RU2363884C2 - Способ обеззараживания дымовых газов топливосжигающих агрегатов - Google Patents

Способ обеззараживания дымовых газов топливосжигающих агрегатов Download PDF

Info

Publication number
RU2363884C2
RU2363884C2 RU2006144505/03A RU2006144505A RU2363884C2 RU 2363884 C2 RU2363884 C2 RU 2363884C2 RU 2006144505/03 A RU2006144505/03 A RU 2006144505/03A RU 2006144505 A RU2006144505 A RU 2006144505A RU 2363884 C2 RU2363884 C2 RU 2363884C2
Authority
RU
Russia
Prior art keywords
fuel
amount
additional
smoke gases
reactor
Prior art date
Application number
RU2006144505/03A
Other languages
English (en)
Other versions
RU2006144505A (ru
Inventor
Евгений Алексеевич Данилин (UA)
Евгений Алексеевич Данилин
Александр Александрович Лобов (UA)
Александр Александрович Лобов
Original Assignee
Евгений Алексеевич Данилин
Александр Александрович Лобов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Алексеевич Данилин, Александр Александрович Лобов filed Critical Евгений Алексеевич Данилин
Publication of RU2006144505A publication Critical patent/RU2006144505A/ru
Application granted granted Critical
Publication of RU2363884C2 publication Critical patent/RU2363884C2/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

Изобретение относится к способам обеззараживания дымовых газов и может быть использовано в металлургической и других областях промышленности. Способ обеззараживания дымовых газов топливосжигающих агрегатов включает сжигание топлива в топливной камере 1 топливосжигающего агрегата в режиме неполного сгорания топлива при минимально возможном коэффициенте избытка воздуха α. Дожигание дымовых газов, отходящих от топливосжигающего агрегата, осуществляют в реакторе 5 путем введения в реактор 5 дополнительных газообразного топлива и воздуха. Температуру в реакторе 5 поддерживают на уровне 750-1200°С. Для сжигания горючих составляющих топлива и дымовых газов используют кислород, содержащийся в дымовых газах. Регулирование режима дожига дымовых газов ведут путем регулирования подачи дополнительного газообразного топлива в соответствии со следующей зависимостью:
Figure 00000005
,
где φп - количество дополнительного газообразного топлива, м3/ч;
φдг - количество дымовых газов, которые поступили на обеззараживание, м3/ч;
Сдг - теплоемкость дымовых газов, ккал/м3 °С;
tp - температура дымовых газов в реакторе, °С;
tдг - температура дымовых газов на выходе топливной камеры топливосжигающего агрегата, °С;
Qвнс - затраты тепла, которое выделяется в окружающую среду, ккал/ч;
Qпс - количество тепла, которое образуется от сжигания горючих составляющих, содержащихся в дымовых газах, ккал/ч;
qп - теплотворная способность дополнительного газообразного топлива, ккал/м3.
Регулирование подачи дополнительного воздуха для сжигания дополнительного газообразного топлива ведут в соответствии со следующей зависимостью:
Figure 00000006
,
где Lдп - количество дополнительного воздуха, м3/ч;
О - теоретическое количество кислорода, которое необходимо для сжигания дополнительного топлива, м33;
О2дг - количество кислорода в дымовых газах, м33;
αр - коэффициент избытка воздуха в реакторе;
φп - количество дополнительного газообразного топлива, м3/ч;
φдг - количество дымовых газов, которые поступили на обеззараживание, м3/ч.
Технический результат - обеззараживание дымовых газов путем снижения концентрации оксидов азота и углерода в дымовых газах. 2 табл., 1 ил.

