RU2383881C2 - Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин - Google Patents

Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин Download PDF

Info

Publication number
RU2383881C2
RU2383881C2 RU2007116164/28A RU2007116164A RU2383881C2 RU 2383881 C2 RU2383881 C2 RU 2383881C2 RU 2007116164/28 A RU2007116164/28 A RU 2007116164/28A RU 2007116164 A RU2007116164 A RU 2007116164A RU 2383881 C2 RU2383881 C2 RU 2383881C2
Authority
RU
Russia
Prior art keywords
standards
measuring head
head according
spectrometric
measuring
Prior art date
Application number
RU2007116164/28A
Other languages
English (en)
Other versions
RU2007116164A (ru
Inventor
Георг КОРМАНН (DE)
Георг Корманн
Вернер ФЛОР (DE)
Вернер Флор
Вернер ХОИМЕ (DE)
Вернер ХОИМЕ
Нико КОРРЕНС (DE)
Нико Корренс
Мартин ГЕТЦ (DE)
Мартин ГЕТЦ
Михель РОДЕ (DE)
Михель РОДЕ
Original Assignee
Дир Энд Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дир Энд Компани filed Critical Дир Энд Компани
Publication of RU2007116164A publication Critical patent/RU2007116164A/ru
Application granted granted Critical
Publication of RU2383881C2 publication Critical patent/RU2383881C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1277Control or measuring arrangements specially adapted for combines for measuring grain quality
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D43/00Mowers combined with apparatus performing additional operations while mowing
    • A01D43/08Mowers combined with apparatus performing additional operations while mowing with means for cutting up the mown crop, e.g. forage harvesters
    • A01D43/085Control or measuring arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к устройствам для измерения компонентов сельскохозяйственной продукции. Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин состоит из снабженного окошком (2) корпуса (1), в котором размещены источник (3) освещения, спектрометрическое устройство (4) и, по меньшей мере, два стандарта (5) для внутренней рекалибровки, причем эти стандарты (5) могут быть повернуты выборочно в траекторию хода лучей измерительной головки с возможностью использования всего идущего от источника (3) освещения измерительного света для рекалибровки. В корпусе (1) размещены процессор (11) для сбора и обработки данных измерений и интерфейс (12) к системе шин. Изобретение обеспечивает более высокую чувствительность измерений. 8 з.п. ф-лы, 1 ил.

