RU2382340C1 - Способ дистанционного измерения температуры и устройство для его осуществления - Google Patents

Способ дистанционного измерения температуры и устройство для его осуществления Download PDF

Info

Publication number
RU2382340C1
RU2382340C1 RU2008128047/28A RU2008128047A RU2382340C1 RU 2382340 C1 RU2382340 C1 RU 2382340C1 RU 2008128047/28 A RU2008128047/28 A RU 2008128047/28A RU 2008128047 A RU2008128047 A RU 2008128047A RU 2382340 C1 RU2382340 C1 RU 2382340C1
Authority
RU
Russia
Prior art keywords
radiation
heated surface
temperature
optical system
weak
Prior art date
Application number
RU2008128047/28A
Other languages
English (en)
Other versions
RU2008128047A (ru
Inventor
Евгений Игнатьевич Марукович (BY)
Евгений Игнатьевич Марукович
Алексей Петрович Марков (BY)
Алексей Петрович Марков
Александр Израилевич Кац (BY)
Александр Израилевич Кац
Анатолий Григорьевич Старовойтов (BY)
Анатолий Григорьевич Старовойтов
Дмитрий Викторович Ефименко (BY)
Дмитрий Викторович Ефименко
Original Assignee
Государственное научное учреждение "Институт технологии металлов Национальной академии наук Беларуси" ГНУ "ИТМ НАН Беларуси"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научное учреждение "Институт технологии металлов Национальной академии наук Беларуси" ГНУ "ИТМ НАН Беларуси" filed Critical Государственное научное учреждение "Институт технологии металлов Национальной академии наук Беларуси" ГНУ "ИТМ НАН Беларуси"
Publication of RU2008128047A publication Critical patent/RU2008128047A/ru
Application granted granted Critical
Publication of RU2382340C1 publication Critical patent/RU2382340C1/ru