Description

Изобретение относится к способам обеззараживания дымовых газов, а именно к способам снижения концентрации оксидов азота и углерода в дымовых газах, которые отходят от топливосжигающих агрегатов, в частности коксовых батарей, и может быть использовано в металлургической и других отраслях промышленности.
Известен способ очистки дымовых газов от оксидов азота путем введения в дымовые газы при температуре 1100-1400°С водной суспензии алюмосиликата (см. авт. свид. СССР №879157, М. кл. F23G 7/06, опубл. 07.11.81 г.).
Недостатками известного способа являются его высокая себестоимость, поскольку использование алюмосиликатного катализатора требует наличия специальных устройств, предназначенных для введения указанной суспензии в продукты сгорания, и недостаточная эффективность обеззараживания дымовых газов, которые отходят от топливосжигающих агрегатов.
Известен способ обеззараживания дымовых газов топливосжигающих агрегатов, принятый в качестве прототипа, который включает сжигание топлива в топливной камере топливосжигающего агрегата в режиме неполного сгорания топлива при минимально возможном коэффициенте избытка воздуха (α), а дожигание дымовых газов, которые отходят от топливосжигающего агрегата, осуществляют в реакторе путем введения в реактор дополнительного газообразного топлива и дополнительного воздуха (см. пат. Украины №47140 А, МПК F23G 7/00, опубл. 17.06.2002 г.).
Недостатком известного способа является недостаточная степень очистки дымовых газов от оксидов азота и углерода, которые отходят от топливосжигающего агрегата. Процесс дожига дымовых газов не является оптимальным, а именно дожиг происходит в статическом режиме без регулирования количества и теплотворной способности дополнительного газообразного топлива и количества дополнительного воздуха, которые подают в реактор. Также не учитывается содержание кислорода в дымовых газах, который приводит к необоснованным затратам дополнительного газообразного топлива.
Задачей заявляемого изобретения является разработка высокоэффективного и экономичного способа обеззараживания дымовых газов топливосжигающих агрегатов, который обеспечивает снижение концентрации оксидов азота и углерода в дымовых газах как за счет управления образованием дымовых газов в топливосжигающем агрегате в процессе сжигания топлива, так и в результате регулирования режима дожига дымовых газов, которые отходят от топливосжигающих агрегатов.
Поставленная задача решается тем, что в известном способе обеззараживания дымовых газов топливосжигающих агрегатов, согласно которому сжигание топлива в топливной камере топливосжигающего агрегата ведут в режиме неполного сгорания топлива при минимально возможном коэффициенте избытка воздуха (α), а дожиг дымовых газов, которые отходят от топливосжигающего агрегата, осуществляют в реакторе путем введения в реактор дополнительного газообразного топлива и дополнительного воздуха, согласно заявляемому изобретению температуру в реакторе поддерживают на уровне 750-1200°С, при этом для сжигания горючих составляющих топлива и дымовых газов используют кислород, который содержится в дымовых газах, а регулирование режима дожига дымовых газов ведут путем регулирования подачи дополнительного газообразного топлива в реактор в соответствии со следующей зависимостью:
Figure 00000001
где φп - количество дополнительного газообразного топлива, м3/ч:
φдг - количество дымовых газов, которые поступили на обеззараживание, м3/ч;
Сдг - теплоемкость дымовых газов, ккал/м3 °С;
tp - температура дымовых газов в реакторе, °С;
tдг - температура дымовых газов на выходе топливной камеры топливосжигающего агрегата, °С;
Qвнс - затраты тепла, которое выделяется в окружающую среду, ккал/ч;
Qпс - количество тепла, которое образуется в результате сжигания горючих составляющих, содержащихся в дымовых газах, ккал/ч;
qп - теплотворная способность дополнительного газообразного топлива, ккал/м3,
при этом регулируют подачу дополнительного воздуха для сжигания дополнительного газообразного топлива в соответствии со следующей зависимостью:
Figure 00000002
где Lдп - количество дополнительного воздуха, м3/ч;
О - теоретическое количество кислорода, которое необходимо для сжигания дополнительного топлива, м33;
