RU2362904C1 - Ускоритель потока (варианты) - Google Patents

Ускоритель потока (варианты) Download PDF

Info

Publication number
RU2362904C1
RU2362904C1 RU2008129522/06A RU2008129522A RU2362904C1 RU 2362904 C1 RU2362904 C1 RU 2362904C1 RU 2008129522/06 A RU2008129522/06 A RU 2008129522/06A RU 2008129522 A RU2008129522 A RU 2008129522A RU 2362904 C1 RU2362904 C1 RU 2362904C1
Authority
RU
Russia
Prior art keywords
circle
plane
circles
axis
point
Prior art date
Application number
RU2008129522/06A
Other languages
English (en)
Inventor
Борис Викторович Авдеев (RU)
Борис Викторович Авдеев
Original Assignee
Борис Викторович Авдеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Викторович Авдеев filed Critical Борис Викторович Авдеев
Priority to RU2008129522/06A priority Critical patent/RU2362904C1/ru
Priority to PCT/RU2009/000238 priority patent/WO2010011158A1/en
Application granted granted Critical
Publication of RU2362904C1 publication Critical patent/RU2362904C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Wind Motors (AREA)

Abstract

Группа изобретений относится к области аэро- и гидродинамики для регулирования скорости потока текучих сред и предназначена для использования в ветроэнергетических установках. Ускоритель потока текучих сред содержит первый элемент. Две поверхности элемента представляют собой окружность или многоугольник, выполненный вокруг окружности. Диаметры окружностей не равны. Приведено конструктивное выполнение поверхностей ускорителя потока и конструктивные параметры частей, образующих эту поверхность. Группа изобретений направлена на увеличение скорости потока текучей среды. 2 н. и 16 з.п. ф-лы, 7 ил.

