RU2376101C1 - Комплексная экзотермическая смесь - Google Patents

Комплексная экзотермическая смесь Download PDF

Info

Publication number
RU2376101C1
RU2376101C1 RU2008121598/02A RU2008121598A RU2376101C1 RU 2376101 C1 RU2376101 C1 RU 2376101C1 RU 2008121598/02 A RU2008121598/02 A RU 2008121598/02A RU 2008121598 A RU2008121598 A RU 2008121598A RU 2376101 C1 RU2376101 C1 RU 2376101C1
Authority
RU
Russia
Prior art keywords
iron
mixture
complex
exothermic
properties
Prior art date
Application number
RU2008121598/02A
Other languages
English (en)
Inventor
Виктор Анатольевич Алов (RU)
Виктор Анатольевич Алов
Михаил Иванович Карпенко (BY)
Михаил Иванович Карпенко
Олег Модестович Епархин (RU)
Олег Модестович Епархин
Илья Николаевич Куприянов (RU)
Илья Николаевич Куприянов
Сергей Вениаминович Васильев (RU)
Сергей Вениаминович Васильев
Ирина Марковна Соцкая (RU)
Ирина Марковна Соцкая
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Ярославский государственный технический университет"
Priority to RU2008121598/02A priority Critical patent/RU2376101C1/ru
Application granted granted Critical
Publication of RU2376101C1 publication Critical patent/RU2376101C1/ru

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

Комплексная экзотермическая смесь предназначена для внепечной обработки железоуглеродистых сплавов. Смесь содержит, мас.%: металлический алюминий 25-38, фтористый кальций 18-35, окислы алюминия 14-27, силикокальций или ферротитан 12-25, угольную пыль 1-5. Достигается повышение жидкотекучести, выхода годного, трещиностойкости и упругопластических свойств железоуглеродистых сплавов. 3 табл.