О2дг - количество кислорода в дымовых газах, м33;
αр - коэффициент избытка воздуха в реакторе;
φп - количество дополнительного газообразного топлива, м3/ч;
φдг - количество дымовых газов, которые поступили на обеззараживание, м3/ч.
При сжигании топлива в топливной камере топливосжигающего агрегата устанавливают такой режим неполного сгорания топлива, который обеспечивает необходимый состав дымовых газов на выходе топливосжигающего агрегата, а именно при минимально возможном коэффициенте избытка воздуха α в топливной камере образуются дымовые газы с низким уровнем концентрации оксидов азота (250-450 мг/м3) и с чрезмерным содержанием оксида углерода (1000-20000 мг/м3). Это достигается как путем регулирования подачи воздуха к топливной камере топливосжигающего агрегата, так и за счет управления гидравлическим режимом топливосжигающего агрегата.
Дожигание дымовых газов, которые отходят от топливосжигающего агрегата, осуществляют в реакторе при температуре, которую поддерживают в реакторе на уровне 750-1200°С, путем введения в реактор дополнительного газообразного топлива. Процесс сгорания дополнительного газообразного топлива осуществляют с использованием кислорода, который содержится в дымовых газах, и дополнительного воздуха, который также вводят в реактор. Регулирование режима дожига дымовых газов ведут путем регулирования подачи дополнительного газообразного топлива в соответствии с вышеприведенной зависимостью (1), при этом регулируют подачу дополнительного воздуха для сжигания дополнительного газообразного топлива в соответствии с зависимостью (2).
Техническая задача, на решение которой направлено заявляемое изобретение, заключается в снижении концентрации оксидов азота и углерода в газообразных отходах (дымовых газах) путем снижения начальной концентрации оксидов азота за счет выбора оптимальных режимов образования дымовых газов в топливосжигающем агрегате и их дожига. Выбор оптимальных режимов образования дымовых газов в топливосжигающем агрегате проводится с учетом исходного теоретического соотношения оксидов азота и углерода при различных коэффициентах избытка воздуха (α).
В результате регулирования режима дожига дымовых газов в реакторе при температуре 750-1200°С происходит снижение концентрации оксидов азота и углерода в газообразных отходах к предельно допустимым значениям, которые и есть тем техническим результатом, который достигается в заявленном изобретении.
На чертеже изображен топливосжигающий агрегат, в котором реализуется заявляемый способ обеззараживания дымовых газов топливосжигающих агрегатов.
Заявляемый способ осуществляется в топливосжигающем агрегате, в частности коксовой батарее (условно показанной на чертеже), которая используется при производстве кокса. Известно, что коксовая батарея имеет от 65 до 77 коксовых печей, каждая из которых содержит отдельную топливную камеру. При работе коксовой батареи режимы работы каждой топливной камеры существенно отличаются между собой, что зависит от состояния кладки отопительной системы коксовой батареи и других факторов, связанных с особенностями производства кокса в коксовых батареях.
Рассмотрим возможность реализации заявленного изобретения на примере одной топливной камеры коксовой батареи.
На чертеже показана топливная камера 1 коксовой батареи, в которую подавали топливо и воздух. При этом расход воздуха устанавливали таким образом, чтобы создать условия сгорания топлива при минимально возможном коэффициенте избытка воздуха α. Регулирование расхода топлива и воздуха, которые подаются на сгорание, осуществляли с помощью клапанов 2, установленных на подводных трубопроводах 3, 4 подачи топлива и воздуха к топливной камере 1 коксовой батареи соответственно. В качестве топлива использовали коксовый газ. Величина коэффициента избытка воздуха α в топливной камере 1 коксовой батареи составляла 1,1-1,3. Вследствие сгорания топлива в топливной камере 1 при минимально возможном коэффициенте избытка воздуха (α=1,1-1,3) происходило образование дымовых газов с повышенным содержанием оксида углерода при незначительном образовании оксидов азота, что объясняется высокой активностью атомарного углерода, который присоединяет к себе атомарный кислород в процессе горения. В результате концентрация оксидов азота на выходе топливосжигающего агрегата снижалась до 250-450 мг/м3 (см. Табл.1). (Концентрация оксидов азота, которая обычно образуется в топливных камерах коксовых батарей, находится на уровне 1000-1200 мг/м3.) Указанное снижение концентрации оксидов азота в топливной камере 1 коксовой батареи при реализации заявленного технического решения обеспечивалось как путем регулирования подачи воздуха в топливную камеру топливосжигающего агрегата, так и за счет управления гидравлическим режимом топливосжигающего агрегата.
