RU2370701C1 - Вертикальная призматическая топка и способ ее работы - Google Patents

Вертикальная призматическая топка и способ ее работы Download PDF

Info

Publication number
RU2370701C1
RU2370701C1 RU2008117896/06A RU2008117896A RU2370701C1 RU 2370701 C1 RU2370701 C1 RU 2370701C1 RU 2008117896/06 A RU2008117896/06 A RU 2008117896/06A RU 2008117896 A RU2008117896 A RU 2008117896A RU 2370701 C1 RU2370701 C1 RU 2370701C1
Authority
RU
Russia
Prior art keywords
nozzle
vertical
nozzles
gas
burners
Prior art date
Application number
RU2008117896/06A
Other languages
English (en)
Inventor
Владимир Валентинович Осинцев (RU)
Владимир Валентинович Осинцев
Евгений Васильевич Торопов (RU)
Евгений Васильевич Торопов
Константин Владимирович Осинцев (RU)
Константин Владимирович Осинцев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет"
Priority to RU2008117896/06A priority Critical patent/RU2370701C1/ru
Application granted granted Critical
Publication of RU2370701C1 publication Critical patent/RU2370701C1/ru

Links

Images

Abstract

Вертикальная призматическая топка относится к энергетике и может быть использована в топочной технике на котлах тепловых электростанций, отопительных котельных и парогенерирующих установках металлургических предприятий при комбинированном факельном сжигании природного и промышленных доменного и коксового газов во вращающемся вертикально-восходящем потоке. Вертикальная призматическая топка содержит камеру сгорания с вертикальной осью симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки, имеющие собственные боковые стены, многотрубные и вертикально-щелевые газовыводящие насадки, а также отделенные от них экранирующими трубами вертикально-щелевые моносопловые воздуховыводящие насадки с горизонтальными осями, образующими касательные к собственным, соосным с вертикальной осью камеры сгорания, условным цилиндрическим поверхностям. В каждой горелке газовыводящая вертикально-щелевая насадка выполнена моносопловой, многотрубная газовыводящая насадка размещена между вертикально-щелевыми газовыводящей и воздуховыводящей насадками, а между газовыводящими вертикально-щелевой и многотрубной насадками установлены дополнительные экранирующие трубы, при этом воздуховыводящая моносопловая насадка установлена у боковой стены, обращенной к моносопловой газовыводящей насадке соседней горелки, диаметр окружности условной цилиндрической поверхности касания горизонтальных осей газовыводящих вертикально-щелевых моносопловых насадок составляет (1,05-2,0)Дв, а газовыводящих многотрубных насадок (1,5-2,5)Дв, где Дв - диаметр окружности условной цилиндрической поверхности касания горизонтальных осей воздуховыводящих моносопловых насадок. Изобретение позволяет достичь увеличения межремонтного срока службы горелок и снизить уровень выхода оксидов азота с продуктами сгорания. 2 н.п. ф-лы, 7 ил.

