RU2396547C1 - Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов - Google Patents

Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов Download PDF

Info

Publication number
RU2396547C1
RU2396547C1 RU2009116979/28A RU2009116979A RU2396547C1 RU 2396547 C1 RU2396547 C1 RU 2396547C1 RU 2009116979/28 A RU2009116979/28 A RU 2009116979/28A RU 2009116979 A RU2009116979 A RU 2009116979A RU 2396547 C1 RU2396547 C1 RU 2396547C1
Authority
RU
Russia
Prior art keywords
distribution
radiation
sample
reflection
atr
Prior art date
Application number
RU2009116979/28A
Other languages
English (en)
Inventor
Василий Валерьевич Герасимов (RU)
Василий Валерьевич Герасимов
Борис Александрович Князев (RU)
Борис Александрович Князев
Валерий Семенович Черкасский (RU)
Валерий Семенович Черкасский
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Новосибирский государственный университет (НГУ)
Priority to RU2009116979/28A priority Critical patent/RU2396547C1/ru
Application granted granted Critical
Publication of RU2396547C1 publication Critical patent/RU2396547C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к спектрофотометрии и может быть использовано для исследования пространственного распределения комплексного показателя преломления по поверхности сильно поглощающих материалов. Образец размещают на плоской поверхности элемента НПВО с высоким показателем преломления, на границу раздела подают световой пучок монохроматического излучения с расходимостью не более 5·10-2 рад и длиной волны, плавно перестраиваемой во всем диапазоне длин волн, с мощностью, обеспечивающей одновременную регистрацию всего сечения пучка матричным приемником излучения, на котором формируется картина, соответствующая проекции распределения по поверхности раздела локального коэффициента отражения излучения. Результаты двух индивидуальных измерений распределения коэффициента отражения при двух углах падения или при двух поляризациях излучения обрабатываются на компьютере по программе, реализующей вычисление распределения комплексного показателя преломления по поверхности исследуемого образца по известным законам френелевского отражения, и это распределение выводится на экран дисплея, а также записывается в виде файла. Изобретение позволяет производить измерения в режиме реального времени в широком диапазоне длин волн. 2 з.п. ф-лы, 4 ил.