Description

Изобретение относится к устройству для измерения компонентов убранной сельскохозяйственной продукции, причем измерения могут быть проведены как статически, так и в потоке материала. Спектрометрическая головка предназначена при этом для использования в уборочных и других сельскохозяйственных машинах, причем либо продукция течет мимо измерительной головки, либо измерительная головка движется мимо продукции. С помощью результатов измерений можно на основе калибровок определить различные компоненты, такие как влажность, протеин, крахмал, маслосодержание, и свойства, такие как длина резки, состояние волокна, температура измеряемой продукции.
Из известных в уровне техники многочисленных систем анализа компонентов убранной сельскохозяйственной продукции спектроскопия в ближнем инфракрасном диапазоне (NIR) зарекомендовала себя благодаря различным преимуществам. По сравнению с продолжающимся вплоть до нескольких часов анализом компонентов известными лабораторными методами, NIR-спектроскопия дает первые результаты анализа уже через 30-40 секунд. Кроме того, анализируемые образцы не изменяются и не разрушаются спектрально-фотометрическими методами.
При типичном спектроскопическом анализе образцы облучают волнами заданных длин и измеряют их пропускающую и/или отражательную способность. Для образования необходимых для этого специфических длин волн используют, например, диски со светофильтрами, диодные матрицы или дифракционные решетки.
Из-за наличия подвижных частей диски со светофильтрами и сканирующие дифракционные решетки восприимчивы к тряске и ненадежны, когда они анализируют зерно во время уборки. Следовательно, они непригодны для использования в зерновых комбайнах или других сельскохозяйственных уборочных машинах, вызывающих механическую тряску.
Влагоизмерительное устройство и способ измерения влажности в уборочных машинах раскрыты в ЕР 0908087 В1. При этом влагоизмерительное устройство комбинируют с сенсорным устройством контроля состояния, чтобы отказаться от калибровок, обычно необходимых и обусловленных измеряемой продукцией и обработкой. Комбинация датчика влажности с сенсорным устройством контроля состояния позволяет обнаруживать ошибочные состояния при определении сигнала влажности, выводить на дисплей, принимать корректировочные меры и/или проводить калибровку. Сенсорное устройство контроля состояния состоит при этом из микропроцессоров и подходящей программы обработки и в зависимости от полученных данных измерений (с проверкой на достоверность) может инициировать различные меры по корректировке, индикации или калибровке. Через элементы ввода или памяти можно задавать, например, дополнительную информацию об продукции (например, кукурузе, пшенице, ячмене и т.д.) с соответствующими дополнительными данными (сухая, влажная, сильная засоренность). Эту информацию учитывают при обработке полученных данных измерений. Для этого расположенные в корпусе датчики влажности передают данные измерений влажности транспортируемой продукции. Датчики состоят, например, из электрода и электронного элемента. Предложенное решение относится, однако, только к определению и протоколированию измеренных значений влажности продукции. Данные о составе продукции не встречаются.
Также описанный в ЕР 0960557 B1 способ касается измерения влажности продукции в уборочной машине. В частности, при этом данные датчика влажности комбинируют с данными датчика массового потока и объединяют в одну карту, которая отображает выведенное влагосодержание на нескольких участках поля. Влажность продукции определяют при этом посредством ее электропроводности. Также в этом решении не встречается данных о составе продукции.
В противоположность уже описанным решениям в публикациях WO 99/040419 и WO 99/058959 описаны устройства и способ определения концентрации компонентов образца убранной сельскохозяйственной продукции. Анализ осуществляют в процессе уборки посредством спектрометрического устройства в близком инфракрасном диапазоне. При этом с помощью отражательной способности образца относительно определенных длин волн определяют процентное содержание компонентов образца. Устройство для определения концентрации оптически стабильно и, следовательно, пригодно для использования в сельскохозяйственных машинах, например зерновых комбайнах. Измерительное устройство состоит из источника света для облучения потока сельскохозяйственной продукции множеством длин волн, оптического приемника для приема отраженного излучения, сепаратора длин волн для отделения принятого излучения и детектора для формирования сигналов интенсивности из принятого, отраженного и отделенного излучения. Только измерительная головка, содержащая источник света и приемник, расположена при этом в непосредственной близости от измеряемой продукции. Собственно блок обработки с сепаратором длин волн и детектором установлен, например, в кабине уборочной машины. Для передачи данных измерений от измерительной головки к блоку обработки использованы стекловолоконные провода. Поскольку при анализе, например, зерен злаков характеристика поглощения и отражения очень сильно отличается от образца к образцу, требуется постоянная поверка спектрометров. В измерительной головке для этого расположен эталонный стандарт с высокой отражательной способностью, который может быть приведен в действие электроприводом и для референцирования перекрывает траекторию хода лучей к измеряемой продукции. Референцирование происходит, как правило, автоматически посредством блока управления. Недостатком этого решения является то, что тряска, связанная с работой уборочной машины, вызывает модульные помехи в оптических волокнах или может даже повредить их. Один вариант решения предусматривает пространственное отделение измерительного устройства и содержащего блок отображения блока обработки. Связь блока обработки с уборочной машиной, однако, не предусмотрена.