Предельные показатели повышенного содержания оксида углерода при указанных показателях коэффициента избытка воздуха α составляли 1000-10000 мг/м3 в дымовых газах на выходе топливной камеры 1.
Дожигание дымовых газов, которые отходят от топливосжигающего агрегата, осуществляли в реакторе 5 путем введения в реактор 5 дополнительного газообразного топлива при температуре, которую поддерживали в реакторе 5 на уровне 750-1200°С. Процесс сгорания дополнительного газообразного топлива осуществляли с использованием кислорода, который содержался в дымовых газах, и дополнительного воздуха, который также вводили в реактор 5. Динамическое регулирование режима дожига дымовых газов обеспечивали путем регулирования количества дополнительного газообразного топлива (φп) и количества дополнительного воздуха (Lдп), которые подавали в реактор 5 в соответствии с вышеприведенными зависимостями (1), (2).
При этом учитывали такие показатели, как количество дымовых газов, которые поступили на обеззараживание (φдг), теплоемкость дымовых газов (Сдг), температуру дымовых газов в реакторе 5 (tp), температуру дымовых газов на выходе топливной камеры 1 топливосжигающего агрегата (tдг), затраты тепла, которое выделяется в окружающую среду (Qвнс), количество тепла, которое образуется от сжигания горючих составляющих, содержащихся в дымовых газах (Qпс), теплотворную способность дополнительного топлива (qп), количество дополнительного воздуха (Lдп), теоретическое количество кислорода, которое необходимо подать для сжигания дополнительного топлива (O), количество кислорода в дымовых газах (O2дг) и коэффициент избытка воздуха в реакторе (αр).
В связи с тем, что сгорание дополнительного газообразного топлива проводили со значительной балластировкой дымовыми газами, концентрация дополнительного содержания оксидов азота, которые образовывались при сгорании дополнительного топлива, была незначительной. Таким образом, при дожиге дымовых газов в реакторе 5 при температуре 750-1200°С концентрация оксида углерода в дымовых газах на выходе из реактора 5 снижалась до 5-150 мг/м3, а концентрация оксидов азота оставалась на уровне 200-450 мг/м3 (см. Табл.2). Затем дымовые газы, которые выходили из реактора 5, подавали в котел-утилизатор 6, где они охлаждались до температуры 150-190°С, а потом с помощью дымососа 7 отводились в дымовую трубу 8.
При дожиге дымовых газов, которые отходили из топливной камеры 1 топливосжигающего агрегата, в качестве дополнительного газообразного топлива использовали или природный газ, или коксовый газ, или доменный газ, или смесь указанных газов, которые вводили в реактор 5 в соотношении 1:2-1:20 относительно количества дымовых газов в зависимости от теплотворной способности дополнительного топлива (qп).
Примеры осуществления способа.
Испытания заявляемого способа проводились на коксовой батарее №1 ОАО «ЗАПОРОЖКОКС».
Пример 1.
Количество дымовых газов (φдг), которые поступали на обеззараживание - 120000
м3/ч. Состав дымовых газов, которые отходили из топливной камеры 1 коксовой батареи, был следующим, в мас.%: O2=4,8; СO2=5,8; Н2O=17,3; N2=72,1; CO=0,2. Температура дымовых газов на выходе топливной камеры 1 топливосжигающего агрегата (tдг) равнялась 300°С. При этом минимальный выход оксидов азота (374