Links

Abstract

Изобретение относится к методам и средствам для определения температуры нагретых тел и расплавленных металлов. Устройство дистанционного измерения температуры содержит оптическую систему, включающую защитное стекло, градан-микрообъектив, граданы-формирователи и пространственно разделенные жгуты из элементарных оптических волокон, фотоприемники и блок первичной обработки, при этом оптическая система выполнена комбинированной с разделением излучения нагретой поверхности по двум коллекторам-распределителям, причем одна часть излучения каналируется в световодных жгутах, ориентированных на отражающие поверхности со слабой и сильной излучательной способностью с последующим каналированием отраженных от этих поверхностей излучений по жгутам, объединенным в опорных коллекторах-излучателях со световодными жгутами, содержащими другую часть излучения от контролируемой нагретой поверхности, и конструктивно обособленным жгутом информативного излучения. При этом указанное устройство реализует соответствующий способ дистанционного измерения температуры. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к методам и средствам технологического контроля в литейном производстве, металлургии, химической и других отраслях, где требуется дистанционная, помехозащищенная аппаратура для работы в агрессивных, взрывоопасных условиях, и может быть использовано для определения температуры нагретых тел и расплавленных металлов.
Известен метод измерения и контроля температуры нагретых тел и расплавленных металлов, основанный на сравнении яркости контрольного излучателя посредством варьирования мощности нагрева нити или яркости самого измеряемого излучения перемещением серого оптического клина, при котором изменяется пропускная способность для измеряемого излучения, а мощность нагрева нити сравнительного излучателя должна быть строго стабилизированной (как эталон). (Измерения в промышленности. Справ, изд. в 3-х кн. Кн. 2. Способы измерения и аппаратура: пер. с нем. / под ред. Профоса П. - 2-е изд. перераб. и доп. - М.: Металлургия, 1990. - С.341-346) [1]. Температура нагретого тела в таких способах косвенно отображается в мощности нагрева нити накаливания или в величине смещения ослабителя в виде серого оптического клина.
Недостатком способа является субъективность измерений, а также погрешность оценки спектрального коэффициента излучения поверхности нагретого тела, снижающие точность и производительность контроля. Введение поправочных коэффициентов радикально не улучшает метрологию таких методов.
Известен способ определения температуры нагретой поверхности, реализующий спектрально-энергетическую зависимость излучения и температуры (Волоконно-оптические датчики / Т.Окоси, К.Окамото, М.Оцу и др. Под ред. Т.Окоси: пер. с япон. - Л.: Энергоатомиздат. Ленингр. отд-ие, 1990, - С.144) [2]. По мере повышения температуры нагрева поверхности энергия излучения увеличивается, а длина волны, на которой излучение максимально, уменьшается. По имеющейся функциональной зависимости температуры и фиксированной длины волны (или в некотором спектральном диапазоне) определяется температура нагретой поверхности.
Недостаток способа в том, что нелинейная зависимость и неопределенность в определении коэффициента излучательной способности ε (энергия теплового излучения) ограничивают достоверность и диапазон прямых измерений температуры.
Наиболее близким по технической сущности является способ относительных измерений, в котором контролируемый параметр определяют соотношением интенсивности излучения на двух длинах волн, входящих в спектр излучения (Волоконно-оптические датчики / Т.Окоси, К.Окамото, М.Оцу и др. Под ред. Т.Окоси: пер. с япон. - Л.: Энергоатомиздат. Ленингр. отд-ие, 1990, - С.145) [2]. Способ дистанционного измерения температуры состоит в приеме излучения нагретой поверхности оптической системой с волоконно-оптическими световодами, сканировании выходов волокон и обработке сигнала по методу двух цветов.
Недостаток данного способа заключается в низкой достоверности и точности дистанционных измерений температуры нагретой поверхности.
Известны бесконтактные оптические пирометры [1]. Время излучения нагретого тела определяют либо непосредственно приемником излучения, либо посредством сравнения с контрольным излучением, как это реализовано в пирометрах с исчезающей нитью накаливания.
Недостаток устройства - спектральная чувствительность - определяется узким интервалом длин волн.
Для контроля температуры раскаленных металлов и расплавов известны радиационные пирометры, принцип действия которых основан на восприятии излучения во всем спектральном диапазоне по схемам абсолютных измерений значения полного коэффициента излучения [1, с.339-342, 346-348].
Недостатком устройства является трудоемкость получения достоверных значений температуры, из-за больших различий значений полного коэффициента излучения (даже в различных справочниках) и субъективного учета специфики условий эксплуатации.
Наиболее близким по технической сущности и достигаемому эффекту является устройство [2, с.145], содержащее волоконно-оптическую систему, включающую световые детекторы и оптические волокна, сформированные в виде волоконно-оптического жгута, входные торцы волокон которого выполняют функцию чувствительного зонда. При этом входные торцы дискретов оптических волокон уложены в один ряд (в виде линейки), а их соответствующе выходы дистанцированы от нагретой поверхности. В измерительном окошке выходы каждого дискрета воспринимаются оптико-электронным сканером с последующей обработкой выходных сигналов по методу двух цветов.