В WO 99/040419 описан спектрометр для измерения компонентов убранной сельскохозяйственной продукции, который может быть использован, в частности, в комбинации с зерновым комбайном для анализа зерна в реальном времени. С помощью используемого при этом, работающего в близком инфракрасном диапазоне (NIR) спектрометра можно анализировать как химические, так и физические свойства различных материалов. При анализе, например, зерен злаков характеристика поглощения и отражения в противоположность молотым зернам очень сильно отличается от образца к образцу. Чтобы, тем не менее, получить точные данные измерений, требуется постоянная проверка спектрометров. Для этого, как правило, образец заменяют стандартным образцом. Спектрометр выдает тогда стандартные данные для проверки измерительного устройства. Отраженный свет по световодным кабелям направляется к дифракционной решетке или эквивалентному конструктивному элементу и, будучи расщеплен ею/им, отображается на детекторе или детекторной матрице. Анализ интенсивностей отраженного излучения позволяет определить процентное содержание компонентов. Недостаток этого решения в том, что стандартный образец расположен в измерительной головке. За счет этого учитываются, правда, различные динамические факторы, например, изменения источника света, однако влияний из-за загрязнения имеющегося в измерительной головке окошка нельзя учесть, и они снижают точность результатов измерений. Кроме того, тряска может вызвать модульные помехи в оптических волокнах или даже повредить их.
Уборочная машина с работающим в близком инфракрасном диапазоне датчиком для измерения компонентов и/или свойств продукции описана в ЕР 1053671 В1. Для подтверждения органических компонентов используют преимущественно длины волн 400 нм - 1,7 мм. Установленный вне сельскохозяйственной машины датчик целесообразным образом разъемно подключают к подходящему интерфейсу устройства сбора данных, так что возможно определение свойств убранной сельскохозяйственной машиной продукции и/или картирование урожая. Собранные данные измерений могут быть обработаны посредством компьютера. За счет дополнительных датчиков могут быть зарегистрированы, в том числе, расход продукции и актуальное местоположение (GPS) и вместе с данными измерений, относящимся к компонентам или другим параметрам, записаны с геореференцированием в память.
В еще не опубликованной патентной заявке DE 102004021448.4 описана спектрометрическая отражательная измерительная головка с внутренней рекалибровкой, в корпусе которой имеются дополнительно, по меньшей мере, два стандарта, преимущественно черно-белые стандарты, для внутренней рекалибровки, которые выборочно могут быть повернуты в траекторию хода лучей отражательной измерительной головки. После сбора данных измерений обоих стандартов спектрометром происходит рекалибровка отражательной измерительной головки посредством блока управления и обработки. Дополнительно для калибровки отражательной измерительной головки перед пуском в работу измерительного устройства или в определенные промежутки времени могут быть предусмотрены, по меньшей мере, два внешних стандарта. Связь измерительной головки со спектрометром происходит при этом посредством волоконно-оптических соединений.
Система измерения компонентов сельскохозяйственной продукции описана в US 6418805 В1. Система содержит контейнер для зерна. Внутри контейнера установлен подвижный элемент для перемещения зерна внутри контейнера с возможностью имитации потока зерна. Зонд анализирует при этом движущееся зерно в реальном времени, причем различные компоненты движущегося зерна определяют одновременно по одинаковой доле зерна. Система определения компонентов пригодна для калибровки систем анализа, уже содержащихся в приборе для обработки зерна или устанавливаемых позднее, поскольку вращение зерна внутри контейнера имитирует поток зерна по скатному лотку или трубопроводу такого прибора. Проверка самого прибора не предусмотрена.
В US 2002/0039186 А1 описаны устройство и способ спектроскопического анализа физических и химических свойств образца. Измерительное устройство может быть выполнено при этом в виде пробника для взятия статистического образца, например, из груженного в прицеп зерна и его анализа. Анализ происходит при этом, пока весь образец находится на транспортном средстве или в контейнере. На основе свойств этого образца делают вывод о свойствах и компонентах всего образца. В другом варианте зерно может анализироваться посредством измерительной головки в процессе разгрузки, т.е. пока оно находится в движении. При этом почти весь образец может анализироваться в реальном времени. Для калибровки измерительная головка располагает диафрагменным затвором, который заставляет попадать на детектор либо отраженный от измеряемого объекта свет, либо эталонный свет. Эталонный свет диафрагмируют при этом из траектории хода лучей источника освещения. Диафрагменный затвор может быть выполнен также в виде эталонного стандарта и приведен в положение, в котором свет не падает на детектор для регистрации темнового сигнала. За счет имеющейся управляющей электроники можно автоматически калибровать систему. В устройстве для спектроскопического анализа собственно измерительное устройство, которое может быть выполнено в виде пробника или измерительной головки, соединяют с собственно блоком управления и обработки посредством электрических или оптоволоконных проводов.
В заявке WO 00/04373 А1 описывается измерительная установка для спектроскопического исследования движущейся бумажной полосы, которая имеет две расположенные по обе стороны бумажной полосы измерительные головки. Каждая измерительная головка имеет внутренние стандарты, которые для референцирования могут быть повернуты в траекторию хода лучей света, исходящего из источника освещения. Мощность источника освещения может регулироваться для обеспечения необходимой степени освещения.
