RU2402462C2 - Двигательная установка для летательного аппарата и летательный аппарат, содержащий по меньшей мере одну такую двигательную установку - Google Patents

Двигательная установка для летательного аппарата и летательный аппарат, содержащий по меньшей мере одну такую двигательную установку Download PDF

Info

Publication number
RU2402462C2
RU2402462C2 RU2008107594/11A RU2008107594A RU2402462C2 RU 2402462 C2 RU2402462 C2 RU 2402462C2 RU 2008107594/11 A RU2008107594/11 A RU 2008107594/11A RU 2008107594 A RU2008107594 A RU 2008107594A RU 2402462 C2 RU2402462 C2 RU 2402462C2
Authority
RU
Russia
Prior art keywords
heat exchanger
turbojet engine
flow
housing
hot air
Prior art date
Application number
RU2008107594/11A
Other languages
English (en)
Other versions
RU2008107594A (ru
Inventor
Жан-Марк МАРТИНУ (FR)
Жан-Марк МАРТИНУ
Эрве МАРШЕ (FR)
Эрве МАРШЕ
Original Assignee
Эрбюс Франс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрбюс Франс filed Critical Эрбюс Франс
Publication of RU2008107594A publication Critical patent/RU2008107594A/ru
Application granted granted Critical
Publication of RU2402462C2 publication Critical patent/RU2402462C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/105Heating the by-pass flow
    • F02K3/115Heating the by-pass flow by means of indirect heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/12Two-dimensional rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/22Three-dimensional parallelepipedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/208Heat transfer, e.g. cooling using heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Изобретение относится к размещению двигательной установки на летательном аппарате. Двигательная установка содержит турбореактивный двигатель (1) и теплообменник (13), расположенный над этим турбореактивным двигателем и отбирающий поток охлаждающего воздуха (7) и поток горячего воздуха в турбореактивном двигателе. Поверхность забора потока охлаждающего воздуха и поверхность забора потока горячего воздуха в корпус теплообменника ориентированы в направлении передней части турбореактивного двигателя и имеют нормали (n1, n2), наклоненные по отношению к оси (А) этого турбореактивного двигателя. Летательный аппарат содержит указанную двигательную установку. Группа изобретений направлена на снижение габаритных размеров. 2 н. и 6 з.п. ф-лы, 4 ил.