Description

Изобретение относится к области технических средств, применяемых в аэро- и гидродинамике для регулирования скорости потока текучих сред, и может быть использовано в энергетике, а также других областях техники.
Известно (RU, патент 2281883) воздушное тормозное устройство, содержащее сопла и технические средства для получения воздуха с заданными параметрами. Известное устройство также снабжено средством энерговозбуждения воздуха, в корпусе устройства размещен по вертикали ускоритель потока воздуха, поступающего снизу вверх, состоящий из не менее двух сужающихся сопел на одной оси, герметично соединенных между собой, каждое сопло жестко или с возможностью осевого перемещения введено коаксиально в следующее по ходу движения воздуха сопло с образованием между соплами по крайней мере одной полости, в которой размещены впускные клапаны на ее стенке и средства энерговозбуждения воздуха, в полостях размещены датчики давления, в верхней части корпуса устройства воздушный поток, поступающий из ускорителя, разветвляется и направляется по воздуховодам к двум или более выходным вертикальным соплам, расположенным под углом 180° к вертикали, а также к одному или нескольким горизонтальным соплам, для управления потоками воздуха из ускорителя предусмотрены датчики скорости движения самого устройства в трех направлениях и датчики скорости потока на выходе из всех сопел, кроме этого имеются исполнительные механизмы привода створок в воздуховодах и блок управления работой устройства.
Недостатком известного устройства следует признать узкую область применения.
Известен также (RU, патент 2059839) ускоритель потока выхлопных газов двигателя внутреннего сгорания с эжектором, содержащий выпускной трубопровод, соединенный с одной стороны при помощи переходника с выпускной системой, а с другой - через раструб с атмосферой, и ускорительный блок, расположенный между переходником и внутренней поверхностью раструба. Указанный ускорительный блок выполнен в виде конуса, установленного за переходником вдоль оси трубопровода с вершиной, обращенной в сторону движения потока выхлопных газов, на внешней стороне конуса выполнены проточные каналы выхлопных газов и дополнительные каналы вторичного эжектируемого воздуха, причем поперечное сечение проточных каналов в направлении от вершины конуса к торцу преобразуется из треугольного в трапецеидальное соответственно, а треугольные поперечные сечения получены делением площади поперечного сечения на n секторов (n>2), эжектор образован кольцевой профильной щелью между внутренней поверхностью раструба в месте сопряжения его с торцом конуса и внешними поверхностями проточных каналов и дополнительными каналами вторичного эжектируемого воздуха, а раструб выполнен в виде усеченного конуса со скругленной передней кромкой, обращенной в сторону движения газов. Предпочтительно проточные каналы выполнены по винтовой линии и сообщены с поверхностями конуса, раструба и переходника. Выходное сечение раструба обычно бывает выполнено в виде сопла Лаваля.
Недостатком известного устройства следует признать узкую область применения - только автомобильный транспорт.
Известно также (RU, патент 2138684) устройство для преобразования воздушных потоков в электрическую энергию, содержащее напорную трубу, соосно с центральным стволом шахты которой установлен ветровой электрический генератор с ветровым лопастным колесом, а в основании напорной трубы размещен накопитель энергии. Ветровое лопастное колесо электрического генератора снабжено присоединенной инерционной массой, которая размещена в периферийной части ветрового лопастного колеса.
Также недостатком известного устройства следует признать его низкую эффективность, обусловленную отсутствием возможности концентрации энергии поступающего воздушного потока.
Техническая задача, решаемая путем использования разработанного устройства, состоит в локальном увеличении скорости потока текучей среды.