Description

Изобретение относится к энергетике и может быть использовано в топочной технике на котлах тепловых электростанций, отопительных котельных и парогенерирующих установках металлургических предприятий при комбинированном факельном сжигании природного и промышленных доменного и коксового газов во вращающемся вертикально восходящем потоке.
Известна вертикальная призматическая топка, включающая вертикальную ось симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки, имеющие собственные боковые стены, многотрубные и вертикально-щелевые газовыводящие насадки, а также вертикально-щелевые воздуховыводящие насадки, причем многотрубные газовыводящие насадки скомпонованы в вертикальные ряды (Осинцев В.В. и др. Сжигание челябинского угля, природного, коксового и доменного газов в котлах ПК-14 ТЭЦ металлургического комбината // Журнал "Промышленная энергетика". 1989. №12. С.35-39). Недостаток устройства - незначительный межремонтный срок службы горелок и существенные ремонтные затраты.
Известен способ работы такого топочного устройства, осуществляемый путем подачи в многотрубные газовыводящие насадки природного и коксового газов, через вертикально-щелевые газовыводящие насадки - доменного газа, а через вертикально-щелевые воздуховыводящие насадки - воздуха с образованием восходящего факельного потока (Осинцев В.В. и др. Сжигание челябинского угля, природного, коксового и доменного газов в котлах ПК-14 ТЭЦ металлургического комбината // Журнал "Промышленная энергетика". 1989. №12. С.35-39). К недостатку способа относится повышенный уровень концентрации оксидов азота в отводимых из топки продуктах сгорания.
Известна вертикальная призматическая топка, содержащая камеру сгорания с вертикальной осью симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки, имеющие собственные боковые стены, многотрубные газовыводящие насадки, скомпонованные по крайней мере в один вертикальный ряд, а также вертикально-щелевые моносопловые воздуховыводящие насадки, причем воздуховыводящие и газовыводящие насадки разделены экранирующими трубами, а горизонтальные оси газовыводящих и воздуховыводящих насадок ориентированы по касательным к собственным условным цилиндрическим поверхностям, соосным с вертикальной осью камеры сгорания (Осинцев В.В. и др. Перевод котла БКЗ-160 на технологию ступенчатого сжигания топлива // Журнал "Электрические станции". 1993. №3. С.25-29). Недостаток устройства - снижение межремонтного срока службы горелок при подаче в топку вместе с природным газом промышленных коксового и доменного газов.
Известен способ работы такой топки, осуществляемый путем подачи в газовыводящие насадки природного газа, а в воздуховыводящие насадки воздуха с организацией восходящего закрученного в горизонтальной плоскости факельного потока (Осинцев В.В. и др. Перевод котла БКЗ-160 на технологию ступенчатого сжигания топлива // Журнал "Электрические станции". 1993. №3. С.25-29). К недостатку способа можно отнести повышение уровня выхода оксидов азота при сжигании вместе с природным доменного и коксового газов.
Известна вертикальная призматическая топка, содержащая камеру сгорания с вертикальной осью симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки с собственными боковыми стенами, топливовыводящими и воздуховыводящими сопловыми насадками, имеющими горизонтальные оси, направленные по касательным к условным цилиндрическим поверхностям факела, причем топливовыводящие насадки выполнены многотрубными, воздуховыводящие - вертикально-щелевыми (Руководящий технический материал. Горелки прямоточные пылеугольные, пылегазовые и их компоновка с топками. Методы расчета и проектирования. РТМ 108.030.120-78. Издание официальное, с.6-12, с.29). Недостаток устройства - невысокий срок службы горелок при сжигании доменного и коксового газов.
Известен способ работы такого устройства, осуществляемый путем подачи в топливовыводящие насадки топливных потоков, а в воздуховыводящие насадки - воздушных потоков с образованием вращающегося вокруг вертикальной оси камеры сгорания восходящего факельного потока. (Руководящий технический материал. Горелки прямоточные пылеугольные, пылегазовые и их компоновка с топками. Методы расчета и проектирования. РТМ 108.030.120-78. Издание официальное, с.6-12, с.29). Недостаток способа - повышенный уровень выхода оксидов азота при сжигании в топке коксового и доменного газов.
Наиболее близкой по технической сущности является вертикальная призматическая топка, содержащая камеру сгорания с вертикальной осью симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки, имеющие собственные боковые стены, многотрубные и вертикально-щелевые газовыводящие насадки, а также отделенные от них экранирующими трубами вертикально-щелевые моносопловые воздуховыводящие насадки с горизонтальными осями, образующими касательные к собственным, соосным с вертикальной осью камеры сгорания, условным цилиндрическим поверхностям (авторское свидетельство СССР №1695036, МПК F23С 1/12 от 01.09.89 г.; БИ №44 от 1991 г.). Недостаток устройства - незначительный межремонтный срок службы горелок и повышенный уровень выхода оксидов азота.
