RU2392180C1 - Гребная электрическая установка (варианты) - Google Patents

Гребная электрическая установка (варианты) Download PDF

Info

Publication number
RU2392180C1
RU2392180C1 RU2009100663/11A RU2009100663A RU2392180C1 RU 2392180 C1 RU2392180 C1 RU 2392180C1 RU 2009100663/11 A RU2009100663/11 A RU 2009100663/11A RU 2009100663 A RU2009100663 A RU 2009100663A RU 2392180 C1 RU2392180 C1 RU 2392180C1
Authority
RU
Russia
Prior art keywords
shaft
propeller
motor
electric
gearbox
Prior art date
Application number
RU2009100663/11A
Other languages
English (en)
Inventor
Георгий Михайлович Свиридов (RU)
Георгий Михайлович Свиридов
Валентин Михайлович Пашин (RU)
Валентин Михайлович Пашин
Владимир Павлович Копченов (RU)
Владимир Павлович Копченов
Александр Александрович Павлов (RU)
Александр Александрович Павлов
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова") filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт имени академика А.Н. Крылова" (ФГУП "ЦНИИ им. акад. А.Н. Крылова")
Priority to RU2009100663/11A priority Critical patent/RU2392180C1/ru
Application granted granted Critical
Publication of RU2392180C1 publication Critical patent/RU2392180C1/ru