Однако волоконно-оптическая система радиационного измерения температуры с передачей излучения пространственно-упорядоченными оптическими волокнами при своей помехозащищенности и относительной стабильности не обеспечивает требуемой достоверности и точности относительных измерений изменяющихся интенсивностей для двух смежных спектров излучений без учета характера излучательной способности (коэффициента излучательной способности).
Единой технической задачей, на решение которой направлено настоящее изобретение, является повышение достоверности и точности дистанционных измерений температуры нагретой поверхности при оперативном контроле физико-технических параметров процессов литейного производства и металлургии.
Задача достигается тем, что в способе дистанционного измерения температуры, включающем прием излучения нагретой поверхности оптической системой с волоконно-оптическими световодами, сканирование выходов волокон и обработку сигнала, оптическая система измерений выполнена с возможностью приема и каналирования излучения, а также ориентированного и одновременного взаимодействия с нагретой поверхностью и отражающими поверхностями со слабой и сильной излучательной способностью, а измерительную информацию о температуре нагрева контролируемой поверхности формируют по соотношению интенсивностей излучения от контролируемой нагретой поверхности, и отражающих поверхностей со слабой и сильной отражающей способностью.
Задача достигается тем, что в устройстве дистанционного измерения температуры, содержащем оптическую систему, включающую защитное стекло, градан-микрообъектив, граданы-формирователи и пространственно разделенные жгуты из элементарных оптических волокон, фотоприемники и блок первичной обработки, при этом оптическая система выполнена комбинированной с разделением излучения нагретой поверхности по двум коллекторам - распределителям, причем одна часть излучения каналируется в световодных жгутах, ориентированных на отражающие поверхности со слабой и сильной излучательной способностью с последующим каналированием отраженных от этих поверхностей излучений по жгутам, объединенным в опорных коллекторах-излучателях со световодными жгутами, содержащими другую часть излучения от контролируемой нагретой поверхности, и конструктивно обособленным жгутом информативного излучения, при этом пространственно разделенные жгуты из элементарных оптических волокон установлены с возможностью передачи сигнала по световодным жгутам опорных коллекторов-излучателей и световодному жгуту информативного излучения контролируемой нагретой поверхности, поступающие на соответствующие фотоприемники, выходы которых связаны с блоком первичной обработки.
Способ дистанционного измерения температуры осуществляется следующим образом.
Способ дистанционного измерения температуры включает прием излучения нагретой поверхности оптической системой с волоконно-оптическими световодами, сканирование выходов волокон и обработку сигнала. Оптическая система формирования, распределения и преобразования информации взаимодействует с нагретой поверхностью и отражающими поверхностями со слабой (ε=0,06) и сильной излучательной способностью (ε=0,95). Измерительную информацию о температуре нагрева контролируемой нагретой поверхности формируют по соотношению интенсивностей излучения от контролируемой нагретой поверхности и отражающих поверхностей со слабой и сильной отражающей способностью.
На чертеже представлена схема устройства дистанционного измерения температуры.
Устройство содержит пространственно разделенную оптическую систему, с помощью которой воспринимается и каналируется информативное излучение нагретой поверхности (контролируемой) 1, стекло защитное 2, градан-микрообъектив 3, коллектор приемный информационный 4, коллекторы-распределители 5 и 6, жгуты световодные 7 опорного излучения, коллектор-преобразователь 8 излучения с сильной отражательной способностью поверхности 9, коллектор-преобразователь 11 излучения со слабой отражательной поверхностью 10 и нагретой поверхностью, оптически и конструктивно связанные через жгуты 12 и 13 с коллекторами-излучателями 14, 15 и 16, излучения которых граданами-формирователями 17 направлены на чувствительные элементы фотоприемников ФП1, ФП2, ФПИ и блок первичной обработки БПО.
Способ реализуется устройством, работающим следующим образом.
За счет световодных жгутов 13 излучение нагретой поверхности 1 смешивается в коллекторе 14 с излучением поверхности с сильной отражательной способностью 9 и поверхности со слабой отражательной способностью 10 в коллекторе-излучателе 15. При этом измеряется интенсивность излучения контролируемой поверхности 1 и отраженное излучение от поверхностей 9 и 10 с контрастной отражательной способностью (сильной и слабой), а по соотношению этих контрастных излучений, смешанных в коллекторах-излучателях 14 и 15, и информативного излучения жгута 16 сигналы соответствующих выходов фотоприемников ФП1, ФП2 и ФПИ обрабатывают в блоке первичной обработки БПО, по результатам обработки идентифицируют измеряемую температуру. В такой совокупности информационно-преобразовательных операций и световодных каналирующих, направляющих и смешивающих оптические излучения от контролируемой поверхности и отражающих поверхностей с большим различием в излучательной способности поверхностей улучшаются метрологические возможности и эргономика контроля (за счет дистанцирования оператора от нагретой поверхности).
Источники информации
1. Измерения в промышленности. Справ, изд. в 3-х кн. Кн.2. Способы измерения и аппаратура: пер. с нем. / под ред. Профоса П. - 2-е изд. перераб. и доп. - М.: Металлургия, 1990. - 384 с.
2. Волоконно-оптические датчики / Т.Окоси, К.Окамото, М.Оцу и др. Под ред. Т.Окоси: пер. с япон. - Л.: Энергоатомиздат. Ленингр. Отд-ие, 1990, - С.144-145. - прототип.