Большинство систем для определения компонентов образца рассчитано, однако, на применение в лабораторных условиях. К тому же на рынке нет мощного датчика, который мог бы выдавать данные измерений прямо на систему шин. Кроме того, очень часто необходимо черно-белое референцирование. Применение стекловолоконных кабелей на отрезке измерения препятствует использованию полной апертуры детектора и является источником ошибок. Известные датчики передают свои данные измерений по кабелям.
В основе настоящего изобретения лежит задача создания устройства для измерения компонентов убранной сельскохозяйственной продукции, которое обеспечивало бы как статические измерения, так и измерения в потоке материала, и было бы пригодно для использования в уборочных и других сельскохозяйственных машинах. Измерительное устройство должно иметь при этом возможность интеграции в имеющуюся систему шин машины.
Согласно изобретению эта задача решается посредством признаков независимых пунктов формулы. Предпочтительные усовершенствования и варианты являются объектом зависимых пунктов формулы.
Спектрометрическая измерительная головка согласно изобретению для уборочных и других сельскохозяйственных машин состоит из снабженного окошком корпуса, в котором размещены источник освещения, спектрометрическое устройство и, по меньшей мере, два стандарта для внутренней рекалибровки. Эти стандарты могут поворачиваться при этом выборочно в траекторию хода лучей измерительной головки. В корпусе дополнительно размещены интерфейс к системе шин и процессор. Мощность лампы источника освещения, который преимущественно располагает отражателем, регулируется автоматически для согласования спектрометрического устройства с различными отражательными характеристиками отдельных образцов. Для этого мощность лампы увеличивается для образцов с преимущественно темным цветом.
Предложенное техническое решение может быть использовано для специальных измерительных задач определения компонентов сельскохозяйственной продукции в процессе уборки. Поскольку измерительная головка кроме стандартов не располагает никакими подвижными частями, она является очень надежной и пригодной для использования в транспортных средствах. С помощью описанной измерительной головки возможны как статические измерения, так и измерения потока материала. Оценивая распределение интенсивности отраженного излучения, можно на основе калибровок определить различные компоненты, такие как влажность, протеин, крахмал, маслосодержание, и свойства, такие как длина резки, состояние волокна, температура образца.
Измерительная головка предусмотрена для использования в ближнем инфракрасном диапазоне, чтобы определять, например, влажность и содержание жира, крахмала, белка и т.п. в образцах продукции сельского хозяйства и пищевой промышленности.
Для использования других спектральных диапазонов следует соответственно согласовать применяемое спектрометрическое устройство; измерительная головка может применяться для всего спектрального диапазона.
Изобретение более подробно описано ниже на примерах его осуществления.
На фиг.1 показана принципиальная конструкция спектрометрической измерительной головки.
Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин состоит из снабженного окошком 2 корпуса 1, в котором размещены источник 3 освещения, спектрометрическое устройство 4 и, по меньшей мере, два стандарта 5 для внутренней рекалибровки. Эти стандарты 5 могут быть повернуты при этом выборочно в траекторию хода лучей измерительной головки. В корпусе 1 дополнительно размещены процессор 11 для сбора и обработки данных измерений и интерфейс 12 к системе шин.
Для окошка 2 в корпусе 1, через которое падает как освещающее излучение, так и отраженное образцом 7 излучение, используют преимущественно сапфир. Сапфир обеспечивает достаточно длительный срок службы окошка 2 даже при высокоабразивных образцах (например, образцах 7 с содержанием песка).
Мощность лампы источника 3 освещения, располагающего преимущественно отражателем 6, может регулироваться автоматически для согласования спектрометрического устройства 4 с различными отражательными характеристиками образцов 7. Для этого повышают мощность лампы для образцов 7 преимущественно темного цвета, не калибруя заново спектрометрическое устройство. За счет этого время интеграции спектрометрического устройства 4 остается почти постоянным. В сочетании с внутренним референцированием может осуществляться, тем самым, в любое время оптимизированное для данных условий измерение. В частности, для автоматической обработки спектров процессором 11 за счет регулирования мощности лампы можно оптимизировать результаты измерений.
Спектрометрическое устройство 4 состоит, по меньшей мере, из одного дисперсионного элемента 8 и детекторной матрицы 9 и располагает при необходимости отображающими оптическими узлами 10. За счет непосредственного отображения отраженного от образца 7 излучения на детекторной матрице 9 в зависимости от образца 7 отображения из структуры образца 7 на детекторной матрице 9 могут быть вызваны ошибки измерения. Во избежание этого для гомогенизации предусмотрен световой интегратор.
Два имеющихся в измерительной головке стандарта 5 служат для внутренней рекалибровки измерительного устройства. Для калибровки измерительной головки перед пуском измерительного устройства в работу или в определенные промежутки времени предусмотрены, по меньшей мере, два дополнительных внешних стандарта (не показаны). Как в качестве внутренних стандартов 5, так и в качестве внешних стандартов используют преимущественно черно-белые стандарты, которые могут быть дополнены дополнительными, специфическими для данного применения стандартами для дальнейших рекалибровок.