Известен способ работы такого устройства, включающий тангенциальную подачу в камеру сгорания через горелки реагентных потоков доменного газа, выпускаемого из газовыводящих вертикально-щелевых моносопловых насадок, природного и коксового газов, выпускаемых из газовыводящих многотрубных насадок, и воздуха, выпускаемого из моносопловых воздуховыводящих насадок, образующих восходящий горизонтально-вращающийся факел с тангенциальными фронтом и следом перед горелками (авторское свидетельство СССР №1695036, МПК F23С 1/12 от 01.09.89 г.; БИ №44 от 1991 г.). Недостаток способа - повышенный уровень выхода оксидов азота при подаче в горелки доменного и коксового газов, незначительный межремонтный срок службы горелок.
Задача настоящего изобретения - увеличение межремонтного срока службы горелок и снижение уровня выхода оксидов азота с продуктами сгорания.
Для решения этой задачи в заявляемой вертикальной призматической топке, содержащей камеру сгорания с вертикальной осью симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки, имеющие собственные боковые стены, многотрубные и вертикально-щелевые газовыводящие насадки, а также отделенные от них экранирующими трубами вертикально-щелевые моносопловые воздуховыводящие насадки с горизонтальными осями, образующими касательные к собственным, соосным с вертикальной осью камеры сгорания, условным цилиндрическим поверхностям, согласно изобретению в каждой горелке газовыводящая вертикально-щелевая насадка выполнена моносопловой, многотрубная газовыводящая насадка размещена между вертикально-щелевыми газовыводящей и воздуховыводящей насадками, а между газовыводящими вертикально-щелевой и многотрубной насадками установлены дополнительные экранирующие трубы, при этом воздуховыводящая моносопловая насадка установлена у боковой стены, обращенной к моносопловой газовыводящей насадке соседней горелки, диаметр окружности условной цилиндрической поверхности касания горизонтальных осей газовыводящих вертикально-щелевых моносопловых насадок составляет (1,05-2,0)Дв, а газовыводящих многотрубных насадок (1,5-2,5)Дв, где Дв - диаметр окружности условной цилиндрической поверхности касания горизонтальных осей воздуховыводящих моносопловых насадок.
Выполнением в каждой горелке газовыводящей вертикально-щелевой насадки моносопловой, размещением многотрубной газовыводящей насадки между вертикально-щелевыми газовыводящей и воздуховыводящей насадками, а также установкой дополнительных экранирующих труб между многотрубной и вертикально-щелевой газовыводящими насадками, а воздуховыводящей моносопловой насадки у боковой стены, обращенной к моносопловой газовыводящей насадке соседней горелки, достигаются существенное снижение облучаемости амбразур факелом (уменьшение падающих лучистых потоков тепла) и повышение надежности элементов горелок и амбразур, увеличение срока их службы, снижение ремонтных затрат. Ориентацией горизонтальных осей газовыводящих вертикально-щелевых моносопловых насадок по касательным к условной цилиндрической поверхности с диаметром окружности Д1=(1,05-2,0)Дв, а многотрубных по касательным к условной цилиндрической поверхности с диаметром окружности Д2=(1,5-2,5)Дв, где Дв - диаметр цилиндрической окружности касания горизонтальных осей воздуховыводящих моносопловых насадок, достигается минимизация выхода вредных оксидов азота с отводимыми продуктами сгорания.
Описанный выше положительный эффект реализуется одновременно со способом работы предлагаемого топочного устройства, включающего тангенциальную подачу в камеру сгорания через горелки реагентных потоков доменного газа, выпускаемого из газовыводящих вертикально-щелевых моносопловых насадок, природного и коксового газов, выпускаемых из газовыводящих многотрубных насадок, и воздуха, выпускаемого из моносопловых воздуховыводящих насадок, образующих восходящий горизонтально-вращающийся факел с тангенциальными фронтом и следом перед горелками, согласно изобретению подачу потоков газов при этом осуществляют в тангенциальный фронт набегающего на горелки факела, а потоки воздуха направляют в тангенциальный след удаляющегося от горелок факела.
При истечении из сопл газы и воздух прогреваются до температуры, необходимой для вспышки - начала химического реагирования газов с кислородом воздуха и образования оксидов, главным образом окислов углерода, с выделением тепла. Истечение потоков доменного газа с низким содержанием горючих веществ из вертикально-щелевых моносопловых насадок со стороны тангенциально набегающего на горелки реагирующего высокотемпературного потока (тангенциального фронта факела), а воздуха в тангенциальный след удаляющегося от горелок факела обеспечивает их интенсивный лучистый и конвективный прогрев, устойчивое воспламенение и последующее горение. Содержание большого количества балластирующих веществ в доменном газе и растянутый характер его воспламенения в топочной камере с незначительным градиентом температуры в момент вспышки обеспечивают невысокий уровень активности вторичных реакций окисления азота в топливе и воздухе, незначительное содержание