Description

Область техники
Изобретение относится к области спектрофотометрии и может быть использовано для создания приборов по схеме нарушенного полного внутреннего отражения (НПВО) для исследования пространственного распределения комплексного показателя преломления по поверхности сильно поглощающих материалов, объектов и субстанций.
Уровень техники
Известны интерференционные спектральные приборы, формирующие спектр исследуемого объекта путем преобразования фурье-функции автокорреляции входного излучения с помощью двухлучевых интерферометров (Р.Белл. Введение в фурье-спектроскопию. М.: Мир, 1975, с.285-305) [1]. В наиболее распространенном варианте таких приборов квазипараллельный пучок излучения источника излучения со сплошным спектром, создаваемый коллимирующей оптикой, проходит через образец, расположенный в кюветной части, а затем регистрируется детектором, расположенным на выходе одного из плеч интерферометра. Перемещение зеркала во втором плече интерферометра обеспечивает запись интерферограммы, обратное фурье-преобразование которой позволяет восстановить спектр поглощения образца.
Недостатком такого прибора является практическая невозможность измерения коэффициента поглощения сильно поглощающих образцов.
Для устранения этого недостатка в кюветную часть фурье-спектрометра помещают НПВО-модуль, представляющий собой НПВО-элемент (обычно это призма) с высоким показателем преломления, с рабочей поверхностью которого контактирует исследуемый образец. Такая конфигурация позволяет зарегистрировать после выполнения обратного преобразования Фурье спектральную зависимость коэффициента нарушенного полного внутреннего отражения, а затем с помощью преобразования Крамерса-Кронига восстановить действительную и мнимую части показателя преломления образца.
Если в качестве приемника в фурье-спектрометре использовать матричный приемник излучения (S.G.Kazarian, J.Van der Weerd. Simultaneous FTIR spectroscopic imaging and visible photography to monitor tablet dissolution and drag release. Pharmaceutical Research, V.25, issue 4, p.853-860, 2008) [2], то таким способом можно определить распределение комплексного показателя преломления по поверхности образца, то есть создать изображающий фурье-спектрометр.
Известен изображающий фурье-спектрометр, описанный в патенте US 006141100 E.M.Burka, R.Kurbelo [3], в предметное плечо интерферометра на плоский образец помещается двояковыпуклая линза, служащая НПВО-элементом. Квазипараллельное широкополосное излучение, входящее в рабочее плечо интерферометра, с помощью первой линзы фокусируется через сферическую поверхность НПВО-элемента под заданным углом на его внутреннюю сферическую поверхность, находящуюся в контакте с исследуемым образцом, а отраженное излучение затем собирается второй линзой, отображающей с большим увеличением точку контакта НПВО-элемента с образцом на матричный приемник излучения.
Способ определения распределения величины комплексного показателя преломления, реализуемый в этом устройстве, принят за прототип.
Общим недостатком способов, используемых в описанных приборах, является необходимость перемещения зеркала для записи интерферограммы и необходимость выполнения обратных преобразований Фурье для каждого элемента матрицы, что ограничивает скорость записи спектра, а следовательно, ограничивает возможность регистрации динамических процессов.
Задача, решаемая изобретением.
Целью изобретения является создание способа, обеспечивающего возможность как измерения динамики распределения комплексного показателя преломления исследуемого образца при фиксированной длине волны в реальном времени, так и относительно быстрой регистрации той же величины в широком спектральном диапазоне.
Раскрытие изобретения
Указанная цель достигается тем, что в известном способе измерения распределения величины комплексного показателя преломления сильно поглощающих образцов, включающем размещение исследуемого образца на поверхности НПВО-элемента с высоким показателем преломления, обеспечивающим полное внутреннее отражение излучения от поверхности раздела НПВО-элемента и образца, подачу светового пучка на поверхность раздела НПВО-элемента и образца и регистрацию отраженного светового пучка, в качестве светового пучка используют пучок монохроматического излучения с расходимостью не более 5·10-2 рад и длиной волны, плавно перестраиваемой во всем диапазоне длин волн, с мощностью, обеспечивающей одновременную регистрацию всего сечения пучка матричным приемником излучения; отраженный от поверхности раздела НПВО-элемента и образца плоский волновой фронт, содержащий информацию о распределении величины комплексного показателя преломления образца, регистрируют матричным приемником излучения, на котором формируется картина, соответствующая проекции распределения по поверхности раздела локального коэффициента отражения излучения. Для получения распределения комплексного показателя преломления по поверхности исследуемого объекта результаты двух индивидуальных измерений распределения коэффициента отражения при двух углах падения или при двух поляризациях излучения обрабатываются на компьютере по программе, реализующей вычисление распределения этого показателя преломления по известным законам френелевского отражения, и это распределение выводится на экран дисплея, а также записывается в виде файла.
Для исследования спектральной зависимости распределения коэффициента поглощения в широком диапазоне длин волн производят многократную запись полученного распределения для разных длин волн падающего излучения.