Стандарты приводят в действие преимущественно от электропривода с возможностью автоматического и/или ручного управления. Внутреннее и внешнее референцирование обеспечивает автоматический контроль системы, контроль окошка 2 на повреждение, загрязнение и т.д., а также возможность применения различных материалов для окошка без необходимости изменения или согласования существующих калибровок.
После сбора данных измерений обоих внешних стандартов 5 спектрометрическим устройством 4, используя данные измерений калибровки отражательной измерительной головки перед пуском в работу, осуществляют рекалибровку измерительной головки. После отведения внутренних стандартов 5 от траектории хода лучей измерительная головка готова для следующего измерения образца 7.
Хотя во внутреннем месте измерения существуют иные измерительные интенсивности источника 3 освещения нежели во внешнем месте измерения образца, геометрическое расположение внутренних стандартов 5 гарантирует, что изменения спектральной интенсивности в обоих местах измерений происходят с одинаковой пропорциональностью. Изменение чувствительности и темнового сигнала детекторной матрицы 9 не зависят от места измерения и действуют, тем самым, внутри и снаружи в равной степени. За счет этого благодаря проведенной в установленные отрезки времени внутренней рекалибровке можно избежать вызванного названными влияниями изменения данных измерений при длительной эксплуатации.
В предложенном решении внутренняя рекалибровка может происходить в короткие промежутки времени автоматически по заранее установленному временному ритму или по необходимости. Как измерительная головка, так и образец 7 во время калибровки и рекалибровки остаются в нормальном измерительном положении.
Рекалибровка может происходить самопроизвольно по истечении определенного отрезка времени (например, через 10 минут) или после регистрации неприемлемого, выданного измерительной головкой значения. Подобное неприемлемое выданное значение имеет место, например, тогда, когда выданное измерительной головкой значение через определенный отрезок времени (например, 10 с) является постоянным или когда оно сигнализирует о наличии продукции, в то время как по транспортирующему каналу продукция не течет, что может быть подтверждено с помощью рабочего состояния транспортирующих элементов или другими датчиками, например оптронами.
Имеющийся в измерительной головке интерфейс 12 к системе шин выполнен преимущественно в виде беспроводного соединения и может поддерживать такие стандарты, как CAN, USB, RS232, Wireless LAN и др. Возможно также создание соединения от измерительной головки к системе шин посредством электрических и/или волоконно-оптических проводов.
Дополнительно в корпусе размещен процессор 11 для регистрации и обработки данных измерений. Этим процессором 11 могут быть созданы как исходные данные, т.е. предварительная обработка данных на спектральной основе, так и вычисленные результаты, которые могут быть переданы через имеющийся интерфейс 12 к системе шин. Кроме того, процессор 11 содержит программу для необходимого менеджмента шин. За счет процессора 11 возникает полностью автономно работающая система. Для того чтобы измерительную головку можно было использовать в широком интервале рабочих температур даже без дополнительного охлаждения детекторной матрицы 9, процессор 11 включает в себя соответствующую компенсирующую электронику, которая компенсирует изменяющиеся параметры детекторной матрицы 9 при смене температур.
У спектрометрической измерительной головки для уборочных и других сельскохозяйственных машин измеряемый образец 7 облучают посредством источника 3 освещения. Отраженное от образца 7 излучение воспринимается непосредственно диодной матрицей 9 спектрометрического устройства 4. С помощью распределения интенсивности отраженного излучения можно на основе калибровок определить различные компоненты, такие как влажность, протеин, крахмал, маслосодержание, и свойства, такие как длина резки, состояние волокна, температура образца. С помощью описанной измерительной головки возможны как статические измерения, так и измерения потока материала. За счет того, что измерительная головка кроме стандартов 5 не располагает никакими подвижными частями, она является очень надежной и пригодной для использования в транспортных средствах.
Ограничение диапазона длин волн обеспечивает использование измерительной головки в широком интервале температур без сложного и дорогостоящего охлаждения.
С устройством согласно изобретению предложена спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин, с помощью которой в уборочной машине могут быть определены компоненты убранной сельскохозяйственной продукции даже в процессе уборки. Измерительная головка может использоваться в стационарных установках или в любых уборочных машинах, у которых продукция течет мимо измерительной головки, например, в зерновых комбайнах или полевых измельчителях, или измерительная головка движется мимо продукции, например, мимо валка.
Беспроводная связь измерительной головки с блоком управления и обработки позволяет интегрировать ее в имеющуюся систему шин уборочной машины. Благодаря выборочной передаче исходного значения на дальнейшую обработку или выведению результатов измерений это техническое решение может применяться очень гибко. За счет имеющегося в измерительной головке процессора и автоматического внутреннего и внешнего референцирования возникает полностью автономно работающая система.
Внутренняя рекалибровка дает возможность автоматического контроля системы, контроля окошка для образца на повреждение или загрязнение, а также применения различных материалов для окошка без необходимости изменения или согласования существующих калибровок.
За счет того, что отраженное от образца излучение отображается прямо на спектрометре, система обеспечивает более высокую апертуру. Из этого следуют более высокая чувствительность, необходимая более низкая мощность лампы, меньший нагрев образца и вытекающая из этого меньшая ошибка измерения.