Технический результат, получаемый при реализации разработанного устройства, состоит в расширении возможности использования природных и техногенных потоков текучих сред с низкой кинетической энергией в различных областях техники.
Для достижения указанного технического результата предложено использовать ускоритель потока, содержащий, по меньшей мере, первый элемент, по меньшей мере, две поверхности которого предпочтительно расположены параллельно, причем каждая из указанных параллельных поверхностей представляет собой окружность или многоугольник, выполненный вокруг окружности, при этом диаметры окружностей не равны, при сечении окружностей плоскостью, проходящей через прямую, соединяющую центры указанных окружностей, причем указанная прямая лежит в этой плоскости, точка O, соответствующая месту пересечения плоскостью окружности меньшего диаметра и принятая за точку отсчета - точку начала двухмерной системы координат, причем ось абсцисс OX направлена по плоскости параллельно прямой, соединяющей центры указанных окружностей в сторону окружности большего диаметра, ось ординат OY направлена перпендикулярно оси абсцисс ОХ по плоскости в сторону от прямой, соединяющей центры указанных окружностей, и точка M, соответствующая месту пересечения той же плоскостью окружности большего диаметра, расположены по одну сторону плоскости, относительно прямой, соединяющей центры указанных окружностей, и точки O и M связаны соотношением, согласно которому координаты точки M в этой плоскости расположены выше оси абсцисс OX и правее оси ординат OY в области, ограниченной с одной стороны дугой AB окружности радиуса R1=0,6 D, причем D равно диаметру меньшей окружности, со второй стороны отрезком BC прямой, которая параллельна оси абсцисс OX и расположена выше нее на расстоянии 0,7 D, с третьей стороны ограниченной дугой СЕ окружности радиуса R2=2,0 D и с четвертой стороны ограничена отрезком EA прямой, которая параллельна оси абсцисс OX и расположена выше нее на расстоянии 0,1 D, причем центры окружностей с радиусами R1 и R2 находятся на положительной полуоси оси ординат OY, на расстоянии, соответственно 0,6 D и 2,0 D от точки O начала координат. На Фиг.1 представлено сечение окружностей меньшего и большего диаметра плоскостью, проходящей через центры этих окружностей. Точки O и O' - точки сечения плоскостью окружности меньшего диаметра. Расстояние между точками О и О' равно диаметру меньшей окружности, равной D. Точка O - точка начала двухмерной системы координат. Точки M и M' - точки сечения плоскостью окружности большего диаметра. Расстояние между точками М и М' равно диаметру большей окружности. Пунктирной линией КК' обозначена прямая, соединяющая центры указанных окружностей. Дуга AB образована окружностью радиуса R1, дуга CE образована окружностью радиуса R2. Отрезки BC и EA образованы прямыми, находящимися на расстоянии 0,7 D и 0,1 D соответственно от оси абсцисс ОХ. Точка М расположена внутри многоугольника АВСЕ.
Указанный первый элемент в предпочтительном варианте реализации представляет собой усеченную пирамиду или усеченный конус, причем в наиболее предпочтительном варианте образующая усеченного конуса представляет собой вогнутую в сторону центральной оси конуса кривую. Форма кривой (парабола, гипербола, ломаная линия и т.д.), как было экспериментально установлено, значительного влияния на указанный технический результат не оказывает, но наиболее предпочтительным вариантом реализации является дуга окружности OM, как показано на Фиг.1. В предпочтительном варианте реализации прямая, соединяющая центры окружностей большего и меньшего диаметра, вокруг которых описаны указанные выше элементы, является осью симметрии устройства и совпадает с направлением набегающего потока. Указанный технический результат достигается при использовании элементов любого вида.