Description

Изобретение относится к двигательной установке для летательного аппарата, содержащей турбореактивный двигатель и теплообменник. Более конкретно, это изобретение относится к прохождению потока охлаждающего воздуха и потока горячего воздуха вплоть до теплообменника, в котором должны двигаться упомянутые потоки. Предлагаемое изобретение относится также к расположению упомянутого теплообменника по отношению к турбореактивному двигателю.
Для питания системы кондиционирования воздуха в наддуваемой герметичной кабине, где расположен экипаж и пассажиры летательного аппарата, известно использование отбора сжатого воздуха на уровне компрессоров турбореактивных двигателей этого летательного аппарата. Этот сжатый воздух подается по трубопроводам от турбореактивных двигателей вплоть до системы кондиционирования воздуха в наддуваемой герметичной кабине. Однако, поскольку температура воздуха, отбираемого на уровне компрессоров турбореактивных двигателей, является весьма высокой и обычно превышает 400°С, необходимо обеспечить предварительное охлаждение этого сжатого воздуха.
Для решения этой задачи известно использование теплообменника, позволяющего обеспечить охлаждение, по меньшей мере, частичное, сжатого воздуха, отбираемого на уровне компрессора турбореактивного двигателя, перед его подачей в систему кондиционирования воздуха. Теплообменник содержит корпус, в котором поток горячего воздуха, поступающий из компрессора турбореактивного двигателя, пересекается с потоком охлаждающего воздуха, отбираемого в канале вентилятора этого турбореактивного двигателя. Холодный воздух, отбираемый в канале вентилятора турбореактивного двигателя, имеет температуру примерно от 70°С до 100°С. В процессе пересечения этих потоков воздуха имеет место тепловой обмен, позволяющий на выходе из корпуса теплообменника получить достаточно холодный сжатый воздух, то есть воздух, имеющий температуру порядка 200°С. Поток горячего воздуха, охлажденного в теплообменнике, при этом направляется в систему кондиционирования воздуха, тогда как поток охлаждающего воздуха удаляется за пределы турбореактивного двигателя через отверстия или щели, выполненные на кожухе пилона подвески двигателя или пилона крепления турбореактивного двигателя на крыле летательного аппарата.
Одним из недостатков такого теплообменника являются его достаточно большие габаритные размеры. Действительно, такой теплообменник чаще всего расположен на уровне пилона подвески, позволяющего соединить турбореактивный двигатель с несущим крылом летательного аппарата. При этом теплообменник обычно закреплен на верхней поверхности пилона подвески. Более конкретно, теплообменник установлен над передней частью кессона, образующего жесткую конструкцию пилона подвески двигателя, и внутри обтекателя, покрывающего этот кессон. Таким образом, необходимо подвести поток горячего воздуха, перед тем, как он будет охлажден, и поток охлаждающего воздуха, позволяющего обеспечить охлаждение этого потока горячего воздуха от турбореактивного двигателя, расположенного под пилоном подвески, к теплообменнику, расположенному над этим пилоном подвески.
В настоящее время, вследствие расположения теплообменника на пилоне подвески и осуществления отбора холодного воздуха и горячего воздуха в турбореактивном двигателе, оба трубопровода, обеспечивающих подачу горячего воздуха и подачу охлаждающего воздуха, проходят через кессон пилона подвески двигателя. Этот кессон пилона подвески двигателя представляет собой несущую конструкцию этого пилона, которая подвергается ослаблению на уровне прохождения трубопроводов через его структуру. В то же время, габаритные размеры этих трубопроводов во внутреннем объеме кессона являются значительными, вынуждая иметь пересечения этих трубопроводов в кессоне. Такие пересечения могут сделать затруднительным монтаж трубопроводов подачи охлаждающего воздуха и горячего воздуха на турбореактивном двигателе и на теплообменнике.