оксидов азота в факельном следе на выходе из топки и в отводимых в атмосферу продуктах сгорания. При подаче доменного газа вдоль горизонтальных осей насадок, ориентированных по касательным к цилиндрическим поверхностям с Д1=(1,05-2,0)Дв формируется минимальный уровень концентрации оксидов азота NOx1min. Как только Д1≤1,045Дв или Д1≥2,01Дв, уровень концентрации оксидов азота увеличивается скачкообразно до NOx1≥(1,5÷2,0)NOx1min. Выход низкоактивного доменного газа в топку из вертикально-щелевых моносопловых насадок формирует завесу от лучистых потоков тепла в направлении амбразур и совместно с экранирующими трубами рабочей среды последних существенно уменьшает разогрев последних, высокотемпературное разрушение и продлевает срок службы горелок. Подача потоков природного и коксового газов из многотрубных насадок раздельно с воздухом также снижает активность реагирования на участке воспламенения, уменьшает градиент температуры в момент вспышки и количество падающего на амбразуры лучистого тепла. Как в случае сжигания доменного газа при подаче топливных потоков в тангенциальный фронт набегающего на горелки факела, а воздуха в тангенциальный след удаляющегося от горелок факела уменьшается разогрев амбразур, увеличивается срок их службы между ремонтами. При подаче природного и коксового газов вдоль горизонтальных осей сопл, ориентированных по касательным к цилиндрическим поверхностям с диаметром Д2=(1,5-2,5)Дв, устанавливается минимальный уровень концентрации оксидов азота NOx2min. Как только Д2≤1,49Дв или Д2≥2,51Дв, уровень концентрации оксидов азота увеличивается скачкообразно до NOх2≥(1,5÷2,0)NOx2min. При комбинировании ввода различных газов и в различных соотношениях по горелкам тенденция выхода оксидов азота сохраняется, откуда заявленные диапазоны Д1=(1,05-2,0)Дв и Д2=(1,5-2,5)Дв принимаются за оптимальные.
Сущность изобретения поясняется чертежами, где на фиг.1 представлена схема вертикальной призматической топки прямоугольного сечения с настенным размещением горелок, поперечный разрез; на фиг.2 - схема вертикальной топки прямоугольного сечения, вид в плане, разрез А-А; на фиг.3 - схема амбразуры горелки, узел 1; на фиг.4 - схема амбразуры горелки, узел 2; на фиг.5 - схема амбразуры горелки, вид Б; на фиг.6 - схема вертикальной призматической топки квадратного сечения с размещением горелок на угловых простенках, вид в плане; на фиг.7 - схема восьмигранной вертикальной призматической топки, вид в плане.
Вертикальная призматическая топка на фиг.1, 2, 3, 4, 5 содержит камеру сгорания 1 с осью симметрии 2, совпадающей с осью горизонтального вращения 3 факела 4, стены 5 с горелками 6 и 7 и стены 8 без горелок; горелки 6 и 7 имеют выведенные соответственно в амбразуры 10 и 11 многотрубные 16, 17 и 18, 19 и вертикально-щелевые 20 и 21 газовыводящие насадки, а также отделенные от них экранирующими трубами 22 и 23 вертикально-щелевые моносопловые воздуховыводящие 24 и 25 насадки с соответствующими горизонтальными осями 26 и 27, 28 и 29, 30 и 31, образующими касательные к соответствующим условным цилиндрическим поверхностям 32, 33, 34 вращения факела 4. Особенностями вертикальной призматической топки являются выполнение газовыводящих вертикально-щелевых насадок 20 и 21 моносопловыми и их размещение на обращенных к фронту факела 4 боковых стенах 12 и 13 соответственно горелок 6 и 7, размещение многотрубных насадок 16, 17 и 18, 19 между вертикально-щелевыми газовыводящими 20 и 21 и воздуховыводящими 24 и 25 насадками, установка между газовыводящими и вертикально-щелевыми 20 и 21 и многотрубными 16, 17 и 18, 19 насадками дополнительных экранирующих труб 35 и 36, при этом воздуховыводящая насадка в каждой горелке, в частности насадка 24 горелки 6, обращена к газовыводящей моносопловой насадке соседней горелки, в частности насадке 21 горелки 7.
Диаметр окружности условной цилиндрической поверхности касания 32 горизонтальных осей 28 и 29 вертикально-щелевых моносопловых газовыводящих насадок 20 и 21 соответственно горелок 6 и 7 равен Д1=(1,05-2,0)Дв, а диаметр окружности условной цилиндрической поверхности касания 33 горизонтальных осей 26 и 27 многотрубных насадок 16, 17 и 18, 19 для тех же горелок - Д2=(1,5-2,5)Дв, где Дв - диаметр окружности условной цилиндрической поверхности касания 34 горизонтальных осей 30 и 31 воздуховыводящих моносопловых насадок 24 и 25 соответственно.