Ускоритель потока может дополнительно содержать цилиндрический элемент или многогранник, описанный вокруг цилиндрического элемента, касающийся плоскости поверхности многогранника, представляющего собой окружность меньшего диаметра или многоугольник, выполненный вокруг окружности меньшего диаметра.
На Фиг.2 показан один из вариантов соединения путем примыкания цилиндрического элемента или многогранника, описанного вокруг цилиндрического элемента, с указанным элементом, выполненным, в предпочтительном варианте реализации, в форме усеченного конуса с образующей в форме дуги окружности OM при сечении их плоскостью, проходящей через прямую, соединяющую оси симметрии конуса и цилиндрического элемента, лежащего в основе дополнительного многогранника, причем указанная прямая лежит в этой плоскости. Пунктирной линией ТТ' на Фиг.2 обозначена прямая, соединяющая ось симметрии усеченного конуса и ось симметрии цилиндрического элемента. OMM'O' - сечение плоскостью элемента в виде усеченного конуса. OVV'O' - сечение плоскостью цилиндрического элемента. Стрелками 1 на Фиг.2 показано одно из направлений набегающего потока, совпадающее с осью симметрии устройства в данном варианте соединения.
Указанный технический результат может быть получен и использованием ускорителя потока, содержащего, по меньшей мере, второй элемент, по меньшей мере, две поверхности которого предпочтительно расположены параллельно, каждая из указанных поверхностей представляет собой окружность или многоугольник, выполненный вокруг окружности, при этом диаметры окружностей не равны, но один из них равен диаметру меньшей окружности, при сечении окружностей плоскостью, проходящей через прямую, соединяющую центры указанных окружностей, причем указанная прямая лежит в этой плоскости, точка O, соответствующая месту пересечения плоскостью окружности меньшего диаметра и принятая за точку отсчета - точку начала двухмерной системы координат, причем ось абсцисс OX направлена по плоскости параллельно прямой, соединяющей центры указанных окружностей в сторону окружности большего диаметра, ось ординат OY направлена перпендикулярно оси абсцисс ОХ по плоскости в сторону от прямой, соединяющей центры указанных окружностей, и точка N, соответствующая месту пересечения той же плоскостью окружности большего диаметра, расположены по одну сторону плоскости, относительно прямой, соединяющей центры указанных окружностей, и связаны соотношением, согласно которому координаты точки N' в этой плоскости расположены выше оси абсцисс ОХ и правее оси ординат OY в области, ограниченной с одной стороны дугой FG окружности радиуса R3=0,5 D, причем D равно диаметру меньшей окружности, со второй стороны отрезком GH прямой, которая параллельна оси абсцисс ОХ и расположена выше нее на расстоянии 0,4 D, с третьей стороны ограниченной дугой HJ окружности радиуса R4=1,6 D и с четвертой стороны ограничена отрезком JF прямой, которая параллельна оси абсцисс ОХ и расположена выше нее на расстоянии 0,05 D, причем центры окружностей с радиусами R3 и R4 находятся на положительной полуоси оси ординат OY, на расстоянии, соответственно, 0,5 D и 1,6 D от точки О начала координат. На Фиг.3 представлено сечение окружностей меньшего и большего диаметра плоскостью, проходящей через центры этих окружностей. Точки O и O' - точки сечения плоскостью окружности меньшего диаметра. Расстояние между точками O и О' равно диаметру меньшей окружности, равной D. Точка О - точка начала двухмерной системы координат. Точки N и N' - точки сечения плоскостью окружности большего диаметра. Расстояние между точками N и N' равно диаметру большей окружности. Пунктирной линией РР' обозначена прямая, соединяющая центры указанных окружностей. Дуга FG образована окружностью радиуса R3, дуга HJ образована окружностью радиуса R4. Отрезки GH и JF образованы прямыми, находящимися на расстоянии 0,4 D и 0,05 D соответственно от оси абсцисс OX. Точка N расположена внутри многоугольника FGHJ.