При этом холодный воздух в настоящее время отбирается в боковом направлении в турбореактивном двигателе на уровне канала вентилятора таким образом, что трубопровод подачи охлаждающего воздуха, позволяющий подвести поток охлаждающего воздуха от турбореактивного двигателя к теплообменнику, должен пройти через кожух устройства реверса тяги этого турбореактивного двигателя. Однако этот кожух устройства реверса тяги имеет такую кинематику, которая позволяет ему находиться в закрытом положении и в открытом положении. Таким образом, в том случае, когда кожух устройства реверса тяги находится в открытом положении, связь между трубопроводом подачи охлаждающего воздуха и кожухом устройства реверса тяги не может осуществляться. Необходимо, таким образом, предусматривать специальную систему связи с герметичным стыком для того, чтобы обеспечить соединение без потерь между каналом подачи охлаждающего воздуха и кожухом устройства реверса тяги.
Таким образом, техническая задача данного изобретения состоит в том, чтобы предложить альтернативу существующим двигательным установкам, модифицируя траектории движения потоков холодного воздуха и потоков горячего воздуха в направлении теплообменника. Таким образом исключают снижение прочности конструкции кессона пилона подвески двигателя и упрощают монтаж теплообменника на пилоне подвески и на турбореактивном двигателе.
Для этого в данном изобретении предлагается подводить поток горячего воздуха и поток холодного воздуха в переднюю часть корпуса теплообменника. Здесь выражение "в переднюю часть" следует понимать как подведение этих потоков воздуха фронтально по отношению к течению воздуха, движущегося за пределами этого теплообменника. При этом не только поток горячего воздуха, но также и поток холодного воздуха, который обычно поступает в корпус теплообменника через его нижнюю часть, здесь подается в корпус теплообменника через его переднюю часть. Корпус теплообменника ориентирован по отношению к оси турбореактивного двигателя таким образом, чтобы представлять две стороны по отношению к передней части турбореактивного двигателя с тем, чтобы трубопровод подачи холодного воздуха и трубопровод подачи горячего воздуха имели возможность входить спереди в корпус теплообменника. Здесь определение "спереди" следует понимать по отношению к направлению течения потока воздуха снаружи от корпуса теплообменника. Поток холодного воздуха и поток горячего воздуха движутся в корпусе теплообменника перпендикулярно друг другу. В соответствии с конкретным примером реализации поток холодного воздуха, предназначенный для циркуляции в теплообменнике, отбирается уже не на уровне канала вентилятора, но на уровне зоны раздвоения, которая разделяет поток воздуха, поступающий в турбореактивный двигатель, на два потока, движущихся соответственно вдоль левой боковины и вдоль правой боковины пилона подвески двигателя, по потоку перед каналом вентилятора. Эта зона раздвоения, или обтекатель разделения, потоков сформирована фиксированной передней кромкой, то есть кромкой, не имеющей какой-либо кинематики. Таким образом, трубопровод подачи холодного воздуха также может быть фиксированным на уровне воздухозаборника, расположенного в упомянутой зоне раздвоения. Вследствие этого отбор воздуха теперь уже осуществляется не сбоку, то есть с одной или с другой стороны от кожухов турбореактивного двигателя, но фронтальным образом, параллельно оси этого турбореактивного двигателя. Трубопровод подачи холодного воздуха подходит спереди к корпусу теплообменника и не проходит, таким образом, через кессон пилона подвески двигателя.
Таким образом, объектом предлагаемого изобретения является двигательная установка для летательного аппарата, содержащая турбореактивный двигатель и теплообменник, расположенный над этим турбореактивным двигателем и отбирающий поток охлаждающего воздуха и поток горячего воздуха в турбореактивном двигателе, отличающаяся тем, что поверхности забора потока охлаждающего воздуха и забора горячего воздуха в корпус теплообменника ориентированы в направлении передней части турбореактивного двигателя и имеют нормали, наклоненные по отношению к оси этого турбореактивного двигателя.
В соответствии с примерами реализации двигательной установки в соответствии с предлагаемым изобретением эта двигательная установка может содержать все или часть перечисленных ниже отличительных признаков:
- корпус теплообменника закреплен на верхней поверхности пилона подвески турбореактивного двигателя на крыле летательного аппарата;
- поток охлаждающего воздуха отбирается в зоне раздвоения движения потока воздуха внутри кожухов турбореактивного двигателя, по потоку перед кожухами устройств реверса тяги этого турбореактивного двигателя;