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

Изобретение относится к судовым двигательно-движительным установкам. Электрическая гребная установка содержит источник электропитания постоянного тока, гребной электродвигатель, редуктор, три управляемые разъединительные муфты, систему управления. Источник электропитания соединен с гребным электродвигателем переменного тока через статический преобразователь параметров электроэнергии. В режиме экономичного хода вал гребного электродвигателя напрямую соединен с валом гребного винта, для чего включают первую муфту и выключают вторую и третью муфты. Для реализации режима полного хода вал гребного электродвигателя соединяют с валом гребного винта через редуктор, для этого выключают первую муфту и включают вторую и третью. Вход системы управления подключен к задатчику частоты вращения вала гребного винта, а ее выходы подключены к статическому преобразователю параметров электроэнергии и к управляемым разъединительным муфтам. Во втором варианте исполнения в качестве гребного электродвигателя применен электродвигатель постоянного тока. Достигается снижение массогабаритных характеристик электроэнергетического оборудования гребной электрической установки. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к судовым малогабаритным гребным электрическим установкам, обеспечивающим экономичные режимы движения. Установка может быть применена на любых типах кораблей, судов и подводных аппаратов.
Известна гребная энергетическая установка (ГЭУ) (например, построенного в 2007 г. фрегата типа 45, ВМС Великобритании см. www.onr.navy.mil/t45), содержащая источник электроэнергии, питающий через преобразователь параметров электроэнергии гребной электродвигатель (ГЭД) большой мощности, вал которого соединен непосредственно с гребным валом, на котором закреплен гребной винт, обеспечивающая движение судна во всем диапазоне скоростей (так называемая ГЭУ с полным электродвижением). Максимальная частота вращения гребных винтов лежит обычно в диапазоне 100-250 об/мин, поэтому гребной электродвигатель должен быть низкооборотным и развивать большой момент.
Недостатком такой установки является большая масса и объем электроэнергетического оборудования, особенно ГЭД. Так, ГЭД мощностью 40 МВт при частоте вращения линии вала 150 об/мин имеет массу около 400 т и габариты: длина - 10 м при диаметре около 7 м. Преобразователь частоты напряжения на полную мощность также имеет довольно большую массу и объем (например, преобразователь мощностью 20000 кВт состоит из линейки электрошкафов высотой 2 м, глубиной 0,8 м и общей длиной 14 м). Массогабаритные характеристики оборудования ГЭУ в 1,5-2 раза хуже, чем у традиционной энергетической установки с механической передачей энергии от первичного двигателя (турбины, дизеля) на гребной вал через главный турбозубчатый агрегат (ГТЗА).
Известна также ГЭУ с полным электродвижением (прототип) гребная установка буксира-толкателя «Клермонт», ВМС США (см. «Гребные электрические установки». - Л., «Судостроение», 1985 г.), где ГЭД приводит во вращение гребной винт через постоянно включенный понижающий редуктор. Высокооборотный гребной электродвигатель с редуктором имеет существенно лучшие массогабаритные характеристики, чем прямодействующий низкооборотный ГЭД той же мощности. Однако постоянно включенный редуктор снижает КПД энергетической установки и увеличивает ее виброактивность.
Задачей предлагаемого изобретения является улучшение энергетических характеристик гребной электрической установки, уменьшение массы и снижение ее виброактивности на частичных режимах работы.
Это достигается тем, что в известную гребную электрическую установку, содержащую гребной электродвигатель, вал которого соединен с валом гребного винта через редуктор, источник электроэнергии, соединенный с гребным электродвигателем через статический преобразователь параметров электроэнергии, по изобретению в нее введены три управляемые разъединительные муфты, система управления, задатчик частоты вращения гребного электродвигателя, выполненного в виде электродвигателя переменного тока, причем источник электроэнергии выполнен в виде источника электроэнергии постоянного тока (аккумулятор или топливный элемент), вал гребного электродвигателя соединен с валом гребного винта через первую управляемую разъединительную муфту, редуктор и вторую управляемую разъединительную муфту, при этом вал гребного винта проходит через вторую управляемую разъединительную муфту, полый выходной вал редуктора, полый входной вал редуктора и соединен с валом электродвигателя через третью управляемую разъединительную муфту, выходы системы управления подключены к входу статического преобразователя параметров электроэнергии и трем управляемым разъединительным муфтам, вход системы управления подключен к задатчику частоты вращения гребного электродвигателя, при этом гребной электродвигатель подключен к источнику постоянного тока через статический преобразователь параметров электроэнергии.
Во втором варианте исполнения устройство отличается тем, что в качестве гребного электродвигателя используется электродвигатель постоянного тока, а источник электроэнергии выполнен в виде источника электроэнергии постоянного тока, так же введены три управляемые разъединительные муфты, система управления, задатчик частоты вращения гребного электродвигателя, причем вал гребного электродвигателя соединен с валом гребного винта через первую управляемую разъединительную муфту, редуктор и вторую управляемую разъединительную муфту, при этом вал гребного винта проходит через вторую управляемую разъединительную муфту, полый выходной вал редуктора, полый входной вал редуктора и соединен с валом электродвигателя через третью управляемую разъединительную муфту, выходы системы управления подключены к трем управляемым разъединительным муфтам и к входу статического преобразователя параметров электроэнергии, выполненного в виде статического преобразователя постоянно - постоянного тока; вход системы управления подключен к задатчику частоты вращения гребного электродвигателя, при этом гребной электродвигатель подключен к источнику постоянного тока через статический преобразователь постоянно - постоянного тока.
Введение разъединительных муфт и системы управления позволяет разделить диапазон управления частотой вращения гребного винта на два поддиапазона:
- режим экономического хода (название условное), где частота вращения гребного винта выбирается в диапазоне от минимальной до частоты вращения, соответствующей экономическому (крейсерскому) ходу;
- режим полного хода (ПХ), где частота вращения гребного винта выбирается в диапазоне от экономического до полного хода судна.
В первом режиме гребной электродвигатель с помощью муфты напрямую соединяется с гребным валом без использования понижающего редуктора, что увеличивает коэффициент полезного действия ГЭУ и снижает вибрацию силовой установки. Регулирование частоты вращения ГЭД осуществляется с помощью преобразователя параметров электроэнергии.
Во втором режиме редуктор включен, однако в диапазоне хода от экономического до полного повышенная вибрация от редуктора не является определяющей, так как в этом диапазоне главным источником вибрации является гребной винт.
Гребной электродвигатель может быть электродвигателем переменного или постоянного тока. В зависимости от этого могут быть два варианта исполнения блок-схемы электрической гребной установки.