Claims (2)

1. Способ дистанционного измерения температуры, включающий прием излучения нагретой поверхности оптической системой с волоконно-оптическими световодами, сканирование выходов волокон и обработку сигнала, отличающийся тем, что оптическая система измерений выполнена с возможностью приема и каналирования излучения, а также ориентированного и одновременного взаимодействия с нагретой поверхностью и отражающими поверхностями со слабой и сильной излучательной способностью, а измерительную информацию о температуре нагрева контролируемой нагретой поверхности формируют по соотношению интенсивностей излучения от контролируемой нагретой поверхности и отражающих поверхностей со слабой и сильной отражающей способностью.
2. Устройство дистанционного измерения температуры, содержащее оптическую систему, включающую защитное стекло, градан-микрообъектив, граданы-формирователи и пространственно разделенные жгуты из элементарных оптических волокон, фотоприемники и блок первичной обработки, отличающееся тем, что оптическая система выполнена комбинированной с разделением излучения нагретой поверхности по двум коллекторам-распределителям, причем одна часть излучения каналируется в световодных жгутах, ориентированных на отражающие поверхности со слабой и сильной излучательной способностью с последующим каналированием отраженных от этих поверхностей излучений по жгутам, объединенным в опорных коллекторах-излучателях со световодными жгутами, содержащими другую часть излучения от контролируемой нагретой поверхности, и конструктивно обособленным жгутом информативного излучения, при этом пространственно разделенные жгуты из элементарных оптических волокон установлены с возможностью передачи сигнала по световодным жгутам опорных коллекторов-излучателей и световодному жгуту информативного излучения контролируемой нагретой поверхности, поступающего на соответствующие фотоприемники, выходы которых связаны с блоком первичной обработки.
RU2008128047/28A 2008-03-31 2008-07-09 Способ дистанционного измерения температуры и устройство для его осуществления RU2382340C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BY20080389 2008-03-31
BY20080389 2008-03-31

Publications (2)

Publication Number Publication Date
RU2008128047A RU2008128047A (ru) 2010-01-20
RU2382340C1 true RU2382340C1 (ru) 2010-02-20

Family

ID=42120224

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008128047/28A RU2382340C1 (ru) 2008-03-31 2008-07-09 Способ дистанционного измерения температуры и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2382340C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659457C2 (ru) * 2016-05-25 2018-07-02 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН) Способ обследования поверхности объекта инфракрасным прибором
RU2751122C1 (ru) * 2020-12-01 2021-07-08 федеральное государственное бюджетное учреждение "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" Способ теплового контроля состояния объекта

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КРАМАРУХИН Ю.И. Приборы для измерения температуры. - М.: Машиностроение, 1990. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659457C2 (ru) * 2016-05-25 2018-07-02 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН) Способ обследования поверхности объекта инфракрасным прибором
RU2751122C1 (ru) * 2020-12-01 2021-07-08 федеральное государственное бюджетное учреждение "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" Способ теплового контроля состояния объекта

Also Published As

Publication number Publication date
RU2008128047A (ru) 2010-01-20

Similar Documents

Publication Publication Date Title
CN102147297B (zh) 一种分布式光纤温度传感测量装置和方法
GB2183027A (en) An optical pyrometer
DK3144633T3 (en) FIBER-BRAGG-GRID INTERROGATOR DEVICE AND PROCEDURE
GB2239310A (en) Fiber optic distributed temperature sensor arrangement
AU2009266458A1 (en) Arrangement adapted for spectral analysis
SE420769B (sv) Fiberoptiskt temperaturmetdon av pyrometertyp
SE418997B (sv) Fiberoptisk temeraturgivare baserad pa metning av den temperaturberoende, spektrala absorptionsformagan hos ett material
KR950033445A (ko) 광학섬유를 사용하는 온도측정방법과 기구
JP2020159973A5 (ru)
US20110255075A1 (en) Spectrometric assembly and method for determining a temperature value for a detector of a spectrometer
CN101273262A (zh) 用于执行实时pcr反应的装置
IT9019833A1 (it) Misure e controllo di temperature per processi fototermici
CN201909686U (zh) 一种分布式光纤温度传感测量装置
KR101356986B1 (ko) 광섬유 분포 온도 측정용 라만 센서 시스템
GB2077421A (en) Displacement sensing
RU2382340C1 (ru) Способ дистанционного измерения температуры и устройство для его осуществления
KR100922577B1 (ko) 휴대형 광바이오 센서 측정 시스템
SE459767B (sv) Saett att minska stoerkaensligheten hos maetvaerdet fraan ett maetinstrument
CN108267160A (zh) 时分复用的光纤布拉格光栅传感系统
RU2398194C2 (ru) Двухканальный пирометр
JPS62159027A (ja) 油の劣化度検出装置
US5453828A (en) Method of optical sampling
CN113639892B (zh) 一种光纤光栅温度传感器及准分布式测温系统
CN108444613A (zh) 一种荧光法温度测量系统及其测量方法
JPS6114528A (ja) 光フアイバを用いた温度計測方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110710