Указанный элемент в предпочтительном варианте реализации также представляет собой усеченную пирамиду или усеченный конус, причем в наиболее предпочтительном варианте образующая усеченного конуса представляет собой вогнутую в сторону центральной оси конуса кривую. Форма кривой (парабола, гипербола, ломаная линия и т.д.), как было экспериментально установлено, значительного влияния на указанный технический результат не оказывает, но наиболее предпочтительным вариантом реализации является дуга окружности ON, как показано на Фиг.3. В предпочтительном варианте реализации прямая, соединяющая центры окружностей большего и меньшего диаметра, является осью симметрии устройства и совпадает с направлением набегающего потока. Указанный технический результат достигается при использовании элементов любого вида.
На Фиг.4 показан один из вариантов соединения первого и второго элементов в предпочтительном варианте реализации в виде усеченных конусов с образующей в виде дуги окружности при сечении их плоскостью, проходящей через прямую, соединяющую оси симметрии этих конусов, причем указанная прямая лежит в этой плоскости. OMM'O' - сечение плоскостью первого усеченного конуса. ONN'O' - сечение плоскостью второго усеченного конуса. Пунктирной линией TT' на Фиг.4 обозначена прямая, соединяющая оси симметрии усеченных конусов, являющаяся осью симметрии устройства и совпадающая с направлением потока в данном варианте соединения.
На Фиг.5 показан один из вариантов соединения первого элемента в предпочтительном варианте реализации в виде усеченного конуса с образующей в виде дуги окружности, цилиндрического элемента, примыкающего к первому элементу, и второго элемента в предпочтительном варианте реализации в виде усеченного конуса с образующей в виде дуги окружности, примыкающего к цилиндрическому элементу при сечении их плоскостью, проходящей через прямую, соединяющую оси симметрии усеченных конусов и цилиндрического элемента, причем указанная прямая лежит в этой плоскости. OMM'O' - сечение плоскостью первого усеченного конуса. OVV'O' - сечение плоскостью цилиндрического элемента. VNN'V' - сечение плоскостью второго усеченного конуса. Пунктирной линией TT' на Фиг.5 обозначена прямая, соединяющая оси симметрии усеченных конусов и цилиндрического элемента, являющаяся осью симметрии устройства и совпадающая с направлением потока в данном варианте соединения.
Любой из указанных элементов может содержать дополнительный элемент, расположенный между первым или вторым элементом, и осью его симметрии. Указанный дополнительный элемент в предпочтительном варианте реализации представляет собой усеченную пирамиду, а в наиболее предпочтительном варианте - усеченный конус, образующая которого может иметь формулу параболы, гиперболы, дуги окружности или ломаной линии.
На Фиг.6 показан один из вариантов соединения первого элемента в предпочтительном варианте реализации в виде усеченного конуса с образующей в виде дуги окружности. OMM'O' - сечение плоскостью первого усеченного конуса. OUU'O' - сечение плоскостью вложенного усеченного конуса. Причем 0,3 D<L<3,0 D. Больший диаметр вложенного усеченного конуса меньше большего диаметра внешнего конуса.
На Фиг.7 приведена конструкция первого и второго состыкованных элементов, в один из которых вложен дополнительный элемент.
Разработанная конструкция ускорителя потока может иметь различные применения.
В первом случае, при применении устройства в энергетике, возможно его использование при строительстве ветро-гидроэлектростанций.
Ветроэнергетические установки имеют широкое применение в районах с высокой среднегодовой скоростью ветра. Как правило, все производители ветровых турбин рассчитывают на номинальную скорость ветра выше 10-11 м/с. Поэтому создание класса ветроустановок с номинальной скоростью ветра 5-6 м/с открывает возможности для использования ветроустановок в большинстве районов мира. С другой стороны, ускорение потока в плоскости ветроколеса способно снизить размеры ветроустановок при сохранении мощности либо существенно - более чем в 9-12 раз увеличить мощность имеющихся установок.