Сущность изобретения поясняется чертежом (см. Фиг.1), на котором приведена блок-схема предлагаемой электрической гребной установки по первому варианту исполнения.
Установка содержит гребной электродвигатель 1 переменного тока с валом 2, который соединен с линией вала 3 гребного винта 4 через разъединительную муфту 5. Гребной вал 3 через вторую разъединительную муфту 6, редуктор 7 и третью разъединительную муфту 8 соединен с валом 2 гребного электродвигателя 1. Гребной электродвигатель 1 подключен к источнику электропитания постоянного тока 9 через статический преобразователь параметров электроэнергии, выполненный в виде преобразователя постоянно - переменного тока 10 (например, автономный инвертор).
Включение либо муфты 5, либо одновременно двух муфт 6 и 8 производится системой управления 11, в зависимости от положения задатчика частоты вращения 12, подключенного к входу системы управления 11. Необходимая частота вращения ГЭД устанавливается с помощью статического преобразователя постоянно - переменного тока 10.
Входы трех управляемых разъединительных муфт 5, 6, 8 подключены к выходам системы управления 11.
Установка может работать в двух режимах: экономического (ЭХ) и полного хода (ПХ). В экономическом режиме муфта 5 включена, а муфты 6 и 8 отключены.
ГЭД 1 должен быть рассчитан на мощность, достаточную для непосредственного, без редуктора привода гребного вала 3 при скорости движения судна, близкой к экономическому ходу. Расчеты показывают, что в этом режиме мощность ГЭД 1 составляет примерно 10-13% от полной мощности. Это следует из кубической зависимости, связывающей мощность силовой установки и частоту вращения гребного винта. Масса и габариты ГЭД 1 в этом режиме в 2-3 раза меньше, чем у гребного двигателя, рассчитанного на движение судна полным ходом (при безредукторном подсоединении к линии гребного вала).
В режиме полного хода муфта 5 отключена, а муфты 6 и 8 включены. В этом режиме ГЭД 1 должен развивать максимальную мощность, хотя габариты и объем его остаются неизменными. Это достигается повышением частоты его вращения и обусловливается использованием следующих обстоятельств.
Активный объем D2iLi (Di - диаметр, Li - длина активного железа) ГЭД 1 выбирается из условия обеспечения мощности, необходимой для обеспечения экономического хода (ЭХ).
В режиме ПХ, благодаря применению редуктора, момент на валу ГЭД 1 (МГЭД ПХ) не изменяется и остается равным моменту в режиме ЭХ (МГЭД ЭХ), то есть
Figure 00000001
Коэффициент использования активного объема электрической машины, как известно ("Проектирование электрических машин"/ Под ред. М.Э. Копылова, 1980, стр.6), определяется равенством
Figure 00000002
где Р - мощность ГЭД 1,
n - частота вращения вала 2, 6 ГЭД 1.
Из условий (1) и
Figure 00000003
следует, что мощность ГЭД 1 линейно связана с частотой вращения при неизменном активном объеме электрической малины.
Таким образом, активный объем ГЭД 1, определяемый из условия обеспечения необходимой мощности в режиме ЭХ, не изменяется и в режиме ПХ (мощность увеличивается при соответствующем повышении частоты вращения n вала ГЭД). Это предопределяет возможность создания главной энергетической установки с одним двигателем при значительно меньшей массе и габаритах (в отличие от прототипа в системе полного электродвижения).
Гребная установка может быть выполнена с примененном ГЭД как переменного, так и постоянного тока, в связи с тем, что зависимости (1) - (3) справедливы и в том, и в другом случаях.
Передаточное отношение редуктора 7 выбирается из условия непрерывного перекрытия всего диапазона частот вращения гребного вала 3. Обычно частота вращения гребного винта 4 в режиме ПХ примерно в 2 раза выше максимальной частоты вращения гребного винта 4 (и вала 2 ГЭД) в режиме ЭХ
Figure 00000004
где
Figure 00000005
- диапазон изменения частоты вращения ГЭД 1.
В связи с кубической зависимостью мощности от частоты вращения мощность ГЭД в режиме ПХ может быть определена
Figure 00000006
Так как мощность и частота вращения ГЭД при неизменном моменте на валу связаны линейно, максимальная частота вращения ГЭД в режиме ПХ должна быть
Figure 00000007
Учитывая, что частота вращения гребного вала при этом возрастает в 2 раза, передаточное число редуктора 7 должно быть i=4. Это легко выполняется в случае использования простого одноступенчатого редуктора.
Регулирование частоты вращения ГЭД 1 (и гребного вала 3) во всех режимах осуществляется посредством статического преобразователя постоянно - переменного тока 10, который рассчитывается на полную мощность.
При положении задатчика частоты вращения 12 гребного винта от минимального nмин до nЭХ с помощью системы управления 11 включаются муфта 5 и выключаются муфты 6 и 8. Система управления 11, изменяя выходную частоту статического преобразователя постоянно - переменного тока 10, обеспечивает необходимые параметры частоты и напряжения на его выходе. В этом режиме редуктор 7 не участвует в передаче крутящего момента от ГЭД 1 к гребному винту 4, что повышает экономичность силовой установки и снижает ее виброактивность.
При повышении заданных частот вращения гребного винта от nЭХ до nПХ с помощью системы управления 11 включаются муфты 6, 8 (муфта 5 отключается). В этом режиме момент от гребного электродвигателя 1 на гребной винт 4 передается через понижающий редуктор 7. Скорость вращения гребного электродвигателя резко возрастает, что ведет к повышению его мощности на валу при сохранении тех же массогабаритных характеристик.
Вариант 2 отличается от первого варианта гребной электрической установки тем, что в качестве гребного электродвигателя используется электродвигатель постоянного тока, а преобразователь параметров электроэнергии выполнен в виде преобразователя постоянно - постоянного тока. В этом случае блок-схема предлагаемой электрической гребной установки представлена на Фиг.2.
Установка содержит гребной электродвигатель 1 постоянного тока с валом 2, который соединен с линией вала 3 гребного винта 4 через разъединительную муфту 5. Гребной вал 3 через вторую разъединительную муфту 6, редуктор 7 и третью разъединительную муфту 8 соединен с валом 2 гребного электродвигателя 1. Гребной электродвигатель 1 подключен к источнику постоянного тока 9 через преобразователь параметров электроэнергии, выполненный в виде преобразователя постоянно - постоянного тока 10.
Включение либо муфты 5, либо одновременно двух муфт 6 и 8 производится системой управления 11, в зависимости от положения задатчика частоты вращения 12, подключенного к входу системы управления 11. Необходимая частота вращения ГЭД устанавливается с помощью преобразователя постоянно - постоянного тока 10. Входы трех управляемых разъединительных муфт 5, 6, 8 подключены к выходам системы управления 11.
Во всех вариантах установка может работать в двух режимах: экономического (ЭХ) и полного хода (ПХ). В экономическом режиме муфта 5 включена, а муфты 6 и 8 отключены.
Предлагаемая электрическая гребная установка по функциональным параметрам аналогична системе с полным электродвижением, обеспечивает все режимы скоростей хода судна от минимальной до ПХ с использованием единого электродвигателя.
Но при этом, в отличие от прототипа, как показала проработка вариантов ГЭУ судна, вес гребного электродвигателя снижен примерно в 2,5-3 раза.
Таким образом, в предлагаемом изобретении впервые показана возможность создания энергетической установки с полным электродвижением (то есть с единым главным электродвигателем), у которой масса и габариты значительно, в 2,5-3 раза, меньше, чем у известных установок с системой полного электродвижения.