Claims (9)

1. Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин, состоящая из снабженного окошком (2) корпуса (1), в котором размещены источник (3) освещения, спектрометрическое устройство (4) с дисперсионным элементом (8) и детекторной матрицей (9), процессор (11) для сбора и обработки данных измерений и интерфейс (12) к системе шин, отличающаяся тем, что в корпусе (1) имеются, по меньшей мере, два стандарта (5) для внутренней рекалибровки, которые могут быть повернуты выборочно в траекторию хода лучей измерительной головки и тем, что мощность лампы источника (3) освещения может регулироваться автоматически для согласования детекторной матрицы (9) спектрометрического устройства (4) с различными отражательными характеристиками отдельных образцов (7).
2. Головка по п.1, у которой лампа источника (3) освещения имеет отражатель (6).
3. Головка по п.1, у которой спектрометрическое устройство (4) располагает отображающими оптическими узлами (10) и/или световым интегратором.
4. Головка по п.1, у которой для ее калибровки перед пуском в работу измерительного устройства или в определенные промежутки времени имеются, по меньшей мере, два дополнительных внешних стандарта.
5. Головка по п.4, у которой в качестве стандартов для внутренней и внешней рекалибровки используют черно-белые стандарты.
6. Головка по п.4 или 5, у которой стандарты выполнены с возможностью приведения в действие преимущественно от электропривода и с возможностью автоматического и/или ручного управления.
7. Головка по п.1, у которой могут быть предусмотрены дополнительные, специфические для данного применения внутренние стандарты для дополнительных рекалибровок.
8. Головка по п.1, у которой интерфейс (12) к системе шин выполнен в виде беспроводного соединения для передачи данных, и/или калибровки, и/или диагностики системы.
9. Головка по п.1 или 8, у которой интерфейс (12) к системе шин выполнен с возможностью поддержки таких стандартов, как CAN, USB, RS232, Wireless LAN и др.
RU2007116164/28A 2004-09-30 2005-09-26 Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин RU2383881C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004048103.2 2004-09-30
DE102004048103.2A DE102004048103B4 (de) 2004-09-30 2004-09-30 Spektrometrischer Messkopf für Erntemaschinen und andere landwirtschaftlich genutzte Maschinen