Устройство применимо при использовании в ветро- и гидроэнергетических установках с осью вращения ветро- или гидроколеса, параллельной оси набегающего потока (горизонтально осевые установки). В этом случае разработанное устройство позволяет увеличить скорость набегающего на него потока в 2,28 раза. Ветро- и/или гидроколесо располагается перпендикулярно (или под небольшим углом) к потоку и за счет вращения лопастей ветро- и/или гидроколеса через электрическую машину (например, генератор электрического тока) преобразует кинетическую энергию потока в месте расположения ветроколеса в электрическую энергию.
У ветро- и/или гидроэнергетических установок с горизонтальной, но перпендикулярной набегающему потоку, осью ветро- и/или гидроколеса располагают таким образом, чтобы вращение колеса происходило в зоне наибольшей скорости.
Устройство также применимо для вертикально осевых турбин и способно одновременно преодолеть 2 основные проблемы существующих вертикально осевых турбин: высокая скорость потока, необходимого для страгивания (начала работы) и преодоление лопастями сопротивления прошедшего через ветро- и/или гидроколесо потока. Применяя разработанное устройство вокруг вертикально осевой турбины, можно в области турбины, которая «встречает» набегающий поток со скоростью в 5 м/с, создавать повышенную скорость (например, 11 м/с). Когда поток пройдет эту область, «выйдет» из устройства, сравняется по скорости с окружающим потоком и снова «войдет» в устройство, но уже с противоположной стороны турбины, в этой области турбины скорость потока будет ниже - почти равна набегающему потоку, а при определенных параметрах и ниже скорости набегающего потока. При этом лопасти, которые находятся в этой области турбины, будут преодолевать значительно меньшее сопротивление проходящего через них с уменьшенной скоростью потока, чем если бы через них проходил поток с той же скоростью, что проходит через лопасти, которые «встречают» набегающий поток. Из-за комбинированного действия - уменьшение потребной скорости набегающего потока, необходимого для страгивания ветро- и/или гидроколеса, а также увеличение скорости потока на «встречающих» поток лопастях и уменьшение скорости потока, прошедшего через колесо, возможно существенное увеличение эффективности использования вертикально осевых турбин.
Кроме применения в энергетике (при создании ветровых и гидротурбин для ускорения движущегося потока и, таким образом, либо увеличения мощности равновеликих турбин, либо эффективной работе равновеликих турбин при более низких скоростях набегающего потока), оно может быть также использовано в различных областях техники, где необходимо увеличивать либо локальную скорость потока, либо количество забираемой через определенный диаметр текучей среды (воздуха, жидкости и т.д.).
Использование разработанного устройства в ряде случаев позволяет собирать поток с площади, большей, чем занимает само устройство. Это значит, что при нахождении устройства в неподвижном потоке и создании искусственной разницы давлений перед устройством и внутри него внутрь устройства попадет значительно больше окружающей среды, чем попало бы в обычную трубу.
Изобретение может быть иллюстрировано следующим примером реализации.
Обычная ветровая турбина с диаметром ротора 20 метров с установленной мощностью 50 кВт может вырабатывать 7-8 кВт электроэнергии при скорости ветра в 5 м/с и/или 45-50 кВт при скорости ветра в 10 м/с. Применение разработанного устройства при строительстве ветровой турбины с таким же размером ротора позволит получать 75-80 кВт при скорости ветра 5 м/с и/или свыше 500 кВт при скорости ветра в 10 м/с при соответствующей модернизации генератора электрического тока.
При реализации разработанного ускорителя потока для набегающего потока воздуха со скоростью 5 м/с при интенсивности турбулентности до 20% и характерном размере энергонесущего вихря до 1 м в устройстве получена средняя скорость потока 10,9-11,4 м/с.