- корпус теплообменника представляет собой параллелепипед, проходящий вдоль оси турбореактивного двигателя и расположенный наклонно по отношению к этой оси, причем поток охлаждающего воздуха поступает в корпус теплообменника через его первую переднюю входную поверхность и выходит через первую заднюю выходную поверхность этого корпуса, а поток горячего воздуха поступает в корпус теплообменника через его вторую переднюю входную поверхность и выходит через вторую заднюю выходную поверхность этого корпуса;
- поток охлаждающего воздуха и поток горячего воздуха движутся в корпусе теплообменника в направлении спереди назад и перпендикулярно друг к другу;
- корпус теплообменника представляет собой параллелепипед, расположенный поперечно по отношению к оси турбореактивного двигателя, причем поток охлаждающего воздуха поступает через нижнюю входную поверхность корпуса теплообменника и выходит через верхнюю выходную поверхность этого корпуса, а поток горячего воздуха поступает через переднюю входную поверхность корпуса теплообменника и выходит через заднюю выходную поверхность этого корпуса;
- поток охлаждающего воздуха движется снизу вверх в корпусе теплообменника и поток горячего воздуха движется спереди назад в корпусе теплообменника, причем поток охлаждающего воздуха и поток горячего воздуха движутся в корпусе теплообменника перпендикулярно по отношению друг к другу.
Предлагаемое изобретение относится также к летательному аппарату, содержащему, по меньшей мере, одну двигательную установку в соответствии с этим изобретением.
В соответствии с предпочтительными примерами реализации летательный аппарат снабжен двумя или четырьмя двигательными установками в соответствии с предлагаемым изобретением.
Предлагаемое изобретение очевидно из приведенного ниже описания не являющихся ограничительными примеров его реализации, приводимых со ссылками фигуры на чертежей, на которых:
фиг.1А - схематический вид сверху двигательной установки в соответствии с первым примером реализации предлагаемого изобретения;
фиг.1В - схематический перспективный вид теплообменника, показанного на фиг.1А;
фиг.2А - схематический вид сверху двигательной установки в соответствии со вторым примером реализации предлагаемого изобретения;
фиг.2В - схематический перспективный вид теплообменника, показанного на фиг.2А.
На фиг.1А схематически представлен турбореактивный двигатель 1, показанный здесь без гондолы. Пилон 10 подвески позволяет закрепить турбореактивный двигатель 1 на крыле летательного аппарата (на приведенных в приложении фигурах чертежей не показано). Конец пилона 10 подвески в виде пирамиды 11 закреплен на задней части вентилятора 3 этого турбореактивного двигателя 1. Корпус 12, или кессон, пилона 10 подвески двигателя закреплен в двух точках на задней части 2 турбореактивного двигателя 1.
Теплообменник 13 закреплен на верхней поверхности 15 кессона 12 пилона 10 подвески двигателя. Здесь под верхней поверхностью 15 следует понимать ту поверхность пилона 10 подвески двигателя, которая обращена в сторону неба. Теплообменник 13 содержит корпус 16, в котором движутся поток охлаждающего воздуха и поток горячего воздуха для того, чтобы обеспечить охлаждение горячего воздуха, который должен быть направлен в систему кондиционирования воздуха внутри летательного аппарата. Теплообменник 13 содержит также трубопроводы 17, 18 подвода воздуха, обеспечивающие подачу упомянутых потоков воздуха в корпус 16, и средства удаления воздуха, позволяющие этим потокам воздуха выйти из корпуса 16 теплообменника.
Поток охлаждающего воздуха проходит от вентилятора 3 до корпуса 16 теплообменника через трубопровод 17 подачи охлаждающего воздуха и выходит за пределы турбореактивного двигателя 1, например, через отверстия, выполненные в гондоле этого турбореактивного двигателя 1. Поток горячего воздуха проходит от задней части 2 двигателя до корпуса 16 теплообменника через трубопровод 18 подачи горячего воздуха, проходящий через кессон 12 пилона 10 подвески двигателя по его высоте. Трубопровод 18 подачи горячего воздуха и трубопровод 17 подачи охлаждающего воздуха при этом не пересекаются, поскольку трубопровод 17 подачи охлаждающего воздуха проходит через пирамиду 11 пилона 10 подвески двигателя, тогда как трубопровод 18 подачи горячего воздуха проходит через кессон 12 (смотрите фиг.1В).