Claims (2)

1. Гребная электрическая установка, содержащая гребной электродвигатель, вал которого соединен с валом гребного винта через редуктор, источник электропитания, соединенный с гребным электродвигателем через статический преобразователь параметров электроэнергии, отличающаяся тем, что источник электропитания выполнен в виде источника постоянного тока, в установку введены три управляемые разъединительные муфты, система управления, задатчик частоты вращения гребного электродвигателя, причем вал гребного электродвигателя соединен с валом гребного винта через первую управляемую разъединительную муфту, редуктор и вторую управляемую разъединительную муфту, при этом вал гребного винта проходит через вторую управляемую разъединительную муфту, полый выходной вал редуктора, полый входной вал редуктора и соединен с валом электродвигателя через третью управляемую разъединительную муфту, выходы системы управления подключены к трем управляемым разъединительным муфтам и к входу статического преобразователя параметров электроэнергии, выполненного как статический преобразователь постоянно-переменного тока, а вход системы управления подключен к задатчику частоты вращения гребного электродвигателя, при этом гребной электродвигатель подключен к источнику электропитания постоянного тока через статический преобразователь постоянно-переменного тока.
2. Гребная электрическая установка, содержащая гребной электродвигатель, вал которого соединен с валом гребного винта через редуктор, источник электропитания, соединенный с гребным электродвигателем через статический преобразователь параметров электроэнергии, отличающаяся тем, что источник электропитания выполнен в виде источника постоянного тока, в качестве гребного электродвигателя используется электродвигатель постоянного тока, при этом в нее введены три управляемые разъединительные муфты, система управления и задатчик частоты вращения гребного электродвигателя, причем вал гребного электродвигателя соединен с валом гребного винта через первую управляемую разъединительную муфту, редуктор и вторую управляемую разъединительную муфту, вал гребного винта проходит через вторую управляемую разъединительную муфту, полый выходной вал редуктора, полый входной вал редуктора и соединен с валом электродвигателя через третью управляемую разъединительную муфту, выходы системы управления подключены к трем управляемым разъединительным муфтам и к входу статического преобразователя параметров электроэнергии, выполненного в виде статического преобразователя постоянно-постоянного тока, вход системы управления подключен к задатчику частоты вращения гребного электродвигателя, при этом гребной электродвигатель подключен к источнику постоянного тока через статический преобразователь постоянно-постоянного тока.
RU2009100663/11A 2009-01-11 2009-01-11 Гребная электрическая установка (варианты) RU2392180C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009100663/11A RU2392180C1 (ru) 2009-01-11 2009-01-11 Гребная электрическая установка (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009100663/11A RU2392180C1 (ru) 2009-01-11 2009-01-11 Гребная электрическая установка (варианты)