Claims (18)

1. Ускоритель потока текучих сред, отличающийся тем, что он содержит, по меньшей мере, первый элемент, причем две поверхности элемента представляют собой окружность или многоугольник, выполненный вокруг окружности, при этом диаметры окружностей не равны, при сечении окружностей плоскостью, проходящей через прямую, соединяющую центры указанных окружностей, причем указанная прямая лежит в этой плоскости, точка О, соответствующая месту пересечения плоскостью окружности меньшего диаметра и принятая за точку отсчета - точку начала двухмерной системы координат, причем ось абсцисс направлена по плоскости параллельно прямой, соединяющей центры указанных окружностей в сторону окружности большего диаметра, ось ординат направлена перпендикулярно оси абсцисс по плоскости в сторону от прямой, соединяющей центры указанных окружностей, и точка M, соответствующая месту пересечения той же плоскостью окружности большего диаметра, расположены по одну сторону плоскости относительно прямой, соединяющей центры указанных окружностей, и точки O и M связаны соотношением, согласно которому координаты точки М в этой плоскости расположены выше оси абсцисс и правее оси ординат в области, ограниченной с одной стороны дугой окружности радиуса R1=0,6 D, причем D равно диаметру меньшей окружности, со второй стороны отрезком прямой, которая параллельна оси абсцисс и расположена выше нее на расстоянии 0,7 D, с третьей стороны ограниченной дугой окружности радиуса R2=2,0 D и с четвертой стороны ограничена отрезком прямой, которая параллельна оси абсцисс и расположена выше нее на расстоянии 0,1 D, причем центры окружностей с радиусами R1 и R2 находятся на положительной полуоси оси ординат, на расстоянии соответственно 0,6 D и 2,0 D от точки O начала координат.
2. Ускоритель по п.1, отличающийся тем, что две указанные поверхности элемента расположены параллельно.
3. Ускоритель по п.1, отличающийся тем, что указанный первый элемент представляет собой усеченную пирамиду.
4. Ускоритель по п.1, отличающийся тем, что указанный первый элемент представляет собой усеченный конус.
5. Ускоритель по п.4, отличающийся тем, что образующая усеченного конуса представляет собой вогнутую в сторону центральной оси конуса кривую или ломаную линию, построенную вдоль кривой.
6. Ускоритель по п.4, отличающийся тем, что образующая усеченного конуса представляет собой дугу окружности или ломаную линию, построенную вдоль дуги окружности.
7. Ускоритель по п.1, отличающийся тем, что он дополнительно содержит цилиндрический элемент или многогранник, описанный вокруг цилиндрического элемента, касающийся плоскости первого элемента, представляющей собой окружность меньшего диаметра или многоугольник, выполненный вокруг окружности меньшего диаметра.
8. Ускоритель по п.1, отличающийся тем, что он содержит дополнительный многогранник, расположенный между многогранником, образующим элемент, и осью его симметрии.
9. Ускоритель по п.8, отличающийся тем, что длина дополнительного многогранника составляет от 0,3 до 3,0 D.
10. Ускоритель потока текучих сред, отличающийся тем, что он содержит, по меньшей мере, второй элемент, причем две поверхности элемента представляют собой окружность или многоугольник, выполненный вокруг окружности, при этом диаметры окружностей не равны, но один из них равен диаметру D меньшей окружности, при сечении окружностей плоскостью, проходящей через прямую, соединяющую центры указанных окружностей, причем указанная прямая лежит в этой плоскости, точка O, соответствующая месту пересечения плоскостью окружности меньшего диаметра и принятая за точку отсчета - точку начала двухмерной системы координат, причем ось абсцисс направлена по плоскости параллельно прямой, соединяющей центры указанных окружностей в сторону окружности большего диаметра, ось ординат направлена перпендикулярно оси абсцисс по плоскости в сторону от прямой, соединяющей центры указанных окружностей, и точка N, соответствующая месту пересечения той же плоскостью окружности большего диаметра, расположены по одну сторону плоскости относительно прямой, соединяющей центры указанных окружностей, и связаны соотношением, согласно которому координаты точки N' в этой плоскости расположены выше оси абсцисс и правее оси ординат в области, ограниченной с одной стороны дугой окружности радиуса R3=0,5 D, причем D равно диаметру меньшей окружности, со второй стороны отрезком прямой, которая параллельна оси абсцисс и расположена выше нее на расстоянии 0,4 D, с третьей стороны ограниченной дугой окружности радиуса R4=1,6 D и с четвертой стороны ограничена отрезком прямой, которая параллельна оси абсцисс и расположена выше нее на расстоянии 0,05 D, причем центры окружностей с радиусами R3 и R4 находятся на положительной полуоси оси ординат, на расстоянии, соответственно 0,5 D и 1,6 D от точки O начала координат.
11. Ускоритель по п.10, отличающийся тем, что две указанные поверхности второго элемента расположены параллельно.
12. Ускоритель по п.10, отличающийся тем, что указанный второй элемент представляет собой усеченную пирамиду.
13. Ускоритель по п.10, отличающийся тем, что указанный второй элемент представляет собой усеченный конус.
14. Ускоритель по п.13, отличающийся тем, что образующая усеченного конуса представляет собой вогнутую в сторону центральной оси конуса кривую или ломаную линию, построенную вдоль кривой.
15. Ускоритель по п.13, отличающийся тем, что образующая усеченного конуса представляет собой дугу окружности или ломаную линию, построенную вдоль дуги окружности.
16. Ускоритель по п.10, отличающийся тем, что он дополнительно содержит цилиндрический элемент или многогранник, описанный вокруг цилиндрического элемента, касающийся плоскости многогранника, представляющей собой окружность меньшего диаметра или многоугольник, выполненный вокруг окружности меньшего диаметра.
17. Ускоритель по п.10, отличающийся тем, что он содержит дополнительный многогранник, расположенный между многогранником, образующим элемент, и осью его симметрии.
18. Ускоритель по п.17, отличающийся тем, что длина дополнительного многогранника составляет от 0,3 до 3,0 D.
RU2008129522/06A 2008-07-21 2008-07-21 Ускоритель потока (варианты) RU2362904C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2008129522/06A RU2362904C1 (ru) 2008-07-21 2008-07-21 Ускоритель потока (варианты)
PCT/RU2009/000238 WO2010011158A1 (en) 2008-07-21 2009-05-20 Flow accelerator (options)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008129522/06A RU2362904C1 (ru) 2008-07-21 2008-07-21 Ускоритель потока (варианты)