Publications (2)

Publication Number Publication Date
RU2007116164A RU2007116164A (ru) 2008-11-10
RU2383881C2 true RU2383881C2 (ru) 2010-03-10

Family

ID=35447915

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007116164/28A RU2383881C2 (ru) 2004-09-30 2005-09-26 Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин

Country Status (9)

Country Link
US (1) US7265831B2 (ru)
EP (1) EP1797414B1 (ru)
AR (1) AR050894A1 (ru)
AU (1) AU2005218054B2 (ru)
BR (1) BRPI0504229A (ru)
DE (1) DE102004048103B4 (ru)
RU (1) RU2383881C2 (ru)
UA (1) UA86994C2 (ru)
WO (1) WO2006035012A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048102A1 (de) * 2004-04-30 2006-04-20 Carl Zeiss Jena Gmbh Spektrometrischer Messkopf und Verfahren zu dessen Rekalibrierung
DE102006002437A1 (de) * 2006-01-11 2007-07-12 Agrocom Gmbh & Co. Agrarsysteme Kg Messvorrichtung
ES2316243B2 (es) * 2006-06-22 2009-10-07 Universidad De Cantabria Dispositivo para la calibracion espectral y espacial de espectrometros de imagen.
ATE553367T1 (de) * 2006-11-20 2012-04-15 Pioneer Hi Bred Int System und verfahren zur messung einer erntequalitätsgrösse auf einer erntevorrichtung
US8164747B2 (en) * 2006-12-14 2012-04-24 ASD, Inc Apparatus, system and method for optical spectroscopic measurements
DE102007007040A1 (de) 2007-02-07 2008-08-14 Carl Zeiss Microlmaging Gmbh Messeinrichtung zur optischen und spektroskopischen Untersuchung einer Probe
DE102007025928A1 (de) * 2007-06-02 2008-12-11 Evonik Degussa Gmbh Vorrichtung und Verfahren zur Bestimmung des Transportverhaltens bei pneumatischer Förderung von Granulaten
ITBO20070461A1 (it) * 2007-07-04 2009-01-05 Dinamica Generale S R L Sistema per controllare il caricamento di uno o piu' alimenti in una unita' semovente di miscelazione tramite una pala meccanica montata su un veicolo a motore
DE102007038753A1 (de) * 2007-08-16 2009-02-19 Giesecke & Devrient Gmbh Vorrichtung und Verfahren für die Kalibrierung eines Sensorsystems
DE102007061213A1 (de) * 2007-12-19 2009-06-25 Carl Zeiss Microimaging Gmbh Anordnung zum Bestimmen des Reflexionsgrades einer Probe
DE102008043377A1 (de) 2008-10-31 2010-05-06 Deere & Company, Moline Messanordnung zur spektroskopischen Untersuchung und Durchsatzerfassung eines Erntegutstroms
US9842252B2 (en) * 2009-05-29 2017-12-12 Monsanto Technology Llc Systems and methods for use in characterizing agricultural products
DE102010047103A1 (de) 2010-09-29 2012-03-29 Carl Zeiss Jena Gmbh Flansch zum Abschluss eines optischen Geräts gegenüber einem Probenstrom und optisches Gerät zur teilweisen Anordnung in einem Probenstrom
AT510765B1 (de) 2010-12-15 2012-09-15 Wolfgang Dipl Ing Vogl Vorrichtung zur photometrischen bzw. spektrometrischen untersuchung einer flüssigen probe
DE102011076677A1 (de) * 2011-05-30 2012-12-06 Carl Zeiss Microimaging Gmbh Spektroskopische Messeinrichtung
WO2013023637A2 (de) * 2011-08-12 2013-02-21 Opsolution Gmbh Verfahren und vorrichtung zur erzielung von biofeedback-informationen
JP5973521B2 (ja) * 2014-10-15 2016-08-23 株式会社クボタ 光学式穀粒評価装置
IT201600082338A1 (it) * 2016-08-04 2018-02-04 Dinamica Generale S P A Sistema di analisi per macchine agricole di raccolta
DE102017108552B4 (de) 2017-04-21 2018-11-15 ams Sensors Germany GmbH Spektrometrischer Messkopf mit mehreren Transmissionslicht-Eintrittsfenstern
DE102017214352A1 (de) 2017-08-17 2019-02-21 Deere & Company Spektrometrischer Messkopf für forst-, land- und lebensmittelwirtschaftliche Anwendungen
DE102018103509B3 (de) 2017-10-11 2018-12-13 Carl Zeiss Spectroscopy Gmbh Mobiles Inhaltsstoffanalysesystem sowie Verfahren zur probenrichtigen Messung und Nutzerführung mit diesem
DE102018213215A1 (de) 2018-08-07 2020-02-13 Deere & Company Sensoranordnung zur Erfassung des Anteils aufgeschlossener Körner in einem von einem Körnerprozessor bearbeiteten Häckselgutstrom und damit ausgestatteter Feldhäcksler
DE102019104066A1 (de) 2019-02-19 2020-08-20 Carl Zeiss Spectroscopy Gmbh Spektrometersystem und Verfahren zu dessen Prüfung
DE102020125422A1 (de) 2020-09-29 2022-03-31 Claas Selbstfahrende Erntemaschinen Gmbh NIR-Sensor-Kalibriermethode
DE102020125434A1 (de) 2020-09-29 2022-03-31 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Maschine mit NIR-Sensor und Datenverarbeitungssystem
US11832550B2 (en) 2020-11-03 2023-12-05 Deere & Company Agricultural nutrient application using real-time spectroscopic analysis of live crop

