На фиг.9 показан вид сверху ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенным кольцеобразным электродом. На фиг.10 представлен поперечный разрез в плоскости А-А изображенной на фиг.9 ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенным кольцевым электродом. На фиг.11 продемонстрирован вид снизу изображенной на фиг.9 и фиг.10 ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенным кольцевым электродом. Ячейка матрицы выполнена в кремниевой подложке (107) и состоит из инжектирующей эмиттерной области с p-типом проводимости (108) на лицевой стороне подложки и металлического контакта (109) к p-области. Второй кольцеобразный электрод прибора выполняется на обратной стороне подложки в виде диффузионного слоя (111) с n-типом проводимости и металлического контакта (110) к n-слою. Область электрода p-типа находится на расстоянии С от прямоугольной кольцеобразной области электрода n-типа. Расстояние С варьируется для обеспечения требуемой чувствительности, диапазона измерения или уровня тока p-i-n-диодного преобразователя нейтронного излучения. Для пассивации поверхности ячейки матрицы p-i-n-диодного преобразователя нейтронного излучения на лицевой и обратной поверхности подложки формируется слой из оксида кремния (112). Отличиями ячейки матрицы, представляющей собой объемную структуру p-i-n-диодного преобразователя нейтронного излучения со смещенным кольцеобразным электродом на фиг.7 от ячейки объемного p-i-n-диодного преобразователя нейтронного излучения на фиг.2 являются исключение анизотропии направления чувствительности преобразователя нейтронного излучения и возможность увеличения расстояния между электродами без необходимости травления углубления.
Во всех предложенных конструкциях матричного p-i-n-диодного преобразователя нейтронного излучения при облучении потоками радиоактивных частиц, преимущественно нейтронами, но также возможно, например, протонами или гамма-лучами, изменяется время жизни носителей заряда и удельное сопротивление областей базы. При выбранной величине проходящего через диод тока изменяется падение напряжения на диоде. Изменение напряжения на диоде является полезным сигналом. На всех диодах матрицы - ячейках матричного p-i-n-диодного преобразователя нейтронного излучения величина изменения напряжения разная и она зависит от толщины областей базы H, расстояния между p- и n-областями L, C и величины дозы излучения, воздействующей ранее на матричный p-i-n-диодный преобразователь нейтронного излучения. Соответствие дозы облучения и изменения напряжения на диоде устанавливается экспериментально или с помощью расчета.
Диапазон чувствительности к воздействию дозы облучения задается выбором соотношения размеров и величиной тока в каждом диоде матрицы p-i-n-диодного преобразователя нейтронного излучения. Результирующая характеристика величины изменения напряжения U1, U2, U3, U4 на матрице из четырех p-i-n диодов (фиг.1) представлена на фиг.12 в зависимости от величины дозы облучения, например, нейтронами D для четырех значений расстояния между p- и n-областями, обеспечивающих работу в четырех диапазонах доз.
Изготовление матричного p-i-n-диодного преобразователя нейтронного излучения может проводиться по известным технологиям микросистемной техники, в частности с использованием методов объемной микрообработки кремния, двухсторонней фотолитографии на планарных микроэлектронных пластинах кремния с использованием локального анизотропного травления обратной стороны пластин, например, в KOH.

Claims (6)

1. P-I-N-диодный преобразователь нейтронного излучения - полупроводниковый прибор для преобразования воздействий радиационного излучения, преимущественно нейтронного, в электрический сигнал, содержащий высокоомную подложку кремния n-типа проводимости и несколько инжектирующих электродов p-типа проводимости, отличающийся тем, что эмиттеры p-типа проводимости p-p-i-n-диодного преобразователя нейтронного излучения расположены в виде матрицы на лицевой стороне подложки, а значение длины базы варьируется глубиной травления кремния на обратной стороне подложки в области между эмиттером и контактом к области n-типа проводимости.
2. P-I-N-диодный преобразователь нейтронного излучения по п.1, отличающийся тем, что ячейки матрицы имеют объемную структуру и контакты к n-областям расположены в углублениях.
3. P-I-N-диодный преобразователь нейтронного излучения по п.1, отличающийся тем, что ячейки матрицы имеют планарную структуру, причем контакт к каждой n-области имеет кольцевую структуру, внутри которой расположен контакт к p-области.
4. Р-I-N-диодный преобразователь нейтронного излучения по п.1, отличающийся тем, что ячейки матрицы имеют планарную структуру и контакты к p- и n-областям имеют форму полосок.
5. Р-I-N-диодный преобразователь нейтронного излучения по п.1, отличающийся тем, что ячейки матрицы имеют объемную структуру, контакты к p- и n-областям имеют форму полосок, которые смещены относительно друг друга.
6. Р-I-N-диодный преобразователь нейтронного излучения по п.1, отличающийся тем, что ячейки матрицы имеют объемную структуру, причем контакт к каждой n-области имеет кольцевую структуру, внутренняя граница которой смещена относительно внешней границы p-области.
RU2009124600/28A 2009-06-29 2009-06-29 P-i-n-диодный преобразователь нейтронного излучения RU2408955C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009124600/28A RU2408955C1 (ru) 2009-06-29 2009-06-29 P-i-n-диодный преобразователь нейтронного излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009124600/28A RU2408955C1 (ru) 2009-06-29 2009-06-29 P-i-n-диодный преобразователь нейтронного излучения