Для исследования зависимости распределения коэффициента поглощения от времени производят многократную запись полученного распределения с частотой кадров, определяемой возможностями приемника, при фиксированной длине волны.
Описание чертежей
Описание изобретения поясняется чертежами, где на фиг.1 представлена блок-схема регистратора, а на фиг.2 - схема построения оптического изображения.
На чертежах: 1 - источник излучения, 2 - поляризатор, 3, 4, 7, 8 - зеркала, 5 - НПВО-элемент, 6 - образец, 9 - линза, 10 - диафрагма, 11 - матричный приемник, 12 - угол падения луча.
Описание реализации способа
Излучение от монохроматического источника излучения 1, частота которого может быть непрерывно перестроена в широком диапазоне длин волн, а малая расходимость позволяет сформировать плоский волновой фронт, необходимый для корректного отображения поглощающей поверхности на матричный приемник излучения (например, лазер на свободных электронах), вводится внутрь НПВО-элемента 5, реальная часть показателя преломления которого выше, чем реальная часть показателя преломления исследуемой субстанции (в частном случае НПВО-элемент может иметь форму призмы), и падает на рабочую поверхность, на которой находится исследуемый образец 6 под заданным углом падения 12. Угол падения на внутреннюю (рабочую) грань НПВО-элемента в соответствии с известным законом выбирается большим, чем критический угол полного внутреннего отражения для элемента с находящейся в контакте с упомянутой гранью исследуемой субстанцией. В частном случае для этого можно использовать систему зеркал 3 и 4, как показано на фиг.1. При необходимости изменять угол падения это можно сделать, перемещая и вращая упомянутые зеркала. Распределение коэффициента отражения излучения от границы раздела НПВО-элемент - образец зависит от угла падения излучения, направления поляризации излучения и локальной величины комплексного показателя преломления исследуемого образца. Направление вектора поляризации излучения может управляться одним или двумя поляризаторами 2, расположенными на пути луча до его входа в НПВО-элемент. Отраженное излучение выходит из НПВО-элемента через другую грань, угол падения на которую отраженного излучения меньше, чем угол полного внутреннего отражения, и выводится (например, зеркалами 7 и 8) в регистрирующую оптическую систему, состоящую минимум из одной линзы 9 и минимум одного матричного приемника излучения 11.
Для очистки изображения от лучей, многократно отраженных от оптических элементов, можно дополнительно использовать диафрагму 10, расположенную в фокусе линзы. Оптическая система отображает плоскость, проходящую через центр рабочей грани НПВО-элемента, на поверхность матричного приемника излучения. При этом, хотя на матричный приемник отображается не граница раздела, а плоскость, расположенная по отношению к ней под углом, равным углу падения пробного излучения, благодаря тому, что единственным источником уменьшения коэффициента отражения является поглощение энергии волны в исследуемом поглощающем образце (в соответствии с известным законом нарушенного полного внутреннего отражения), а также благодаря тому, что рабочая грань облучается плоской волной малой расходимости, на матричном приемнике излучения формируется картина, соответствующая проекции распределения локального коэффициента отражения излучения по поверхности рабочей грани. Данные отдельного измерения с матричного приемника излучения передаются в компьютер.
Для получения распределения комплексного показателя преломления по поверхности исследуемого объекта результаты двух индивидуальных измерений распределения коэффициента отражения при двух углах падения или при двух поляризациях излучения обрабатываются на компьютере по программе, реализующей вычисление распределения этого показателя преломления по известным законам френелевского отражения, и это распределение выводится на экран дисплея, а также записывается в виде файла.
Реализуемость метода доказана экспериментально. На фиг.3 приведен общий вид изображающего НПВО-спектрометра, собранного по схеме фиг.1 и 2 и предназначенного для работы в широком спектральном диапазоне - от видимой области спектра до субмиллиметровой. На Фиг.4. представлены избранные кадры из видеозаписи растекания капли раствора 6-аминофенола в этаноле по поверхности стеклянной призмы, служившей НПВО-элементом. Источником излучения служил гелий-неоновый лазер. Скорость записи равнялась 10 кадрам в секунду. Поле зрения составляло 15×20 мм. Общая длина записи составляла 70 кадров. Кадры представляют собой распределение по поверхности коэффициента отражения, полученного путем деления интенсивности света, отраженного от внутренней поверхности призмы с образцом, на интенсивность света, отраженного в отсутствие образца. Ясно видно заметное поглощение излучения в жидкости, а также положение границы капли на поверхности, наблюдаемое вследствие изменения условия НПВО на границе сред. Эти результаты демонстрируют преимущества изображающего НПВО-спектрометра, на котором реализован заявляемый способ, по сравнению с обычными. В экспериментах с перестраиваемым лазером на свободных электронах в диапазоне длин волн 130 и 148 мкм были получены похожие результаты.
Источники информации
[1] Р.Белл. Введение в фурье-спектроскопию. М.: Мир, 1975, с.285-305.
[2] S.G.Kazarian, J.Van der Weerd. Simultaneous FTIR spectroscopic imaging and visible photography to monitor tablet dissolution and drag release. Pharmaceutical Research, V.25, issue 4, p.853-860, 2008.
[3] Патент US 006141100.