мг/м3), содержащихся в дымовых газах, которые отходили из топливной камеры 1, был обеспечен при минимально возможном коэффициенте избытка воздуха α=1,3. Выход оксида углерода в дымовых газах на выходе из топливной камеры 1 составлял 2100 мг/м3. Затем дымовые газы, которые отходили из топливной камеры 1, направляли в реактор 5, где дожигали при температуре 910°С и коэффициенте избытка воздуха в реакторе αр=1,3. В качестве дополнительного топлива использовали коксовый газ следующего состава, в мас.%: СO2=2,2; O2=1,1; СmНn=2,2; СO=6,3; СН4=25,3; N2=58,0; Н2=4,9. Динамическое регулирование режима дожига дымовых газов в реакторе 5 вели путем регулирования количества дополнительного газообразного топлива (φп) и количества дополнительного воздуха (Lдп), которые подавали в реактор 5 в соответствии с вышеприведенными зависимостями (1), (2). Так, количество дополнительного газообразного топлива (φп) составило 6437 м3/ч при теплотворной способности дополнительного газообразного топлива (qп) - 4000 ккал/м3, а количество дополнительного воздуха (Lдп) - 14834 м3/ч.
При этом концентрация оксида углерода в дымовых газах на выходе из реактора 5 составляла 82 мг/м3, а концентрация оксидов азота снижалась до 276 мг/м3. После чего очищенные дымовые газы с величиной концентрации оксидов азота - 276 мг/м3 и оксида углерода - 82 мг/м3 выводились в атмосферу.
Пример 2.
Количество дымовых газов (φдг), которые поступали на обеззараживание, - 130000
м3/ч. Состав дымовых газов, отходящих из топливной камеры 1 коксовой батареи, был следующим, в мас.%: O2=4,5; СO2=5,6; Н2О=16,4; N2=73,3; СO=0,15; Н2=0,05. Температура дымовых газов на выходе топливной камеры 1 топливосжигающего агрегата (tдг) равнялась 280°С. При этом выход оксидов азота (438 мг/м3), содержащихся в дымовых газах, которые отходили из топливной камеры 1, был обеспечен при коэффициенте избытка воздуха α=1,3. Выход оксида углерода в дымовых газах на выходе из топливной камеры 1 составлял 1560 мг/м3. Затем дымовые газы, отходящие из топливной камеры 1, направляли в реактор 5, где дожигали при температуре 1170°С и коэффициенте избытка воздуха в реакторе αр=1,3. В качестве дополнительного топлива использовали коксовый газ следующего состава, в мас.%: СO2=2,2; O2=1,1; СmНn=2,2; СO=6,3; СН4=25,3; N2=58,0; H2=4,9.
Динамическое регулирование режима дожига дымовых газов вели путем регулирования количества дополнительного газообразного топлива (φп) и количества дополнительного воздуха (Lдп), которые подавали в реактор 5 в соответствии с вышеприведенными зависимостями (1), (2). Так, количество дополнительного газообразного топлива (φп) составило 10350 м3/ч при теплотворной способности дополнительного топлива (qп) - 4000 ккал/м3, а количество дополнительного воздуха (Lдп) - 35300 м3/ч.
При этом концентрация оксида углерода в дымовых газах на выходе из реактора 5 составляла 12 мг/м3, а концентрация оксидов азота снижалась до 367 мг/м3. После чего дымовые газы, очищенные до концентрации оксидов азота - 367 мг/м3 и оксида углерода - 12 мг/м3, выводились в атмосферу.
В Таблице 1 приведены данные относительно концентрации оксидов азота и углерода в дымовых газах, которые отходят от топливной камеры 1 топливосжигающего агрегата, в зависимости от коэффициента избытка воздуха α в топливной камере 1.
Таблица 1
Коэффициент избытка воздуха α Концентрация оксида углерода (СО), мг/м3 Концентрация оксидов азота (NOx), мг/м3
1,1 >10000 <250
1,2 4500-6000 250-300
1,3 1000-3000 350-450
1,4 400-600 500-700
1,5 200-300 750-800
1,6 100-150 850-950
1,8 <100 1000-1100
В Таблице 2 приведены данные, указывающие на концентрацию оксидов азота и углерода в дымовых газах после дожига в реакторе 5 топливосжигающего агрегата в зависимости от количества дополнительного газообразного топлива (φп) и количества дополнительного воздуха (Lдп). При этом количество дымовых газов, которые отходили из топливной камеры 1 и поступали в реактор 5, составило 120000-140000 м3/ч при температуре 270-320°С и содержании О2, равном 4,4-4,7%.
Таблица 2
Температура дымовых газов в реакторе 5 (tp), °С Количество дополнительного газообразного топлива (φп),
м3
Количество дополнительного воздуха (Lдп), м3 Концентрация оксида углерода (СО), мг/м3 на выходе реактора 5 Концентрация оксидов азота (NOx), мг/м3
<750 4000-4800 1150-4360 >600 <200
750-850 5000-5500 5800-8200 85-150 200-250
850-950 6300-7000 12400-16500 65-85 250-280
950-1050 7000-7800 18100-23600 40-65 280-300
1050-1150 8000-9300 25700-32100 25-40 300-350
1150-1200 10000-10500 34250-39800 5-25 350-450
>1250 >11000 >42000 0-5 >600

Claims (1)

  1. Способ обеззараживания дымовых газов топливосжигающих агрегатов, согласно которому сжигание топлива в топливной камере топливосжигающего агрегата ведут в режиме неполного сгорания топлива при минимально возможном коэффициенте избытка воздуха (α), а дожигание дымовых газов, которые отходят от топливосжигающего агрегата, осуществляют в реакторе, путем введения в реактор дополнительного газообразного топлива и дополнительного воздуха, отличающийся тем, что температуру в реакторе поддерживают на уровне 750-1200°С, при этом для сжигания горючих составляющих топлива и дымовых газов используют кислород, который содержится в дымовых газах, а регулирование режима дожига дымовых газов ведут путем регулирования подачи дополнительного газообразного топлива в соответствии со следующей зависимостью:
    Figure 00000003

    где φп - количество дополнительного газообразного топлива, м3/ч;
    φдг - количество дымовых газов, которые поступили на обеззараживание, м3/ч;
    Сдг - теплоемкость дымовых газов, ккал/м3 °С;
    tр - температура дымовых газов в реакторе, °С;
    tдг - температура дымовых газов на выходе топливной камеры топливосжигающего агрегата, °С;
    Qвнс - затраты тепла, которое выделяется в окружающую среду, ккал/ч;
    Qпс - количество тепла, которое образуется от сжигания горючих составляющих, содержащихся в дымовых газах, ккал/ч;
    qп - теплотворная способность дополнительного газообразного топлива, ккал/м3,
    при этом регулируют подачу дополнительного воздуха для сжигания дополнительного газообразного топлива в соответствии со следующей зависимостью:
    Figure 00000004

    где Lдп - количество дополнительного воздуха, м3/ч;
    О - теоретическое количество кислорода, которое необходимо для сжигания дополнительного топлива, м33;
    О2дг - количество кислорода в дымовых газах, м33.
    αр - коэффициент избытка воздуха в реакторе;
    φп - количество дополнительного газообразного топлива, м3/ч;
    φдг - количество дымовых газов, которые поступили на обеззараживание, м3/ч.
RU2006144505/03A 2006-02-24 2006-12-13 Способ обеззараживания дымовых газов топливосжигающих агрегатов RU2363884C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA200602026 2006-02-24
UAA200602026A UA81527C2 (ru) 2006-02-24 2006-02-24 Способ обезвреживания дымовых газов топливо сжигающих агрегатов

Publications (2)

Publication Number Publication Date
RU2006144505A RU2006144505A (ru) 2008-06-20
RU2363884C2 true RU2363884C2 (ru) 2009-08-10

Family

ID=38437665

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006144505/03A RU2363884C2 (ru) 2006-02-24 2006-12-13 Способ обеззараживания дымовых газов топливосжигающих агрегатов

Country Status (3)

Country Link
RU (1) RU2363884C2 (ru)
UA (1) UA81527C2 (ru)
WO (1) WO2007097734A1 (ru)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794459A (en) * 1972-11-29 1974-02-26 Meenan Corp Furnace exhaust treatment system
US3837813A (en) * 1973-02-01 1974-09-24 Black Sivalls & Bryson Inc Waste gas incinerator
SU1423860A1 (ru) * 1986-10-01 1988-09-15 Предприятие П/Я Г-4311 Устройство дл дожигани сбросных газов
US4982672A (en) * 1987-11-18 1991-01-08 Radian Corporation Low NOX incineration process
UA47140A (uk) * 2001-08-03 2002-06-17 Борис Іванович Войтенко Спосіб зниження концентрації оксидів азоту і вуглецю в газоподібних відходах
UA60099C2 (en) * 2003-01-27 2005-10-17 Zaporizhkoks Open Joint Stock A method for purifying effluent gases of fuel-burning furnaces

Also Published As

Publication number Publication date
UA81527C2 (ru) 2008-01-10
WO2007097734A1 (fr) 2007-08-30
RU2006144505A (ru) 2008-06-20

Similar Documents

Publication Publication Date Title
JP5270661B2 (ja) 酸素燃焼ボイラの排ガス制御方法及び装置
RU2373255C1 (ru) Установка для очистки дымовых газов, отходящих от коксовой печи
JP2020112280A (ja) アンモニアを混焼できるボイラ装置及び火力発電設備
KR102135521B1 (ko) 고로 샤프트부로의 수소 함유 환원 가스 공급 방법
CN1834535B (zh) 一种无烟尘的燃煤锅炉
KR20080087121A (ko) 재생기 연도가스 중 CO 및 NOx의 감소
CN1441889A (zh) 利用三级燃料氧化和炉内烟道气就地循环降低氮氧化物排放
JPH05203112A (ja) 循環流動床による石炭の燃焼方法
KR20100102600A (ko) 유동 소각로 및 이것을 이용한 오니의 유동 소각 방법
CN108137405B (zh) 在再生式并流立式高炉中煅烧矿物岩石的方法和使用的炉
US4308810A (en) Apparatus and method for reduction of NOx emissions from a fluid bed combustion system through staged combustion
CN104583678A (zh) 废弃物处理方法及废弃物焚烧炉
NO178478B (no) Fremgangsmåte og apparat for å redusere utslipp av N2O når nitrogenholdige brensler brennes i reaktorer med fluidisert sjikt
CN102047040A (zh) 氧燃烧锅炉的一次再循环废气流量控制方法及装置
CN215259855U (zh) 低氮燃烧的垃圾焚烧炉排炉
RU2363884C2 (ru) Способ обеззараживания дымовых газов топливосжигающих агрегатов
WO2009072996A1 (fr) Installation et procédé de refroidissement à sec du coke
JP2010261095A (ja) 高炉およびその操業方法
KR101880382B1 (ko) 가스화로 설비, 가스화 복합 발전 설비, 및 가스화로 설비의 기동 방법
CN208222489U (zh) 一种含酚废水与气化废焦混合焚烧系统
US5038690A (en) Waste combustion system
CN105664690A (zh) 一种利用煤气发生炉对水泥分解炉进行脱硝的系统
UA14845U (en) Method for decontamination of smoke gases from fuel-burning units
US20110155028A1 (en) Combustion Catalyst
RU75646U1 (ru) Установка для очистки дымовых газов, отходящих от коксовой печи

Legal Events

Date Code Title Description
QA4A Patent open for licensing

Effective date: 20180227

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201214