Description

Изобретение относится к области литейного производства, в частности к комплексным экзотермическим смесям, используемым для внепечной обработки железоуглеродистых сплавов при производстве литых деталей ответственного назначения с мелкозернистой структурой.
Известна экзотермическая смесь (А.с. №608608, СССР, МПК B22D 7/06, 1978), содержащая мас.%: материал на основе окислов железа 25-50; хромовая руда 5-25; алюминиевый порошок 10,5-18; материал на основе углерода 5-12; глина огнеупорная 5-10; огнеупорный наполнитель 3-25 и связующее 5-10. Известная смесь имеет недостаточную стабильность протекания термохимических реакций и не обеспечивает при внепечной обработке литейных сталей и чугунов существенного повышения температуры, жидкотекучести и выхода годного. Высокое содержание в известной смеси огнеупорного наполнителя, окислов железа и огнеупорной глины снижает рафинирующий и модифицирующий ее эффекты. Она используется преимущественно для обогрева прибылей.
Известна также экзотермическая смесь с комплексным окислителем для стальных отливок (Побежимов Г.Н., Маньков В.Г. - М.: Литейное производство, 1979, №2. - С.17-18), содержащая от 21 до 25% алюминия, фторсодержащие соединения, окислы железа и марганца. Однако эта экзотермическая смесь не обладает достаточной теплотой экзотермических реакций, заметным модифицирующим и раскисляющим эффектами и не обеспечивает необходимых упругопластических, эксплуатационных свойств и трещиностойкости ответственных отливок.
Наиболее близкой по технической сущности и достигаемому эффекту к предложенной является комплексная экзотермическая смесь, используемая при стальном литье (Патент Франции №2338097, МПК В22D 7/00, 1977, прототип), содержащая, мас.%:
Металлический алюминий 10-40
Окислы алюминия, кальция или магния 10-80
Перлит и/или вермикулит 0-30
Древесная мука 5-30
Угольная пыль 0-5
В отдельных случаях рекомендовано введение дополнительно молотых силикатов и стекла, окислов марганца, измельченной железной стружки, железной руды, фтористого кальция или криолита. Внепечная обработка железоуглеродистых расплавов такими присадками, эффективно влияющими на характер первичной и вторичной кристаллизации, является обязательным условием получения чугуна повышенного качества. Использование при внепечной обработке различных формованных экзотермических вставок и вкладышей, прибыльных надставок, прессованных таблеток и модифицирующих брикетов, изготовленных из этой экзотермической смеси, вызывает в расплаве интенсивное протекание экзотермических реакций, повышение температуры, технологических и механических свойств Fe-C-сплавов.
Однако при содержании в известной смеси перлита и/или вермикулита, древесной муки, молотых силикатов и стекла снижается ее комплексное влияние как рафинирующей и модифицирующей добавки. При внепечной обработке чугунов известной смесью оптимального состава выход годного составляет 63-67%, а при литье деталей из литейных сталей - 44-50%. Недостатком известной смеси является то, что она не позволяет получить существенного повышения жидкотекучести, трещиностойкости и упругопластических свойств сплавов.
Задачей данного технического решения является повышение жидкотекучести, выхода годного, трещиностойкости и упругопластических свойств обрабатываемых железоуглеродистых сплавов.
Поставленная задача решается тем, что комплексная экзотермическая смесь, содержащая металлический алюминий, фтористый кальций, окислы алюминия и угольную пыль, отличается тем, что она дополнительно содержит силикокальций или ферротитан при следующем соотношении компонентов, мас.%:
Металлический алюминий 25-38
Фтористый кальций 18-35
Окислы алюминия 14-27
Силикокальций или ферротитан 12-25
Угольная пыль 1-5
Проведенный анализ предложенного технического решения показал, что на данный момент неизвестны технические решения, в которых были бы отражены указанные отличия. Кроме того, указанные признаки являются необходимыми и достаточными для достижения положительного эффекта, указанного в задаче изобретения. Это позволяет сделать вывод о том, что данные отличия являются существенными.
Дополнительное введение силикокальция или ферротитана обусловлено тем, что они являются эффективными химически активными экзотермическими и модифицирующими добавками, оказывающими положительное влияние на температурные, термодинамические и технологические параметры железоуглеродистых расплавов, их однородность и жидкотекучесть, что способствует повышению дисперсности структуры, трещиностойкости и упругопластических свойств сплавов в отливках. При увеличении их содержания более 25% усиливается интенсивность протекания экзотермических реакций и повышаются кинетические параметры расплавов, что увеличивает угар металла и снижает выход годного. При концентрации силикокальция или ферросилиция менее 12% технологические и упругопластические свойства сплавов недостаточны.
Металлический алюминий в количестве 25-38% является также химически активной экзотермической добавкой, раскисляющей металл и повышающей его однородность и жидкотекучесть. При увеличении содержания алюминия более 38% повышаются угар металла, неоднородность структуры из-за пленообразования и снижаются трещиностойкость и упругопластические свойства. При концентрации алюминия в смеси менее 25% эффективность внепечной обработки, технологические и упругопластические свойства сплавов снижаются.