Работа вертикальной призматической топки по фиг.1, 2, 3, 4, 5 осуществляется путем подачи доменного газа в моносопловые насадки 20 и 21, природного и коксового - в многотрубные насадки 16, 17 и 18, 19, воздуха - в моносопловые насадки 24 и 25. Истекающие из сопловых насадок газы и воздух образуют вращение топочной среды с центром 3 на оси 2 камеры сгорания 1. При истечении из сопл газы и воздух прогреваются до температуры, необходимой для вспышки - начала химического реагирования газов с кислородом воздуха и образования оксидов, главным образом окислов углерода, с выделением тепла. Истечение потоков доменного газа с низким содержанием горючих веществ из вертикально-щелевых моносопловых насадок со стороны тангенциально набегающего на горелки реагирующего высокотемпературного потока (тангенциального фронта факела), а воздуха в тангенциальный след удаляющегося от горелок факела обеспечивает их интенсивный лучистый и конвективный прогрев, устойчивое воспламенение и последующее горение. Содержание большого количества балластирующих веществ в доменном газе и растянутый характер его воспламенения в топочной камере с незначительным градиентом температуры в момент вспышки обеспечивают невысокий уровень активности вторичных реакций окисления азота в топливе и воздухе, незначительное содержание оксидов азота в факельном следе на выходе из топки и в отводимых в атмосферу продуктах сгорания. При подаче доменного газа вдоль горизонтальных осей 28 и 29 насадок 20 и 21 соответственно, ориентированных по касательным к цилиндрическим поверхностям с Д1=(1,05-2,0)Дв, формируется минимальный уровень концентрации оксидов азота NOx1min. Как только Д1≤1,045Дв или Д1≥2,01Дв, уровень концентрации оксидов азота увеличивается скачкообразно до NOx1≥(1,5÷2,0)NOx1min. Выход низкоактивного доменного газа в топку из вертикально-щелевых моносопловых насадок 20 и 21 формирует завесу от лучистых потоков тепла в направлении амбразур 10 и 11 и совместно с экранирующими трубами 22, 23 и 35, 36 рабочей среды последних существенно уменьшает разогрев последних, высокотемпературное разрушение и продлевает срок службы горелок. Подача потоков природного и коксового газов из многотрубных насадок 16, 17 и 18, 19 раздельно с воздухом также снижает активность реагирования на участке воспламенения, уменьшает градиент температуры в момент вспышки и количество падающего на амбразуры лучистого тепла. Как в случае сжигания доменного газа при подаче топливных потоков в тангенциальный фронт набегающего на горелки факела, а воздуха в тангенциальный след удаляющегося от горелок факела уменьшается разогрев амбразур, увеличивается срок их службы между ремонтами. При подаче природного и коксового газов вдоль горизонтальных осей 26, 27 сопл 16, 17, 18, 19, ориентированных по касательным к цилиндрическим поверхностям с диаметром Д2=(1,5-2,5)Дв, устанавливается минимальный уровень концентрации оксидов азота
NOх2min. Как только Д2≤1,49Дв или Д2≥2,51Дв, уровень концентрации оксидов азота увеличивается скачкообразно до NOх2≥(1,5÷2,0)NОх2min. При комбинировании ввода различных газов и в различных соотношениях по горелкам 6, 7 тенденция выхода оксидов азота сохраняется, откуда заявленные диапазоны Д1=(1,05-2,0)Дв и Д2=(1,5-2,5)Дв принимаются за оптимальные. Параметр Дв обычно связывают с размером меньшей из сторон топочной камеры, который принимают равным Дв=(0,05-0,2)Ат, где Ат - меньшая сторона камеры. В частности, на фиг.1,2 Атт; Ат и Вт - размеры сторон камеры.
Опыт сжигания разнородных топлив на котлах металлургических предприятий показывает, что коксовый газ поступает на сжигание ограниченное время и в ограниченном количестве, в связи с чем при реализации заявляемого изобретения коксовый газ вводят через многотрубные насадки 17 и 19 с пропускной способностью в 3-4 раза меньше того же показателя насадок 16 и 18, используемых для подачи природного газа. Многотрубные насадки 17 и 19 для ввода коксового газа, как и насадки 16 и 18 для ввода природного газа, могут компоноваться в один или несколько вертикальных рядов. Необходимость выполнения 2х типов амбразур 10 и 11 и соответственно горелок 6 и 7 на фиг.3, 4 связана с различными углами установки газовыводящих и воздуховыводящих сопл на стенах 5 топки по фиг.1, 2.
Изобретение может быть реализовано также в вертикальной призматической топке квадратного сечения с размещением однотипных горелок на угловых простенках. Схема такой топки с горизонтальным сечением в плане представлена на фиг.6. В сглаженных углах, выполненных в виде простенков 37, установлены однотипные горелки 6. Остальные обозначения, введенные на фиг.6, те же, что и на фиг.1, 2, 3, 4, 5.
Работа топочного устройства на фиг.6 осуществляется так же, как и топочного устройства на фиг.1, 2, 3, 4, 5.
Изобретение может быть реализовано и вертикальной восьмигранной топке на фиг.7. Здесь также используются однотипные горелки 6, обозначения - те же, что и на фиг.1, 2, 3, 4, 5.
Работа топочного устройства на фиг.7 осуществляется так же, как и топочного устройства на фиг.1, 2, 3, 4, 5.
Практическое использование вертикальной призматической топки связано с котлами типа ПК-14 и ПК-10, устанавливаемыми на современных ТЭЦ металлургических предприятий. На эти котлы подают помимо основного топлива, в частности природного газа, промышленные доменный и коксовый газы. Переход к тангенциальной технологии ввода с горелками, оснащенными охлаждаемыми амбразурами и отделенными друг от друга насадками для ввода газа и воздуха, а также ориентация горизонтальных осей насадок к условным поверхностям с заявленными диапазонами диаметров цилиндрического вращения факела Д1 и Д2 в зависимости от Дв обеспечивают повышение межремонтного срока службы горелок и амбразур до 16-20 лет против исходных 2-3 лет и снижение вредных выбросов оксидов азота в атмосферу вдвое.