Publications (1)

Publication Number Publication Date
RU2408955C1 true RU2408955C1 (ru) 2011-01-10

Family

ID=44054744

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009124600/28A RU2408955C1 (ru) 2009-06-29 2009-06-29 P-i-n-диодный преобразователь нейтронного излучения

Country Status (1)

Country Link
RU (1) RU2408955C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575939C1 (ru) * 2014-12-03 2016-02-27 Открытое акционерное общество "Интерсофт Евразия" Способ изготовления сенсора ионизирующего излучения
GB2548352A (en) * 2016-03-14 2017-09-20 Kromek Ltd Detector
CN109690356A (zh) * 2016-05-18 2019-04-26 公共联合股份公司欧亚因特软件 基于p型电导率的悬浮区熔炼硅的电离辐射传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575939C1 (ru) * 2014-12-03 2016-02-27 Открытое акционерное общество "Интерсофт Евразия" Способ изготовления сенсора ионизирующего излучения
WO2016089254A3 (en) * 2014-12-03 2016-08-04 Elin Vladimir Aleksandrovich Method of ionizing radiation sensor manufacturing
GB2548352A (en) * 2016-03-14 2017-09-20 Kromek Ltd Detector
CN109690356A (zh) * 2016-05-18 2019-04-26 公共联合股份公司欧亚因特软件 基于p型电导率的悬浮区熔炼硅的电离辐射传感器

Similar Documents

Publication Publication Date Title
US8008626B2 (en) Neutron detector with gamma ray isolation
US9547089B2 (en) Ionizing radiation sensor
US8558188B2 (en) Method for manufacturing solid-state thermal neutron detectors with simultaneous high thermal neutron detection efficiency (>50%) and neutron to gamma discrimination (>1.0E4)
Zoboli et al. Double-sided, double-type-column 3-D detectors: Design, fabrication, and technology evaluation
US9383452B2 (en) Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays
US8729654B2 (en) Back-side readout semiconductor photomultiplier
CN205452319U (zh) 一种核辐射探测器
JPS63193088A (ja) 半導体放射線検出器
RU2408955C1 (ru) P-i-n-диодный преобразователь нейтронного излучения
US3564245A (en) Integrated circuit multicell p-n junction radiation detectors with diodes to reduce capacitance of networks
Bellinger et al. Characteristics of 3D micro-structured semiconductor high efficiency neutron detectors
CN102735350A (zh) 硅光电倍增探测器结构、制作及使用
RU140489U1 (ru) Чувствительный элемент ионизирующего излучения
Evensen et al. A fast low noise silicon detector for electron spectroscopy up to 1 MeV
CN112071945A (zh) 一种螺旋环电极硅阵列探测器
CN102214723A (zh) 半导体辐射敏感装置及其制作方法
RU2551257C1 (ru) Матричный сенсор ионизирующего излучения
US10797195B2 (en) Ionizing radiation sensor based on float-zone silicon with p-type conductivity
McGregor et al. Micro-structured high-efficiency semiconductor neutron detectors
Lim et al. Cylindrical silicon-on-insulator microdosimeter: Design, fabrication and TCAD modeling
Bellinger et al. Variant designs and characteristics of improved microstructured solid-state neutron detectors
US7268339B1 (en) Large area semiconductor detector with internal gain
Lai et al. Development and fabrication of cylindrical silicon-on-insulator microdosimeter arrays
Dalla Betta et al. New developments on 3D detectors at IRST
CN219677264U (zh) 沟槽电极单光子雪崩阵列、传感器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110630

NF4A Reinstatement of patent

Effective date: 20120610