Введение фтористого кальция в количестве 18-35% связано с его высокими термохимическими реакциями в железоуглеродистых расплавах, рафинирующим и модифицирующим влиянием, с повышением их однородности, жидкотекучести и стабильности свойств. При увеличении содержания фтористого кальция более 35% снижается выход годного и увеличивается неоднородность структуры. При концентрации фтористого кальция менее 18% его рафинирующий и модифицирующий эффекты недостаточны, а механические и эксплуатационные свойства сплавов в отливках низкие.
Содержание окислов алюминия принято исходя из опыта производства экзотермических смесей для внепечной обработки литейных углеродистых сталей и чугунов с однородной мелкозернистой перлитной структурой и высокими характеристиками упругопластических свойств. При увеличении концентрации окислов алюминия выше 27% повышаются неоднородность расплава и стабильность технологических и упругопластических свойств. При снижении их концентрации ниже 14% эффективность экзотермической смеси при внепечной обработке недостаточна, а температура и технологические свойства сплавов низкие.
Окислы магния вызывают при внепечной обработке барботаж и пироэффекты, повышая угар и нестабильность свойств металла, поэтому они исключены из состава смеси. Древесная мука, перлит и вермикулит также исключены из состава комплексной смеси, так как не являются эффективными экзотермическими, химически активными рафинирующими или модифицирующими добавками для железоуглеродистых сплавов и снижают их жидкотекучесть, технологические и механические свойства.
Угольная пыль в количестве 1-5% оказывает модифицирующее и графитизирующее влияние при внепечной обработке, повышает температуру, жидкотекучесть и стабильность свойств металла, поэтому ее следует вводить в комплексную экзотермическую смесь. Ее эффективность начинает сказываться с содержания более 1%. При этом уменьшение концентрации угольной пыли менее 1% ухудшает процесс формообразования при изготовлении из предложенной смеси модифицирующих и микролегирующих таблеток, брикетов, вставок и вкладышей, используемых при внепечной обработке расплавов.
Для сравнительных испытаний эффективности известной и предложенной компексных экзотермических смесей проведена их апробация в производственных условиях при выплавке в тигельных индукционных печах и последующей внепечной обработке углеродистых сталей и модифицированных серых чугунов. В табл.1 приведены составы комплексных экзотермических смесей, используемых для внепечной обработки.
Определение трещиностойкости сплавов (по среднему количеству трещин в пробе) проводили на звездообразных 250 мм технологических пробах высотой 140 мм, жидкотекучести - на спиральных технологических пробах, а прочностных свойств - по ГОСТ 1497-85 на образцах диаметром 14 мм с расчетной длиной 70 мм. Для определения ударной вязкости использовали образцы 10×10×55 мм. Металлографические исследования и анализ дисперсности структуры чугуна проводили в соответствии с ГОСТ 3443-87.
Пример 1. Опытные плавки серого чугуна СЧ 25 проведены в тигельных индукционных печах с использованием в качестве шихтовых материалов литейных чугунов ЛЗ и Л5, чугунного лома марки 17А, стального лома 1А, углеродистого феррохрома, никеля НПЗ, ферромарганца ФМн 75. При выпуске чугуна в ковш его температура составляла 1380…1410°С. Содержание компонентов в чугуне перед обработкой смесью, мас.%: углерод 3,2-3,4; кремний 1,7-1,9; марганец 0,8; никель 0,2; хром 0,12; фосфор 0,1; сера 0,05 и железо - остальное.
Комплексные экзотермические смеси в бумажных пакетах или прессованные из них цилиндрические таблетки диаметром 50 мм и высотой 50 мм вводили на дно чайникового ковша перед заливкой чугуна. Заливку чугуна с температурой 1370-1380°С производили в песчано-глинистые формы для получения технологических проб, отливок типа втулок и образцов для механических испытаний.
В табл.2 приведены технологические свойства чугунов, полученных после внепечной обработки известной и предложенных составов экзотермических смесей, а также анализ структуры и свойств чугунов в отливках.
Пример 2. Опытные плавки литейной углеродистой стали 35Л проведены в индукционной среднечастотной печи ИСТ-1М с использованием стального лома и ферросплавов. Температура расплавленного металла перед заливкой в стопорный ковш с комплексной экзотермической смесью в количестве 2% от массы заливаемого металла составляла 1610-1630°С.
При изготовлении из жидкостекольных смесей литейных форм для получения тормозных барабанов, крановых колес и других массивных отливок использовали также различные формованные экзотермические вставки и вкладыши, прибыльные надставки и микролегирующие брикеты, изготовленные из известной и предложенной экзотермических смесей.
Для определения свойств литейных сталей после внепечной обработки в сухие литейные жидкостекольные формы отливали звездообразные, решетчатые и ступенчатые технологические пробы, фасонные отливки и образцы для механических испытаний.
В табл.3 приведены технологические свойства (жидкотекучесть и трешиностойкость) и анализ дисперсности литой структуры, а также упругопластические свойства литейных сталей в отливках после их закалки с температуры 880-890°С и отпуска при 560-600°С.
Апробация в производственных условиях показала, что преложенная комплексная экзотермическая смесь является эффективной химически активной добавкой при внепечной обработке и оказывает положительное влияние на температурные и технологические параметры железоуглеродистых расплавов, их жидкотекучесть и способствует повышению дисперсности структуры, трещиностойкости и упругопластических свойств сплавов в отливках в большей степени, чем известная.
Figure 00000001
Figure 00000002