Publications (1)

Publication Number Publication Date
RU2362904C1 true RU2362904C1 (ru) 2009-07-27

Family

ID=41048481

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008129522/06A RU2362904C1 (ru) 2008-07-21 2008-07-21 Ускоритель потока (варианты)

Country Status (2)

Country Link
RU (1) RU2362904C1 (ru)
WO (1) WO2010011158A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500921C2 (ru) * 2011-09-26 2013-12-10 Борис Викторович Авдеев Ускоритель потока текучих сред в аэро- и гидродинамике

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257019B2 (en) 2006-12-21 2012-09-04 Green Energy Technologies, Llc Shrouded wind turbine system with yaw control
US9194362B2 (en) 2006-12-21 2015-11-24 Green Energy Technologies, Llc Wind turbine shroud and wind turbine system using the shroud
DE102013012711B4 (de) * 2013-08-01 2017-10-19 Rolf Mohl Turbinenvorrichtung sowie deren Herstellung und Verwendung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2461831A1 (fr) * 1979-07-18 1981-02-06 Barracho Joaquin Turbine eolienne
RU2059839C1 (ru) * 1993-04-16 1996-05-10 Николай Алексеевич Юденков Ускоритель потока выхлопных газов двигателя внутреннего сгорания с эжектором
RU17063U1 (ru) * 2000-10-19 2001-03-10 Серебряков Рудольф Анатольевич Ускоритель потока выхлопных газов двигателя внутреннего сгорания с эжектором
RU2330165C2 (ru) * 2006-07-10 2008-07-27 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Ускоритель потока выхлопных газов двигателей внутреннего сгорания

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2500921C2 (ru) * 2011-09-26 2013-12-10 Борис Викторович Авдеев Ускоритель потока текучих сред в аэро- и гидродинамике

Also Published As

Publication number Publication date
WO2010011158A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP6257617B2 (ja) 流れ制御付き垂直軸風車および水車
US10024302B2 (en) Vertical axis wind turbine
US8801359B2 (en) System and method for extracting power from fluid using a Tesla-type bladeless turbine
JP4736003B2 (ja) 非定常流れを利用した流体機械、風車、及び流体機械の内部流れ増速方法
RU2424444C1 (ru) Способ преобразования энергии гидропотока и вихревая гидротурбина для его реализации
RU2362904C1 (ru) Ускоритель потока (варианты)
KR102039700B1 (ko) 고출력 발전 와류풍차날개
KR20120107612A (ko) 태양열 풍력발전기
RU82276U1 (ru) Ускоритель потока текучих сред
JP2018123819A (ja) 流動体圧縮機械および螺旋旋回流動体の流動回転力を利用した発電機。
RU99080U1 (ru) Ускоритель потока
US20110164966A1 (en) Method and apparatus to improve wake flow and power production of wind and water turbines
RU2500921C2 (ru) Ускоритель потока текучих сред в аэро- и гидродинамике
US11898543B2 (en) High efficiency turbine impeller
KR20150097351A (ko) 연직축 풍차
CN113227566B (zh) 全向发电机设备
KR101406839B1 (ko) 풍력발전 타워
RU123849U1 (ru) Энергетическая установка для преобразования энергии воды в механическую
WO2023188263A1 (ja) 縦型風速加速型風車
EP2534372A1 (en) Fluid turbine
KR101165619B1 (ko) 유도관을 이용한 풍력발전시스템
KR20130017770A (ko) 내부 풍속차이에 기인하는 내부 압력 강하를 고려한 날개들의 용기와 이 용기내부에 설치되는 복합수직축 날개들
KR101060082B1 (ko) 풍력가속시스템
Sarwar et al. A New Approach to Improve the Performance of an Existing Small Wind Turbine by using Diffuser
CN116928010A (zh) 一种绕涡垂轴风力发电装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100722

NF4A Reinstatement of patent

Effective date: 20121120

MM4A The patent is invalid due to non-payment of fees

Effective date: 20130722