Publications (1)

Publication Number Publication Date
RU2392180C1 true RU2392180C1 (ru) 2010-06-20

Family

ID=42682654

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009100663/11A RU2392180C1 (ru) 2009-01-11 2009-01-11 Гребная электрическая установка (варианты)

Country Status (1)

Country Link
RU (1) RU2392180C1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483972C1 (ru) * 2011-10-06 2013-06-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Способ управления судовой комбинированной энергетической установкой
RU2519590C2 (ru) * 2012-08-02 2014-06-20 Федеральное государственное унитарное предприятие "Росморпорт" (ФГУП "Росморпорт") Судовая двигательно-движительная установка
RU2522750C1 (ru) * 2012-12-26 2014-07-20 Российская Федерация, от имени котрой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Тихоходный гребной электродвигатель с возбуждением от высококоэрцитивных магнитов непосредственного жидкостного охлаждения с электроснабжением и управлением от частотного преобразователя
RU2556821C2 (ru) * 2013-10-25 2015-07-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Силовая установка подводного аппарата
RU2622175C1 (ru) * 2015-12-25 2017-06-13 Общество с ограниченной ответственностью "Научно-инженерная компания "Объектные системы автоматики" (ООО "НИК "ОСА") Электромеханический привод гребного винта судна
RU181202U1 (ru) * 2017-12-25 2018-07-05 Евгений Николаевич Коптяев Система электродвижения судов

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483972C1 (ru) * 2011-10-06 2013-06-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Способ управления судовой комбинированной энергетической установкой
RU2519590C2 (ru) * 2012-08-02 2014-06-20 Федеральное государственное унитарное предприятие "Росморпорт" (ФГУП "Росморпорт") Судовая двигательно-движительная установка
RU2522750C1 (ru) * 2012-12-26 2014-07-20 Российская Федерация, от имени котрой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Тихоходный гребной электродвигатель с возбуждением от высококоэрцитивных магнитов непосредственного жидкостного охлаждения с электроснабжением и управлением от частотного преобразователя
RU2556821C2 (ru) * 2013-10-25 2015-07-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Силовая установка подводного аппарата
RU2622175C1 (ru) * 2015-12-25 2017-06-13 Общество с ограниченной ответственностью "Научно-инженерная компания "Объектные системы автоматики" (ООО "НИК "ОСА") Электромеханический привод гребного винта судна
RU181202U1 (ru) * 2017-12-25 2018-07-05 Евгений Николаевич Коптяев Система электродвижения судов

Similar Documents

Publication Publication Date Title
AU2009287341B2 (en) Hybrid marine drivetrain
US9096295B2 (en) Hybrid power and propulsion system
RU2392180C1 (ru) Гребная электрическая установка (варианты)
EP3224133B1 (en) Hybrid power system
EP2371702A1 (en) Propulsion arrangement
RU2553530C2 (ru) Движительная система
KR20080079620A (ko) 해상 추진 시스템 및 그 작동 방법
EP2658773B1 (en) Propulsion system
US20070293104A1 (en) Propulsion System for Ships
JP5461679B1 (ja) 船舶用電気推進装置
CN105416549A (zh) 一种基于永磁电机的柴电混合动力系统
US5816870A (en) Electric drive system
KR101465969B1 (ko) 보트용 추진 시스템 및 이의 운용 방법
US11040762B2 (en) Marine parallel propulsion system
CN205273826U (zh) 一种并联推进的基于永磁电机的柴电混合动力系统
RU2392179C1 (ru) Электрическая гребная установка (варианты)
RU2498926C1 (ru) Электроэнергетическая установка судна большой мощности
CN205273825U (zh) 一种单独推进的基于永磁电机的柴电混合动力系统
KR200381442Y1 (ko) Dc모터 및 디젤엔진을 추진장치로 사용하는 선박의 동력전달장치
CN204871560U (zh) 磁耦合推进系统
JP6925596B2 (ja) 船舶推進装置
RU2521172C2 (ru) Судовая двигательно-движительная установка с накопителем энергии
CN105015752A (zh) 磁耦合推进系统及其在船舶推进上的应用
CN103569342A (zh) 一种应用于小型船只上的动力系统

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner