RU2363773C2 - Угольный электрод для электролизной ванны получения алюминия и способ его изготовления (варианты) - Google Patents

Угольный электрод для электролизной ванны получения алюминия и способ его изготовления (варианты) Download PDF

Info

Publication number
RU2363773C2
RU2363773C2 RU2006145706/15A RU2006145706A RU2363773C2 RU 2363773 C2 RU2363773 C2 RU 2363773C2 RU 2006145706/15 A RU2006145706/15 A RU 2006145706/15A RU 2006145706 A RU2006145706 A RU 2006145706A RU 2363773 C2 RU2363773 C2 RU 2363773C2
Authority
RU
Russia
Prior art keywords
pitch
coke
composite
particles
pellet
Prior art date
Application number
RU2006145706/15A
Other languages
English (en)
Other versions
RU2006145706A (ru
Inventor
Лесли С. ЭДВАРДС (US)
Лесли С. ЭДВАРДС
М. Фрэнз ВОГТ (US)
М. Фрэнз ВОГТ
Ричард О. ЛАВ (US)
Ричард О. ЛАВ
Дж. Энтони РОСС (US)
Дж. Энтони РОСС
Уильям Роджерс Мл. МОРГАН (US)
Уильям Роджерс Мл. МОРГАН
Original Assignee
СиАйАй КАРБОН ЭлЭлСи
Сенчури Эльюминум Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by СиАйАй КАРБОН ЭлЭлСи, Сенчури Эльюминум Компани filed Critical СиАйАй КАРБОН ЭлЭлСи
Publication of RU2006145706A publication Critical patent/RU2006145706A/ru
Application granted granted Critical
Publication of RU2363773C2 publication Critical patent/RU2363773C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Ceramic Products (AREA)

Abstract

Настоящее изобретение относится к способу изготовления угольного электрода для использования в качестве анода в электролизной ванне получения алюминия. Композит, представляющий собой смесь коксового окатыша и частиц углеродистого вещества, отличного от коксового окатыша, смешивают с пеком каменноугольной смолы или комбинированным пеком при повышенной температуре с образованием пасты, причем указанный композит является комбинацией крупных, средних и мелких частиц, и указанный коксовый окатыш может содержать в основном указанные мелкие частицы, и указанная паста содержит примерно 80-90 мас.% указанного композита и примерно 10-20 мас.% указанного пека. Указанную пасту формируют в твердое изделие и обжигают указанное твердое изделие при повышенной температуре с образованием указанного угольного электрода. Технический эффект - создание угольного электрода с возможностью утилизации коксового окатыша. 7 н. и 8 з.п. ф-лы.

Description

Настоящее изобретение относится к электроду для использования в производстве алюминия электролизом оксида алюминия в расплаве. Более конкретно оно относится к электроду, в частности к аноду, используемому в электролизных ваннах для получения алюминия.
Известен способ производства алюминия путем электролиза расплава оксида алюминия, растворенного в электролитической ванне, которая содержит фториды алюминия и натрия, или криолит, с использованием угольного анода. Обычно такой способ электролиза осуществляют при температуре примерно 900-1000°С. В этом способе угольный анод расходуется в результате окисления кислородом, образующимся при разложении оксида алюминия до металлического алюминия.
В промышленных способах для изготовления анодов используют прокаленный губчатый нефтяной кокс или кокс из асфальтового пека и повторно используемые несгоревшие остатки угольных анодов; из них готовят композит, добавляя в качестве связующего каменноугольный асфальтовый пек или смесь каменноугольного и нефтяного пека (комбинированный пек), а затем формуют и нагревают при повышенной температуре, например при примерно 1100°С, и получают промышленный анод. Для производства таких промышленных анодов необходим кокс с низким содержанием летучих веществ, содержащий менее 500 м.д. ванадия и никеля и менее 4 мас.% серы, предпочтительно менее 3 мас.%. Такой кокс представляет собой прокаленный губчатый кокс. Коксовый окатыш с повышенным содержанием примесей, более изотропной структурой и более высоким коэфициентом термического расширения после обжига ранее не удавалось использовать для изготовления таких промышленных анодов.
В частности, угольные аноды, изготовленные из композитов, содержащих больше 5 мас.% коксового окатыша, склонны к растрескиванию под действием температуры из-за высокого коэфициента термического расширения, и прочность анода уменьшается из-за того, что сферические частицы окатышей плохо сцепляются с битумом или комбинированным пеком. В результате скорость разрушения анода становится неприемлемо высокой, и потери угля из анода в электролизной ванне создают серьезные, неприемлемые проблемы для протекающего в расплаве процесса.
При рассмотрении свойств нефтяного кокса важно знать, что существуют три разных способа производства кокса, и нефтяные коксы, полученные этими способами, резко различаются между собой. Все эти способы - медленное коксование, жидкофазное коксование и термоконтактный крекинг в кипящем слое эффективно превращают тяжелые углеводородные нефтяные фракции в более ценные легкие газообразные и жидкие углеводородные фракции, а в коксе концентрируются примеси (сера, металлы и т.д.).
Нефтяной кокс, полученный по медленному способу, представляет собой губчатый кокс, коксовый окатыш или игольчатый кокс в зависимости от его физической структуры. Коксовый окатыш преобладает, когда в аппарате обрабатывают в жестких условиях тяжелые нефтяные остатки с высоким содержанием асфальтенов. Игольчатый кокс получают из сырья, содержащего ароматические углеводороды. Хотя химические свойства наиболее критичны, физические характеристики каждого типа кокса играют основную роль в выборе способов использования кокса. Например, губчатый кокс более пористый и имеет более развитую поверхность, и если его качество приемлемо, его можно продавать в качестве сырья для аппаратов обжига и получения анодного кокса с улучшенными показателями. Коксовый окатыш выглядит как шарик от подшипника, имеет гораздо меньшую величину поверхности и отличается большей твердостью. Его почти всегда продают как недорогой топливный кокс. Уникальная структура игольчатого кокса дает возможность использовать его в графитизированных электродах. В отличие от других игольчатый кокс является основным продуктом (а не побочным продуктом), который производится на нефтеперерабатывающих заводах из отборного углеводородного сырья.
Коксовый окатыш состоит из мелких, округлых, слабо связанных между собой кусочков кокса, по форме и размеру похожих на шарик от подшипника. Иногда они образуют агломераты размером со страусиное яйцо. В то время как коксовый окатыш может выглядеть так, как если бы он состоял целиком из сферических частиц, в большистве случаев коксовый окатыш не состоит на 100% из сферических частиц. Интересно отметить, что даже губчатый кокс может сдержать некоторое количество коксового окатыша. Низкое содержание коксового окатыша, в нефтяном коксе предпочтительно определяет пригодность нефтяного кокса в качестве анодного материала.
В то время как коксовый окатыш используют в качестве топлива, он менее пригоден, чем губчатый кокс для изготовления более ценных угольных анодов. Поэтому желательно найти способ использования менее ценного коксового окатыша для более дорогих способов применения, т.е. для производства угольных анодов, при условии, что указанные угольные аноды не потеряют в качестве.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Согласно настоящему изобретению предпочтительно, чтобы композит содержал более 5 мас.% и до 90 мас.% коксового окатыша.
Прежде чем использовать коксовый окатыш в способе настоящего изобретения, его следует прокалить для удаления основной части летучих компонентов.
Прокаленный коксовый окатыш можно размолоть в более мелкие частицы. Для целей настоящего изобретения мелкими частицами считают такие, которые на 100% проходят через сито 60 меш Tyler Sieve Size и примерно на 70% или больше через сито 200 меш U.S. Standard Sieve Size.
Способы измельчения для получения указанных мелких частиц общеизвестны специалистам и нет необходимости раскрывать их здесь.
Частицы коксового окатыша могут содержать до 8 мас.% серы. Вообще нежелательно, чтобы содержание серы в коксе, используемом для производства угольных электродов для электролизных ванн получения алюминия, превышало примерно 4%.
Остальная часть композита может представлять собой любое углеродистое вещество в виде частиц, пригодных для изготовления угольных электродов для электролизных ванн получения алюминия, в том числе остатки анодов, предназначенные для повторного использования. Такие углеродистые вещества хорошо известны специалистам.
Предпочтительно выбирать указанное углеродистое вещество из группы, состоящей из губчатого, игольчатого или пекового кокса и остатков угольных электродов, предназначенных для повторного использования.
Было установлено, что угольные электроды, пригодные для использования в электролизных ваннах получения алюминия, можно изготовить из частиц углеродистого композита, предпочтительно содержащего больше 5 мас.% коксового окатыша.
Таким образом, настоящее изобретение предлагает способ изготовления угольного электрода, пригодного для использования в качестве анода в электролизной ванне получения алюминия, который включает смешение композита, состоящего из смеси коксового окатыша, остатков анода и частиц углеродистого вещества, отличного от коксового окатыша, с каменноугольным асфальтовым пеком или комбинированным пеком при повышенной температуре с образованием пасты, в которой указанный композит представляет собой комбинацию крупных, средних и мелких частиц, причем указанная паста содержит до примерно 90 мас.% указанного композита и примерно 10-20 мас.% указанного каменноугольного асфальтового пека или комбинированного пека; формование из указанной пасты твердого изделия и обжиг указанного твердого изделия при повышенной температуре с образованием угольного электрода.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В способе по данному изобретению композит изготавливают с использованием каменноугольного асфальтового пека или комбинированного пека в качестве связующего.
Каменноугольный асфальтовый пек представляет собой остаток от перегонки или термической обработки каменноугольной смолы. Это твердое при комнатной температуре вещество состоит из сложной смеси многих, преимущественно ароматических углеводородов и гетероциклических соединений и характеризуется широким интервалом температур размягчения вместо четкой температуры плавления. Нефтяной пек является остатком от термической обработки и дистилляции нефтяных фракций. Он твердый при комнатной температуре, состоит из сложной смеси многих, преимущественно ароматических и алкилзамещенных ароматических углеводородов и характеризуется широким интервалом температур размягчения вместо четкой температуры плавления. Комбинированный пек представляет собой смесь или комбинацию каменноугольного асфальтового пека и нефтяного пека.
Ароматический характер атомов водорода в составе каменноугольного асфальтового пека (соотношение числа ароматических атомов водорода и общего числа атомов водорода) варьирует в интервале 0,7-0,9. Ароматический характер атомов водорода в составе нефтяного асфальтового пека (соотношение ароматических и общего числа атомов водорода) находится в интервале 0,3-0,6. Алифатические атомы водорода обычно содержатся в алкильных заместителях ароматических колец или в виде атомов водорода молекул нафтенов.
Композит, используемый в способе по настоящему изобретению, представляет собой смесь мелких, средних и крупных частиц. Ситовые размеры мелких частиц определены выше. Средние частицы будут проходить через сита 4 меш Tyler sieve и остаются на сите 60 меш. Крупные частицы, которые могут также содержаться в остатках анодов, будут удерживаться на сите 16 меш Tyler screen. Следует отметить, однако, что крупные частицы больше 2,5 меш обычно удаляют из композитов, используемых в способе данного изобретения.
Композит смешивают со связующим - каменноугольным асфальтовым пеком или комбинированным пеком. Специалистам известно много схем смешения. В случае коксового окатыша можно использовать любую из этих схем, просто обрабатывая композит с коксовым окатышем таким же образом, каким композит объединяют с пеком.
Важно, что композит и пек смешивают при повышенной температуре, например выше 150°С, чтобы покрыть частицы пеком, обеспечить проникновение пека и мелких частиц во внутренние поры средних и крупных частиц и заполнить пеком и мелкими частицами пространство между частицами композита.
После смешения композита и каменноугольного асфальтового пека в течение 1-45 мин, например 10-20 мин, получают пасту.
До обжига, приводящего к образованию электрода, пасту можно сформовать в виде твердого изделия способами, известными специалистам, например прессованием или виброформованием.
С целью получения угольного электрода для электролизных ванн получения алюминия свежеприготовленный электрод обжигают при повышенной температуре. Предпочтительно проводить термообработку свежеприготовленного электрода при температуре 1000-1200°С, например около 1100°С, в течение времени, достаточного для того, чтобы нагреть свежеприготовленный электрод до температуры в предпочтительном интервале.
Обжиг можно проводить в открытых или закрытых печах, как хорошо известно специалистам.
Способ по настоящему изобретению позволяет получить угольные электроды с такими характеристиками, как плотность, проницаемость по воздуху, сопротивление сжатию, модуль упругости, теплопроводность, коэфициент теплопроводности, реакционная способность по отношению к воздуху и реакционная способность по отношению к углекислоте, которые находятся в приемлемых интервалах для алюминиевых плавильных печей.
В другом аспекте настоящего изобретения предлагается угольный электрод, который может служить анодом в электролизной ванне получения алюминия и представляет собой (a) композит, содержащий смесь частиц коксового окатыша и частицы углеродистого вещества, отличного от коксового окатыша, и (b) связующее из пека каменноугольной смолы и комбинированного пека, причем указанный композит включает комбинацию крупных, средних и мелких частиц, а указанный коксовый окатыш содержит в основном указанные мелкие частицы.
Указанный коксовый окатыш для указанного электрода предпочтительно готовить просеиванием и измельчением коксового окатыша, полученного медленным коксованием, с образованием смеси частиц, содержащей по меньшей мере 30 мас.% мелких частиц.
Предпочтительно, чтобы углеродистое вещество в виде частиц, предназначенное для изготовления электрода, было выбрано из группы, состоящей из губчатого, игольчатого и пекового кокса и остатков угольных электродов, предназначенных для повторного использования.
Хотя изобретение в предпочтительном варианте было описано как способ утилизации коксового окатыша в качестве мелких частиц для изготовления хороших угольных электродов, однако в объем изобретения входит также описанная утилизация коксового окатыша как источника крупных и средних частиц, которые также присутствуют в угольных электродах по настоящему изобретению.
В этом аспекте настоящего изобретения мелкие частицы могут представлять собой коксовый окатыш, например размолотый коксовый окатыш или другое углеродистое вещество в виде частиц, например мелкие частицы, получаемые медленным коксованием тяжелых углеводородных фракций нефти. В этом аспекте способа настоящего изобретения и изготовления угольных электродов, как и в приведенном выше предпочтительном варианте, предпочтительно, чтобы композит содержал 10-50 мас.% мелких частиц, 10-50 мас.% средних частиц и 5-50 мас.% крупных частиц.
В любом случае новые электроды или электроды, изготовленные в соответствии с настоящим изобретением, можно использовать в способе получения алюминия электролизом в расплаве оксида алюминия, который включает электролиз оксида алюминия, растворенного в расплаве, при повышенной температуре путем пропускания постоянного тока от анода к катоду в указанном расплаве, причем анодом является любой из указанных электродов.
Хотя выше был описан конкретный электрод, изготовленный согласно настоящему изобретению, пригодный для получения алюминия электролизом в расплаве оксида алюминия, для иллюстрации всех преимуществ настоящего изобретения, следует подчеркнуть, что изобретение этим не ограничивается. Настоящее изобретение может включать, состоять из или состоять существенно из упомянутых элементов. Соответственно все и любые модификации, вариации или эквивалентные изменения следует рассматривать с точки зрения объема данного изобретения, определенного в формуле.

Claims (15)

1. Способ изготовления угольного электрода для электролизной ванны получения алюминия, который включает смешение композита, представляющего собой смесь частиц коксового окатыша и частиц углеродистого вещества, отличного от коксового окатыша, с пеком каменноугольной смолы или комбинированным пеком при повышенной температуре с образованием пасты, причем указанный композит содержит комбинацию крупных частиц, включая остатки анодов, предназначенных для повторного использования, средних и мелких частиц, а указанный коксовый окатыш состоит в основном из указанных мелких частиц, а указанная паста содержит примерно 80-90 мас.% указанного композита и примерно 10-20 мас.% указанного пека каменноугольной смолы или комбинированного пека; формование указанной пасты в твердое изделие и обжиг твердого изделия при повышенной температуре с образованием угольного электрода.
2. Способ по п.1, в котором коксовый окатыш составляет более 5 мас.% композита.
3. Способ по п.2, в котором коксовый окатыш составляет до 90 мас.% композита.
4. Способ по п.1, в котором углеродистое вещество выбирают из группы, состоящей из губчатого, игольчатого пека или пека каменноугольной смолы и остатков угольных электродов, пригодных для повторного использования.
5. Способ по п.1, в котором коксовый окатыш имеет коэффициент термического расширения больше 20·10-7/°С.
6. Способ по п.1, в котором коксовый окатыш содержит до 8 мас.% серы.
7. Способ по п.1, в котором коксовый окатыш готовят просеиванием и измельчением коксового окатыша, полученного медленным коксованием, и получают смесь частиц, содержащую по меньшей мере 3,0 мас.% мелких частиц.
8. Способ по п.1, в котором для получения свежеприготовленного анода твердое изделие подвергают перед обжигом сжатию или вибрации.
9. Способ по п.1, в котором твердое изделие обжигают при температуре выше 1000°С.
10. Способ изготовления угольного электрода для электролизной ванны получения алюминия, в которой оксид алюминия восстанавливают до жидкого металлического алюминия при повышенной температуре, который включает:
(a) смешение композита, содержащего смесь коксового окатыша, приготовленного просеиванием и измельчением прокаленного коксового окатыша, и получение смеси частиц, содержащих по меньшей мере 30 мас.% мелких частиц и частицы углеродистого вещества, которое выбирают из группы, состоящей из губчатого пека, игольчатого пека или пека каменноугольной смолы и остатков угольных электродов, пригодных для повторного использования, с каменноугольной смолой или комбинированным пеком при повышенной температуре с образованием пасты, в которой указанный композит представляет собой комбинацию крупных, средних и мелких частиц и указанный коксовый окатыш содержит в основном мелкие частицы, а паста содержит примерно 80-90 мас.% указанного композита и примерно 10-20 мас.% указанной каменноугольной смолы или комбинированных пеков;
(b) формование указанной пасты в твердое изделие;
(c) сжатие или вибрацию твердого изделия и формирование свежеприготовленного анода и
(d) обжиг свежеприготовленного анода при температуре выше 1000°С с образованием угольного электрода.
11. Угольный электрод для электролизной ванны получения алюминия, полученный способом по п.1.
12. Угольный электрод для электролизной ванны получения алюминия, полученный способом по п.10.
13. Угольный электрод, пригодный для использования в качестве анода в электролизной ванне получения алюминия, который содержит (a) композит, включающий смесь коксового окатыша и частицы углеродистого вещества, отличного от коксового окатыша, и (b) связующее из пека каменноугольной смолы или комбинированного пека, причем указанный композит представляет собой комбинацию крупных, средних и мелких частиц, а указанный коксовый окатыш содержит в основном указанные мелкие частицы.
14. Способ получения алюминия электролизом в расплаве оксида алюминия, который включает электролиз оксида алюминия, растворенного в расплаве, при повышенной температуре путем пропускания постоянного тока от анода к катоду в указанном расплаве, причем указанный анод является электродом, изготовленным способом по п.1.
15. Способ изготовления угольного электрода для электролизной ванны получения алюминия, который включает смешение коксового окатыша и частиц углеродистого вещества, отличного от коксового окатыша, с пеком каменноугольной смолы или комбинированным пеком при повышенной температуре с образованием пасты, причем указанный композит представляет собой комбинацию крупных частиц, включая остатки анодов, пригодные для повторного использования, средних и мелких частиц, причем указанный коксовый окатыш составляет более 5 мас.% указанного композита, а указанная паста содержит примерно 80-90 мас.% указанного композита и примерно 10-20 мас.% указанного пека каменноугольной смолы или комбинированного пека; формование пасты в твердое изделие и обжиг твердого изделия при повышенной температуре с образованием указанного угольного электрода.
RU2006145706/15A 2004-06-22 2005-05-23 Угольный электрод для электролизной ванны получения алюминия и способ его изготовления (варианты) RU2363773C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/874,508 2004-06-22
US10/874,508 US7141149B2 (en) 2004-06-22 2004-06-22 Electrodes useful for molten salt electrolysis of aluminum oxide to aluminum

Publications (2)

Publication Number Publication Date
RU2006145706A RU2006145706A (ru) 2008-07-27
RU2363773C2 true RU2363773C2 (ru) 2009-08-10

Family

ID=35479456

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145706/15A RU2363773C2 (ru) 2004-06-22 2005-05-23 Угольный электрод для электролизной ванны получения алюминия и способ его изготовления (варианты)

Country Status (10)

Country Link
US (2) US7141149B2 (ru)
EP (1) EP1766105B1 (ru)
CN (1) CN1985025B (ru)
AU (1) AU2005262686A1 (ru)
BR (1) BRPI0512369C1 (ru)
CA (1) CA2570101C (ru)
NO (1) NO341520B1 (ru)
RU (1) RU2363773C2 (ru)
WO (1) WO2006007165A2 (ru)
ZA (1) ZA200700560B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA014903B1 (ru) * 2010-07-16 2011-02-28 Общество С Ограниченной Ответственностью "Инвестиции" Способ изготовления графитового электрода
RU2639090C1 (ru) * 2014-08-29 2017-12-19 Рио Тинто Алкан Интернэшнл Лимитед Определение дозировки связующего вещества для объединения с дисперсным материалом с получением электрода
RU2647067C2 (ru) * 2012-08-31 2018-03-13 Рютгерс Джермани Гмбх Улучшенное производство углеродного электрода
RU2800748C2 (ru) * 2018-07-19 2023-07-27 Басф Се Смешанная композиция, содержащая нефтяной кокс и пиролитический углерод для электродов

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141149B2 (en) * 2004-06-22 2006-11-28 Cii Carbon Llc Electrodes useful for molten salt electrolysis of aluminum oxide to aluminum
CN101886274B (zh) * 2010-06-29 2012-09-05 云南云铝润鑫铝业有限公司 电加热焙烧预热电解槽及清洁焙烧方法
CN103262306B (zh) * 2010-12-17 2015-11-25 艾利电力能源有限公司 非水电解液二次电池用负极、非水电解液二次电池以及非水电解液二次电池用负极的制造方法
US8491677B2 (en) 2011-02-23 2013-07-23 Rain Cii Carbon Llc Pelletization and calcination of green coke
CN103484896B (zh) * 2013-10-11 2015-10-28 河南科技大学 一种电解铝用低成本碳素阳极及其制备方法
CN108166017A (zh) * 2016-12-07 2018-06-15 高德金 一种预焙铝电解槽生产工艺
CN106987866B (zh) * 2017-04-10 2020-01-17 中国铝业股份有限公司 一种铝电解预焙炭阳极焙烧方法
AR114211A1 (es) 2018-01-19 2020-08-05 Bp Corp North America Inc Métodos para clasificar coque de petróleo
CN112424398A (zh) * 2018-07-19 2021-02-26 巴斯夫欧洲公司 用于电极的包含石油焦炭和热解碳的共混物组合物
CN108998812B (zh) * 2018-09-29 2020-06-16 四川启明星铝业有限责任公司 处理电解铝用预焙阳极生产过程中产生的沥青焦油的方法
DE102020002774A1 (de) 2020-05-09 2021-11-11 Carsten Dentler Verfahren zur Erzeugung von thermischer Energie und von Grundchemikalien mittels aluminothermischer Reaktion
CN111647913A (zh) * 2020-05-22 2020-09-11 国家电投集团黄河上游水电开发有限责任公司 一种铝用炭素高密度阳极
CN115747885B (zh) * 2022-09-30 2023-09-01 广元中孚高精铝材有限公司 一种电解槽批量停槽后二次启动方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320150A (en) * 1963-09-06 1967-05-16 Exxon Research Engineering Co Molded carbon materials
US3526684A (en) * 1967-09-07 1970-09-01 Great Lakes Carbon Corp Separation of cokes into needle-like and non-needle-like particles and the production of carbon or graphite bodies
GB1246447A (en) * 1967-09-26 1971-09-15 Imp Metal Ind Kynoch Ltd Improvements in or relating to the manufacture of oxide-coated electrodes for use in electrolytic processes
US3687431A (en) * 1970-12-18 1972-08-29 Aluminum Co Of America Preheating of dry aggregate for carbon electrodes
US4173518A (en) * 1974-10-23 1979-11-06 Sumitomo Aluminum Smelting Company, Limited Electrodes for aluminum reduction cells
US4096097A (en) * 1976-12-27 1978-06-20 Mobil Oil Corporation Method of producing high quality sponge coke or not to make shot coke
US4307052A (en) * 1978-07-17 1981-12-22 Ashland Oil, Inc. Process for carbon electrode manufacture
US4369171A (en) * 1981-03-06 1983-01-18 Great Lakes Carbon Corporation Production of pitch and coke from raw petroleum coke
US4897170A (en) * 1986-04-07 1990-01-30 Borden, Inc. Manufacture of a Soderberg electrode incorporating a high carbon-contributing phenolic sacrificial binder
BR8805863A (pt) * 1987-11-10 1989-08-01 Du Pont Processo de leito fluidizado para cloracao de material contendo titanio;e coque de carga de petroleo
CN1014911B (zh) * 1988-01-06 1991-11-27 东北工学院 铝电解用活性炭阳极材料
DE3914374A1 (de) * 1989-04-29 1990-10-31 Basf Ag Durch ultraviolette strahlung unter luftsauerstoffatmosphaere vernetzbare copolymerisate
US6380322B1 (en) * 1998-06-19 2002-04-30 Georgia Tech Research Corporation Reworkable high temperature adhesives
GB2384785B (en) * 2000-11-16 2004-11-10 Nippon Steel Chemical Co Amorphous coke for special carbon material and production process for the same
CA2408287C (en) * 2002-10-16 2009-12-15 Biothermica Technologies Inc. Process for treating gaseous emissions generated during production of carbon anodes in an aluminum plant
US20050135991A1 (en) * 2003-12-19 2005-06-23 Engle Michael J. Carbonaceous reductant for use in the fluidized bed chlorination of titanium-containing solids
US7141149B2 (en) * 2004-06-22 2006-11-28 Cii Carbon Llc Electrodes useful for molten salt electrolysis of aluminum oxide to aluminum

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA014903B1 (ru) * 2010-07-16 2011-02-28 Общество С Ограниченной Ответственностью "Инвестиции" Способ изготовления графитового электрода
RU2647067C2 (ru) * 2012-08-31 2018-03-13 Рютгерс Джермани Гмбх Улучшенное производство углеродного электрода
RU2639090C1 (ru) * 2014-08-29 2017-12-19 Рио Тинто Алкан Интернэшнл Лимитед Определение дозировки связующего вещества для объединения с дисперсным материалом с получением электрода
RU2800748C2 (ru) * 2018-07-19 2023-07-27 Басф Се Смешанная композиция, содержащая нефтяной кокс и пиролитический углерод для электродов

Also Published As

Publication number Publication date
NO341520B1 (no) 2017-11-27
BRPI0512369C1 (pt) 2018-10-09
CA2570101C (en) 2012-10-09
RU2006145706A (ru) 2008-07-27
US7534328B2 (en) 2009-05-19
CN1985025B (zh) 2010-11-10
CA2570101A1 (en) 2006-01-19
NO20070200L (no) 2007-01-11
WO2006007165A3 (en) 2006-10-05
ZA200700560B (en) 2008-09-25
US20070068800A1 (en) 2007-03-29
WO2006007165A2 (en) 2006-01-19
AU2005262686A1 (en) 2006-01-19
BRPI0512369A (pt) 2008-03-11
EP1766105A2 (en) 2007-03-28
EP1766105B1 (en) 2016-08-10
BRPI0512369B1 (pt) 2015-12-08
EP1766105A4 (en) 2007-10-03
CN1985025A (zh) 2007-06-20
US20050279627A1 (en) 2005-12-22
US7141149B2 (en) 2006-11-28

Similar Documents

Publication Publication Date Title
RU2363773C2 (ru) Угольный электрод для электролизной ванны получения алюминия и способ его изготовления (варианты)
US5705139A (en) Method of producing high quality, high purity, isotropic graphite from coal
RU2365646C2 (ru) Устойчивые к разрушению электроды для печи карботермического восстановления
RU2546268C2 (ru) Углеродное изделие, способ изготовления углеродного изделия и его использование
CN112424398A (zh) 用于电极的包含石油焦炭和热解碳的共混物组合物
US2998375A (en) Electrode of carbon material from bituminous coal and method of making the same
JP5631492B2 (ja) アルミニウム電解セル用のカソードブロックの製造方法およびカソードブロック
KR20120136058A (ko) 무회분 석탄 제조 방법 및 무회분 석탄과 이를 이용한 알루미늄 제련 공정의 음극용 코크 제조 방법 및 음극용 코크
CN109076657B (zh) 电极材料
Panaitescu et al. Petrographic research applied to carbon materials
Hussein Bio-pitch as a potential binder in carbon anodes for aluminum production
JPS6323124B2 (ru)
Hussein A bio-coke for anode production and the manufacturing method thereof
US5215651A (en) Process for producing coke
KR100206486B1 (ko) 고로용 코크스의 제조방법
JP2003055667A (ja) 高炉用コークスの製造方法
RU2378320C1 (ru) Способ получения пекового кокса
Ogden The quality of binder-filler interfaces in carbon electrodes
RU2172307C2 (ru) Способ обжига или прокаливания сформованной углеродной массы и закладочный материал для использования в этом способе
NZ299939A (en) Baking or calcination of shaped carbon bodies in furnace; packing material
JP2003055668A (ja) 高炉用コークスの製造方法
Phani Kiran et al. Use of Petroleum Coke as an Additive in Metallurgical Coke Making
CA2259565A1 (en) Anode improvements and a process for the manufacture and production of aluminum
JPH02132184A (ja) コークスの製造方法
AU2007201332A1 (en) Electrodes useful for molten salt electrolysis of aluminum oxide to aluminum