Claims (1)

  1. Комплексная экзотермическая смесь, содержащая металлический алюминий, фтористый кальций, окислы алюминия и угольную пыль, отличающаяся тем, что она дополнительно содержит силикокальций или ферротитан при следующем соотношении компонентов, мас.%:
    Металлический алюминий 25-38 Фтористый кальций 18-35 Окислы алюминия 14-27 Силикокальций или ферротитан 12-25 Угольная пыль 1-5
RU2008121598/02A 2008-05-28 2008-05-28 Комплексная экзотермическая смесь RU2376101C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008121598/02A RU2376101C1 (ru) 2008-05-28 2008-05-28 Комплексная экзотермическая смесь

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008121598/02A RU2376101C1 (ru) 2008-05-28 2008-05-28 Комплексная экзотермическая смесь

Publications (1)

Publication Number Publication Date
RU2376101C1 true RU2376101C1 (ru) 2009-12-20

Family

ID=41625585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008121598/02A RU2376101C1 (ru) 2008-05-28 2008-05-28 Комплексная экзотермическая смесь

Country Status (1)

Country Link
RU (1) RU2376101C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454294C1 (ru) * 2010-12-13 2012-06-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" (МИИТ) Комплексная экзотермическая смесь
RU2517083C1 (ru) * 2012-12-12 2014-05-27 ООО "НПО "Атом" Комплексная экзотермическая смесь

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2454294C1 (ru) * 2010-12-13 2012-06-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" (МИИТ) Комплексная экзотермическая смесь
RU2517083C1 (ru) * 2012-12-12 2014-05-27 ООО "НПО "Атом" Комплексная экзотермическая смесь

Similar Documents

Publication Publication Date Title
RU2451090C1 (ru) Способ выплавки конструкционной стали пониженной и регламентированной прокаливаемости
CN103131942B (zh) 内燃机汽缸体、汽缸盖的高蠕化率蠕墨铸铁及制法
RU2335564C2 (ru) Высокотитановый ферросплав, получаемый двухстадийным восстановлением из ильменита
RU2380428C2 (ru) Науглероживатель
RU2376101C1 (ru) Комплексная экзотермическая смесь
WO2019169549A1 (zh) 一种微合金化稀土铸钢
RU2620206C2 (ru) Способ графитизирующего модифицирования чугуна
RU2581542C1 (ru) Высокопрочный антифрикционный чугун
RU2542157C1 (ru) Способ выплавки стали в дуговой электропечи
RU2454294C1 (ru) Комплексная экзотермическая смесь
CN104651721B (zh) 斗齿用合金钢及斗齿的制备方法
RU2502808C1 (ru) Состав для модифицирования и рафинирования железоуглеродистых и цветных сплавов (варианты)
RU2590772C1 (ru) Способ получения алюминиевого чугуна
RU2618294C1 (ru) Способ выплавки синтетического высокопрочного чугуна в индукционных печах
RU2409689C1 (ru) Серый антифрикционный чугун
RU2387519C1 (ru) Способ ковшевого модифицирования серого чугуна
CN109468427A (zh) 一种铸铁用预处理剂及其制备方法
RU2687521C1 (ru) Способ внепечной обработки высоколегированного чугуна для валков
RU2805114C1 (ru) Способ выплавки стали в электродуговой печи
RU2319751C2 (ru) Способ раскисления и легирования металлических расплавов
RU2784305C1 (ru) Способ легирования тонкостенных чугунных отливок
RU2309181C1 (ru) Способ выплавки ванадийсодержащей стали
RU2588932C1 (ru) Смесь для модифицирования и рафинирования стали и чугуна
SU1668404A1 (ru) Модифицирующа смесь
SU1581770A1 (ru) Высокопрочный чугун

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130529