Корпус 16 теплообменника имеет в целом прямоугольную форму и располагается наклонно по отношению к оси А турбореактивного двигателя 1 таким образом, чтобы представлять две передние поверхности, образующие соответственно поверхность 19 входа охлаждающего воздуха и поверхность 20 входа горячего воздуха. Эта поверхность 19 входа охлаждающего воздуха и поверхность 20 входа горячего воздуха имеют нормали n1 и n2, наклоненные по отношению к оси А турбореактивного двигателя 1. Каждый трубопровод 17, 18 входит в корпус 16 теплообменника через различные передние поверхности 19, 20 этого корпуса 16 таким образом, чтобы эти трубопроводы 17, 18 подачи воздуха не пересекались на уровне корпуса 16 теплообменника.
Внутри корпуса 16 теплообменника поток охлаждающего воздуха, поступающий из трубопровода 17 подачи охлаждающего воздуха, и поток горячего воздуха, поступающий из трубопровода 18 подачи горячего воздуха, движутся в целом в направлении спереди назад по отношению к направлению полета летательного аппарата. Внутри корпуса 16 теплообменника поток охлаждающего воздуха и поток горячего воздуха движутся в параллельных друг другу горизонтальных плоскостях, но в направлениях, перпендикулярных друг другу. Таким образом, теплообменник 13 работает горизонтально.
Поток горячего воздуха, частично охлажденный в теплообменнике, выходит из корпуса 16 через трубопровод 21 удаления горячего воздуха, располагающийся на уровне задней выходной поверхности 24 корпуса 16 для того, чтобы быть направленным в систему кондиционирования воздуха (на приведенных в приложении фигурах не показана). Предпочтительным образом поток охлаждающего воздуха, выходящий из корпуса 16 теплообменника, удаляется через вторую заднюю выходную поверхность этого корпуса 16 наружу для того, чтобы иметь возможность легко быть отведенным за пределы пилона подвески двигателя.
В соответствии с другим примером реализации предлагаемого изобретения корпус 16 теплообменника 13 может иметь в целом ромбическую форму, причем эта ромбическая форма располагается вдоль оси А турбореактивного двигателя 1. Таким образом, корпус 16 теплообменника также представляет две передние поверхности подвода воздуха, позволяющие принимать трубопровод 17 подачи охлаждающего воздуха и трубопровод 18 подачи горячего воздуха.
На фиг.2А схематически представлен другой пример позиционирования теплообменника 13 на пилоне 10 подвески двигателя. Здесь корпус 16 теплообменника имеет в целом прямоугольную форму.
Как это можно видеть на фиг.2В, корпус 16 теплообменника наклонен на пилоне 10 и расположен поперечно по отношению к оси А турбореактивного двигателя 1. Нижняя поверхность 22 корпуса 16 не соединяется с верхней поверхностью 15 пилона 10, но расположена наклонно над упомянутой верхней поверхностью 15. Под нижней поверхностью 22 здесь следует понимать поверхность корпуса 16 теплообменника, ориентированную в направлении верхней поверхности 15 пилона 10. При этом корпус 16 закреплен, например, на верхней поверхности 15 пилона 10 при помощи ребра, общего для нижней поверхности 22 и задней поверхности корпуса 16.
Наклон корпуса 16 теплообменника выполнен таким образом, что он освобождает доступ к нижней поверхности 22 этого корпуса 16. Таким образом, нижняя поверхность 22 оказывается в передней части турбореактивного двигателя 1, в том же качестве, что и передняя поверхность 19, которая оказывается приподнятой над пилоном 10 по отношению к нижней поверхности 22. Таким образом, нижняя поверхность 22 и передняя поверхность 19 расположены против течения потока воздуха, движущегося вне теплообменника. Нижняя поверхность 22 и передняя поверхность 19 имеют нормали, наклоненные по отношению к оси А турбореактивного двигателя 1.
Поток охлаждающего воздуха подается через нижнюю поверхность 22 в корпус 16 теплообменника, тогда как поток горячего воздуха подается в этот корпус 16 через его переднюю поверхность 19. Поток охлаждающего воздуха проходит через корпус 16 теплообменника от его нижней входной поверхности 22 до верхней выходной поверхности 23, тогда как поток горячего воздуха проходит через этот корпус 16 от его передней входной поверхности 19 до задней выходной поверхности 24. Таким образом, поток охлаждающего воздуха проходит через корпус перпендикулярно по отношению к потоку горячего воздуха. Таким образом, теплообменник 13 работает вертикально.