Claims (2)

1. Вертикальная призматическая топка, содержащая камеру сгорания с вертикальной осью симметрии, экранированные трубами стены с амбразурами и встроенные в них горелки, имеющие собственные боковые стены, многотрубные и вертикально-щелевые газовыводящие насадки, а также отделенные от них экранирующими трубами вертикально-щелевые моносопловые воздуховыводящие насадки с горизонтальными осями, образующими касательные к собственным, соосным с вертикальной осью камеры сгорания, условным цилиндрическим поверхностям, отличающаяся тем, что в каждой горелке газовыводящая вертикально-щелевая насадка выполнена моносопловой, многотрубная газовыводящая насадка размещена между вертикально-щелевыми газовыводящей и воздуховыводящей насадками, а между газовыводящими вертикально-щелевой и многотрубной насадками установлены дополнительные экранирующие трубы, при этом воздуховыводящая моносопловая насадка установлена у боковой стены, обращенной к моносопловой газовыводящей насадке соседней горелки, диаметр окружности условной цилиндрической поверхности касания горизонтальных осей газовыводящих вертикально-щелевых моносопловых насадок составляет (1,05-2,0)Дв, а газовыводящих многотрубных насадок (1,5-2,5)Дв, где Дв - диаметр окружности условной цилиндрической поверхности касания горизонтальных осей воздуховыводящих моносопловых насадок.
2. Способ работы вертикальной призматической топки, включающий тангенциальную подачу в камеру сгорания через горелки реагентных потоков доменного газа, выпускаемого из газовыводящих вертикально-щелевых моносопловых насадок, природного и коксового газов, выпускаемых из газовыводящих многотрубных насадок, и воздуха, выпускаемого из моносопловых воздуховыводящих насадок, образующих восходящий горизонтально-вращающийся факел с тангенциальными фронтом и следом перед горелками, отличающийся тем, что потоки газов подают в тангенциальный фронт набегающего на горелки факела, а потоки воздуха направляют в тангенциальный след удаляющегося от горелок факела.
RU2008117896/06A 2008-05-04 2008-05-04 Вертикальная призматическая топка и способ ее работы RU2370701C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008117896/06A RU2370701C1 (ru) 2008-05-04 2008-05-04 Вертикальная призматическая топка и способ ее работы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008117896/06A RU2370701C1 (ru) 2008-05-04 2008-05-04 Вертикальная призматическая топка и способ ее работы