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE468334B (sv) * 1991-04-23 1992-12-14 Peter Perten Saett och anordning foer infraroedanalys, speciellt avseende livsmedel
US6100526A (en) 1996-12-30 2000-08-08 Dsquared Development, Inc. Grain quality monitor
US5991025A (en) 1997-02-27 1999-11-23 Pioneer Hi-Bred International, Inc. Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis
DE19744483A1 (de) 1997-10-09 1999-04-15 Claas Selbstfahr Erntemasch Feuchtemeßeinrichtung und Verfahren zur Feuchtemessung in Erntemaschinen
GB9811177D0 (en) 1998-05-26 1998-07-22 Ford New Holland Nv Methods for generating field maps
US5991046A (en) 1998-07-14 1999-11-23 Valmet Automation Inc. Method and apparatus for optically measuring properties of a moving web
DE19922867C5 (de) 1999-05-19 2015-04-23 Deere & Company Erntemaschine mit einer Meßeinrichtung zur Messung von Inhaltsstoffen in und/oder Eigenschaften von Erntegut
US6418805B1 (en) 1999-11-18 2002-07-16 Textron Systems Corporation Constituent sensing system
WO2001069213A2 (en) 2000-03-10 2001-09-20 Textron Systems Corporation Optical probes an methods for spectral analysis
DE102004048102A1 (de) 2004-04-30 2006-04-20 Carl Zeiss Jena Gmbh Spektrometrischer Messkopf und Verfahren zu dessen Rekalibrierung

Also Published As

Publication number Publication date
EP1797414A1 (de) 2007-06-20
EP1797414B1 (de) 2014-12-03
DE102004048103A1 (de) 2006-04-20
AR050894A1 (es) 2006-11-29
US20060093522A1 (en) 2006-05-04
DE102004048103B4 (de) 2017-01-12
UA86994C2 (ru) 2009-06-10
US7265831B2 (en) 2007-09-04
RU2007116164A (ru) 2008-11-10
AU2005218054A1 (en) 2006-04-13
WO2006035012A1 (de) 2006-04-06
AU2005218054B2 (en) 2011-02-24
BRPI0504229A (pt) 2006-05-09

Similar Documents

Publication Publication Date Title
RU2383881C2 (ru) Спектрометрическая измерительная головка для уборочных и других сельскохозяйственных машин
US5991025A (en) Near infrared spectrometer used in combination with an agricultural implement for real time grain and forage analysis
US5751421A (en) Near infrared spectrometer used in combination with a combine for real time grain analysis
US7671984B2 (en) Spectrometric measuring probe and method for recalibrating the same
US4669878A (en) Automatic monochromator-testing system
RU2195644C2 (ru) Монитор для определения качества зерна
US6353471B1 (en) Method and apparatus for non-destructive screening of specimen integrity
US5751418A (en) Spectrometry and optical method and apparatus for obtaining a stable spectrum with use of an informationless spectrum contained therein
EP2078951B1 (en) Apparatus for analysing milk
CA2376132C (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
CA2376173A1 (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
EP1063878B1 (en) Near infrared spectrometer used in combination with a combine for real time grain analysis
AU777591B2 (en) Integrated optics block for spectroscopy
Moron et al. Preliminary study on the use of near‐infrared reflectance spectroscopy to assess nitrogen content of undried wheat plants
Miyamoto et al. Classification of high acid fruits by partial least squares using the near infrared transmittance spectra of intact satsuma mandarins
US20170307522A1 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
US20080231853A1 (en) Qualitative Analysis System and Method for Agricultural Products in Harvesting Equipment
US10816457B2 (en) Spectrometric probe for sampling bulk material and automatic sample taker for sampling including the probe
KR200404482Y1 (ko) 휴대형 과일 품질정보 측정장치
CA3130795C (en) Spectrometer system and method for testing of same
JPH06313754A (ja) 成分定量分析装置及び食味評価装置
JP2950329B1 (ja) 食物成分分析装置
JPH0829336A (ja) 食味値測定装置
Jiang et al. Application of near infrared spectroscopy for detecting interior information of tomato leaves

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170927