Claims (8)

1. Двигательная установка для летательного аппарата, содержащая турбореактивный двигатель (1) и теплообменник (13), расположенный над этим турбореактивным двигателем и отбирающий поток охлаждающего воздуха (7) и поток горячего воздуха в турбореактивном двигателе, отличающаяся тем, что поверхности забора потока охлаждающего воздуха и забора потока горячего воздуха в корпус теплообменника направлены вперед турбореактивного двигателя и имеют нормали (n1, n2), наклоненные по отношению к оси (А) этого турбореактивного двигателя.
2. Двигательная установка по п.1, отличающаяся тем, что поток охлаждающего воздуха отбирается в зоне раздвоения (6) движения потока воздуха внутри кожухов турбореактивного двигателя по потоку перед кожухами устройств (5) реверса тяги этого турбореактивного двигателя.
3. Двигательная установка по п.1, отличающаяся тем, что корпус (16) теплообменника закреплен на верхней поверхности (15) пилона (10) подвески турбореактивного двигателя на крыле летательного аппарата.
4. Двигательная установка по п.1, отличающаяся тем, что упомянутый корпус теплообменника представляет собой параллелепипед, проходящий вдоль оси турбореактивного двигателя и расположенный наклонно по отношению к этой оси, причем поток охлаждающего воздуха поступает в корпус теплообменника через его первую переднюю входную поверхность (19) и выходит через первую заднюю выходную поверхность (24) этого корпуса, а поток горячего воздуха поступает в корпус теплообменника через его вторую переднюю входную поверхность (20) и выходит через вторую заднюю выходную поверхность этого корпуса.
5. Двигательная установка по п.4, отличающаяся тем, что поток охлаждающего воздуха и поток горячего воздуха движутся в корпусе теплообменника в направлении спереди назад перпендикулярно друг к другу.
6. Двигательная установка по п.1, отличающаяся тем, что упомянутый корпус представляет собой параллелепипед, расположенный поперечно по отношению к оси турбореактивного двигателя, причем поток охлаждающего воздуха поступает в корпус теплообменника через его нижнюю входную поверхность (22) и выходит через верхнюю выходную поверхность (23) этого корпуса, а поток горячего воздуха поступает в корпус теплообменника через его переднюю входную поверхность (19) и выходит через заднюю выходную поверхность (24) этого корпуса.
7. Двигательная установка по п.6, отличающаяся тем, что поток охлаждающего воздуха движется в корпусе теплообменника в направлении снизу вверх и поток горячего воздуха движется в корпусе теплообменника в направлении спереди назад, причем поток охлаждающего воздуха и поток горячего воздуха движутся в корпусе теплообменника перпендикулярно друг к другу.
8. Летательный аппарат, отличающийся тем, что он содержит, по меньшей мере, одну двигательную установку в соответствии с одним из пп.1-7.
RU2008107594/11A 2005-07-28 2006-07-07 Двигательная установка для летательного аппарата и летательный аппарат, содержащий по меньшей мере одну такую двигательную установку RU2402462C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552352 2005-07-28
FR0552352A FR2889250B1 (fr) 2005-07-28 2005-07-28 Ensemble propulseur pour aeronef et aeronef comportant au moins un tel ensemble propulseur