Publications (1)

Publication Number Publication Date
RU2370701C1 true RU2370701C1 (ru) 2009-10-20

Family

ID=41263016

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008117896/06A RU2370701C1 (ru) 2008-05-04 2008-05-04 Вертикальная призматическая топка и способ ее работы

Country Status (1)

Country Link
RU (1) RU2370701C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2489647C2 (ru) * 2011-10-25 2013-08-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Топка
RU2499189C1 (ru) * 2012-06-04 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) Способ и установка активирования фракционированных по размеру частиц порошкообразного угля

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2489647C2 (ru) * 2011-10-25 2013-08-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Топка
RU2499189C1 (ru) * 2012-06-04 2013-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) Способ и установка активирования фракционированных по размеру частиц порошкообразного угля

Similar Documents

Publication Publication Date Title
KR101604359B1 (ko) 높은 열 전달을 갖는 낮은-nox 유리 용광로를 가열하는 방법
CN101297157B (zh) 低氮氧化物燃烧工艺和装置以及其用途
US9790570B2 (en) Apparatus and method for the thermal treatment of lump or agglomerated material
CN102230623B (zh) 扁平燃烧装置
CN107044632B (zh) 立式煤粉锅炉
KR101879024B1 (ko) 고효율 질소 산화물 저감형 버너 및 이를 갖는 연소 설비
CN103742907A (zh) 低热值转炉煤气用自身预热式烧嘴
RU2370701C1 (ru) Вертикальная призматическая топка и способ ее работы
CN105910115A (zh) 一种废液焚烧装置
JP5501198B2 (ja) 低NOx・低煤塵燃焼方法およびボイラ燃焼室
RU2309332C1 (ru) Многофункциональная горелка
CN108679600A (zh) 空气分级与sncr联合脱销法
RU2635947C2 (ru) Котел и способ его работы
CN210568368U (zh) 一种生物质成型燃料半气化燃烧承压锅炉
RU2143084C1 (ru) Способ комбинированного сжигания природного газа, угольной пыли и газообразных продуктов термохимической переработки угля
CN112443833A (zh) 燃烧器底置煤粉锅炉及其控制方法
RU2306482C1 (ru) Горелочное устройство
RU2560658C1 (ru) Способ сжигания топочных газов в вертикальной камерной топке и вертикальная камерная топка
CN218972677U (zh) 尾气焚烧装置
CN208952074U (zh) 一种低氮燃烧煤气锅炉
RU2009402C1 (ru) Способ сжигания малореакционного пылевидного топлива и устройство для его осуществления
SU1315724A1 (ru) Способ работы вертикальной экранированной топки
RU2473010C1 (ru) Топка
RU2489647C2 (ru) Топка
RU169645U1 (ru) Вертикальная призматическая низкоэмиссионная топка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100505