Claims (3)

1. Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов, включающий размещение исследуемого образца на плоской поверхности НПВО элемента с высоким показателем преломления, обеспечивающим полное внутреннее отражение излучения от поверхности раздела НПВО элемента и образца, подачу светового пучка на поверхность раздела НПВО-элемента и образца, и регистрацию отраженного светового пучка, отличающийся тем, что в качестве светового пучка используют пучок монохроматического излучения с расходимостью не более 5·10-2 рад и длиной волны, плавно перестраиваемой во всем диапазоне длин волн, с мощностью, обеспечивающей одновременную регистрацию всего сечения пучка матричным приемником излучения; отраженный от поверхности раздела НПВО элемента и образца плоский волновой фронт, содержащий информацию о распределении величины комплексного показателя преломления образца, регистрируют матричным приемником излучения, на котором формируется картина, соответствующая проекции распределения по поверхности раздела локального коэффициента отражения излучения, результаты двух индивидуальных измерений распределения коэффициента отражения при двух углах падения или при двух поляризациях излучения обрабатываются на компьютере по программе, реализующей вычисление распределения комплексного показателя преломления по поверхности исследуемого образца по известным законам френелевского отражения, и это распределение выводится на экран дисплея, а также записывается в виде файла.
2. Способ по п.1, отличающийся тем, что для исследования спектральной зависимости распределения коэффициента поглощения в широком диапазоне длин волн производят многократную запись полученного распределения для разных длин волн падающего излучения.
3. Способ по п.1, отличающийся тем, что для исследования зависимости распределения коэффициента поглощения от времени производят многократную запись полученного распределения с частотой кадров, определяемой возможностями приемника, при фиксированной длине волны.
RU2009116979/28A 2009-05-04 2009-05-04 Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов RU2396547C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009116979/28A RU2396547C1 (ru) 2009-05-04 2009-05-04 Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009116979/28A RU2396547C1 (ru) 2009-05-04 2009-05-04 Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов

Publications (1)

Publication Number Publication Date
RU2396547C1 true RU2396547C1 (ru) 2010-08-10

Family

ID=42699139

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009116979/28A RU2396547C1 (ru) 2009-05-04 2009-05-04 Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов

Country Status (1)

Country Link
RU (1) RU2396547C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170734U1 (ru) * 2016-11-25 2017-05-04 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Резонаторное устройство измерения модуля и фазы коэффициента отражения листовых материалов
RU2727783C1 (ru) * 2019-12-24 2020-07-23 Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") Устройство измерения распределения показателя преломления прозрачных образцов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU170734U1 (ru) * 2016-11-25 2017-05-04 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Резонаторное устройство измерения модуля и фазы коэффициента отражения листовых материалов
RU2727783C1 (ru) * 2019-12-24 2020-07-23 Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") Устройство измерения распределения показателя преломления прозрачных образцов

Similar Documents

Publication Publication Date Title
Norris et al. The VAMPIRES instrument: imaging the innermost regions of protoplanetary discs with polarimetric interferometry
Garcia-Caurel et al. Advanced Mueller ellipsometry instrumentation and data analysis
US9377362B2 (en) Systems and methods for high-contrast, near-real-time acquisition of terahertz images
EP1272823B1 (en) Spatial and spectral wavefront analysis and measurement
US20200116626A1 (en) Snapshot Ellipsometer
JP2021518565A (ja) 瞬時的エリプソメータ又は光波散乱計及び関連する測定方法
Collins et al. The Galway astronomical Stokes polarimeter: an all-Stokes optical polarimeter with ultra-high time resolution
TW202107215A (zh) 使用數值孔徑減量之光學度量衡裝置
US20220065617A1 (en) Determination of a change of object's shape
US20120092662A1 (en) Coherent anti-stokes raman spectroscopy
RU2396547C1 (ru) Способ измерения распределения величины комплексного показателя преломления сильно поглощающих образцов
US10900840B1 (en) Snapshot Mueller matrix polarimeter
Itoh III Interferometric Multispectral Imaging
Velghe et al. Advanced wave-front sensing by quadri-wave lateral shearing interferometry
Gisler et al. Planet imaging polarimetry with the solar telescope GREGOR
WO2017033037A1 (en) Terahertz wavefront measurement system and method
US20060126067A1 (en) Crystal grating apparatus
Khasanov et al. Terahertz ghost imaging and surface plasmon resonance microscopy: analysis of factors affecting the image quality
US8502987B1 (en) Method and apparatus for measuring near-angle scattering of mirror coatings
Snel et al. Full stokes spectropolarimetry for space object identification
LU101150B1 (en) A device, use of the device and a method for high-contrast imaging
Carlotti et al. Experimental test of a micro-mirror array as an adaptive apodizer for high-contrast imaging
US11391666B1 (en) Snapshot ellipsometer
Bailén et al. Fabry-Pérot etalons in solar astronomy. A review
Welsh et al. Diagonal Mueller matrix measurements based on a single pulse LiDAR polarimeter

Legal Events

Date Code Title Description
QA4A Patent open for licensing

Effective date: 20180402