Publications (2)

Publication Number Publication Date
RU2008107594A RU2008107594A (ru) 2009-09-10
RU2402462C2 true RU2402462C2 (ru) 2010-10-27

Family

ID=36177939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008107594/11A RU2402462C2 (ru) 2005-07-28 2006-07-07 Двигательная установка для летательного аппарата и летательный аппарат, содержащий по меньшей мере одну такую двигательную установку

Country Status (9)

Country Link
US (1) US8522529B2 (ru)
EP (1) EP1907281B1 (ru)
JP (1) JP4887364B2 (ru)
CN (1) CN101228069B (ru)
BR (1) BRPI0614447A2 (ru)
CA (1) CA2615273C (ru)
FR (1) FR2889250B1 (ru)
RU (1) RU2402462C2 (ru)
WO (1) WO2007012722A1 (ru)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889298B1 (fr) * 2005-07-28 2010-11-26 Airbus France Echangeur thermique, ensemble propulseur, et aeronef comportant un tel ensemble propulseur
EP2971729B1 (en) * 2013-03-14 2019-02-27 United Technologies Corporation Gas turbine engine and ventilation system
GB201310810D0 (en) * 2013-06-18 2013-07-31 Rolls Royce Deutschland & Co Kg An accessory mounting for a gas turbine engine
JP6450076B2 (ja) * 2014-02-24 2019-01-09 三菱航空機株式会社 航空機、航空機のエンジンパイロン、および航空機の機体へのエンジン取付方法
US11808210B2 (en) 2015-02-12 2023-11-07 Rtx Corporation Intercooled cooling air with heat exchanger packaging
US10731560B2 (en) 2015-02-12 2020-08-04 Raytheon Technologies Corporation Intercooled cooling air
US10371055B2 (en) 2015-02-12 2019-08-06 United Technologies Corporation Intercooled cooling air using cooling compressor as starter
US10830148B2 (en) 2015-04-24 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air with dual pass heat exchanger
US10221862B2 (en) 2015-04-24 2019-03-05 United Technologies Corporation Intercooled cooling air tapped from plural locations
US10480419B2 (en) 2015-04-24 2019-11-19 United Technologies Corporation Intercooled cooling air with plural heat exchangers
US10100739B2 (en) 2015-05-18 2018-10-16 United Technologies Corporation Cooled cooling air system for a gas turbine engine
US10794288B2 (en) 2015-07-07 2020-10-06 Raytheon Technologies Corporation Cooled cooling air system for a turbofan engine
US10287982B2 (en) * 2015-08-14 2019-05-14 United Technologies Corporation Folded heat exchanger for cooled cooling air
US10253695B2 (en) 2015-08-14 2019-04-09 United Technologies Corporation Heat exchanger for cooled cooling air with adjustable damper
US10443508B2 (en) 2015-12-14 2019-10-15 United Technologies Corporation Intercooled cooling air with auxiliary compressor control
US11203437B2 (en) 2016-06-30 2021-12-21 Bombardier Inc. Assembly and method for conditioning engine-heated air onboard an aircraft
US10669940B2 (en) 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
US10794290B2 (en) 2016-11-08 2020-10-06 Raytheon Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US10550768B2 (en) 2016-11-08 2020-02-04 United Technologies Corporation Intercooled cooled cooling integrated air cycle machine
US20180162537A1 (en) 2016-12-09 2018-06-14 United Technologies Corporation Environmental control system air circuit
US10961911B2 (en) 2017-01-17 2021-03-30 Raytheon Technologies Corporation Injection cooled cooling air system for a gas turbine engine
US10995673B2 (en) 2017-01-19 2021-05-04 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and dual towershaft accessory gearbox
US10577964B2 (en) 2017-03-31 2020-03-03 United Technologies Corporation Cooled cooling air for blade air seal through outer chamber
US10711640B2 (en) 2017-04-11 2020-07-14 Raytheon Technologies Corporation Cooled cooling air to blade outer air seal passing through a static vane
US10738703B2 (en) 2018-03-22 2020-08-11 Raytheon Technologies Corporation Intercooled cooling air with combined features
US10830145B2 (en) 2018-04-19 2020-11-10 Raytheon Technologies Corporation Intercooled cooling air fleet management system
US10808619B2 (en) 2018-04-19 2020-10-20 Raytheon Technologies Corporation Intercooled cooling air with advanced cooling system
US10718233B2 (en) 2018-06-19 2020-07-21 Raytheon Technologies Corporation Intercooled cooling air with low temperature bearing compartment air
US11255268B2 (en) 2018-07-31 2022-02-22 Raytheon Technologies Corporation Intercooled cooling air with selective pressure dump
FR3128443A1 (fr) * 2021-10-25 2023-04-28 Airbus Operations (S.A.S.) Ensemble de propulsion d’aéronef comprenant un échangeur thermique à plaques, de section longitudinale hexagonale, positionné dans une bifurcation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971137A (en) * 1989-11-09 1990-11-20 American Energy Exchange, Inc. Air-to-air heat exchanger with frost preventing means
US5123242A (en) * 1990-07-30 1992-06-23 General Electric Company Precooling heat exchange arrangement integral with mounting structure fairing of gas turbine engine
FR2734319B1 (fr) * 1995-05-15 1997-07-18 Aerospatiale Dispositif pour prelever et refroidir de l'air chaud au niveau d'un moteur d'aeronef
IL114613A (en) * 1995-07-16 1999-09-22 Tat Ind Ltd Parallel flow condenser heat exchanger
US5967461A (en) * 1997-07-02 1999-10-19 Mcdonnell Douglas Corp. High efficiency environmental control systems and methods
FR2839948B1 (fr) * 2002-05-22 2004-12-17 Airbus France Echangeur pour circuit de conditionnement d'air d'aeronef et ensemble de propulsion integrant un tel echangeur
US7607308B2 (en) * 2005-12-08 2009-10-27 General Electric Company Shrouded turbofan bleed duct
GB0607771D0 (en) * 2006-04-20 2006-05-31 Rolls Royce Plc A heat exchanger arrangement
US7856824B2 (en) * 2007-06-25 2010-12-28 Honeywell International Inc. Cooling systems for use on aircraft

Also Published As

Publication number Publication date
CA2615273A1 (fr) 2007-02-01
CA2615273C (fr) 2015-06-02
CN101228069B (zh) 2012-06-06
CN101228069A (zh) 2008-07-23
JP2009503332A (ja) 2009-01-29
JP4887364B2 (ja) 2012-02-29
US8522529B2 (en) 2013-09-03
RU2008107594A (ru) 2009-09-10
BRPI0614447A2 (pt) 2011-03-29
EP1907281A1 (fr) 2008-04-09
US20090025366A1 (en) 2009-01-29
FR2889250A1 (fr) 2007-02-02
WO2007012722A1 (fr) 2007-02-01
FR2889250B1 (fr) 2007-09-07
EP1907281B1 (fr) 2018-03-07

Similar Documents

Publication Publication Date Title
RU2402462C2 (ru) Двигательная установка для летательного аппарата и летательный аппарат, содержащий по меньшей мере одну такую двигательную установку
RU2401222C2 (ru) Силовая установка летательного аппарата, содержащая двигатель и стойку его крепления
US7658060B2 (en) Lubricant cooling exchanger dual intake duct
RU2394730C2 (ru) Силовая установка летательного аппарата, содержащая двигатель и стойку его крепления
RU2413086C2 (ru) Двигательная установка и летательный аппарат, содержащий такую двигательную установку
US11203437B2 (en) Assembly and method for conditioning engine-heated air onboard an aircraft
US4517813A (en) Air conditioning system and air mixing/water separation apparatus therein
US20170002747A1 (en) Aircraft turbomachine comprising a heat exchanger of the precooler type
US9981751B2 (en) Casing for a propulsion unit
US11142327B2 (en) Aircraft turbomachine assembly comprising an articulated cowl
US7823624B2 (en) Heat exchanger, propulsion unit, and aircraft comprising such a propulsion unit
CN212499818U (zh) 一种滤网与内框的插接结构以及包括该结构的通风装置
CN111465557B (zh) 用于涡轮喷气发动机机舱的进气唇缘
US20230184164A1 (en) Box-shaped air intake silencer with vertical baffles for gas turbine system
CA3223947A1 (fr) Pylone de suspension d'un moteur d'aeronef equipe d'un echangeur de refroidissement a contre-courant

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20120221

MM4A The patent is invalid due to non-payment of fees

Effective date: 20140708