RU2348643C1 - Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов - Google Patents

Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов Download PDF

Info

Publication number
RU2348643C1
RU2348643C1 RU2007133040/04A RU2007133040A RU2348643C1 RU 2348643 C1 RU2348643 C1 RU 2348643C1 RU 2007133040/04 A RU2007133040/04 A RU 2007133040/04A RU 2007133040 A RU2007133040 A RU 2007133040A RU 2348643 C1 RU2348643 C1 RU 2348643C1
Authority
RU
Russia
Prior art keywords
oligonucleotide
modified
deoxy
solution
natural
Prior art date
Application number
RU2007133040/04A
Other languages
English (en)
Inventor
Тать на Вениаминовна Абрамова (RU)
Татьяна Вениаминовна Абрамова
Светлана Викторовна ВАСИЛЬЕВА (RU)
Светлана Викторовна Васильева
Людмила Сергеевна Королева (RU)
Людмила Сергеевна Королева
Валентин Викторович Власов (RU)
Валентин Викторович Власов
Владимир Николаевич Сильников (RU)
Владимир Николаевич Сильников
Original Assignee
Общество с ограниченной ответственностью "НаноТех-С"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НаноТех-С" filed Critical Общество с ограниченной ответственностью "НаноТех-С"
Priority to RU2007133040/04A priority Critical patent/RU2348643C1/ru
Application granted granted Critical
Publication of RU2348643C1 publication Critical patent/RU2348643C1/ru

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

Изобретение относится к способу получения солей 5'-трифосфатов природных и модифицированных дезокси- и рибоолигонуклеотидов, заключающемуся в том, что исходный реагент - защищенный природный или модифицированный олигонуклеотид, дезокси- или риборяда, в виде 0,1-0,05 М раствора, монофосфорилируют в пиридине 2-3-кратным избытком хлорокиси фосфора в течение 10-15 минут, далее полученное активированное производное олигонуклеотида обрабатывают 10-15-кратным избытком раствора бис-трибутиламмонийной соли пирофосфата в ацетонитриле и 20-кратным избытком третичного амина и выдерживают реакционную смесь в течение 15-30 минут с последующим разложением промежуточного триметафосфатного производного олигонуклеотида триэтиламмонийбикарбонатным буфером, очисткой целевого продукта с помощью обращенно-фазовой хроматографии (ОФХ), удалением защитных групп с функциональных групп олигонуклеотида и повторной очисткой целевого продукта с помощью ОФХ. Выходы целевых продуктов после очистки составляют 45-92%. Чистота полученных соединений более 95% по данным ВЭЖХ и ЯМР-спектроскопии. Данные соединения могут быть использованы в молекулярно-биологических и генно-инженерных исследованиях. 1 н. и 1 з.п. ф-лы, 1 ил., 2 табл.

Description

Изобретение относится к области биоорганической химии, в частности к усовершенствованному способу получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов общей формулы
Figure 00000001
где В - гетероциклическое основание, природное или модифицированное;
полупрозрачные сферы обозначают места возможной
модификации олигонуклеотида;
n≥1.
5'-Трифосфаты природных и модифицированных дезоксирибо- и рибоолигонуклеотидов применяются в молекулярно-биологических и генно-инженерных исследованиях, однако коммерчески малодоступны из-за отсутствия универсального и эффективного способа синтеза этих соединений. Доступность 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов позволит широко использовать эти соединения при изучении процессов нуклеинового обмена (например, процессинга пре-мРНК).
Известен способ получения 5'-трифосфатов рибодинуклеотидов (Tomasz J., Simoncsits A., Kajtar M., Krug R.M., Shatkin A.J.//Nucleic Acids Res. 1978. V.5. P.2945-2957), заключающийся в обработке исходного рибодинуклеозид(3'-5')фосфата хлорокисью фосфора с последующей обработкой водным аммиаком (введение первого фосфата и образование активированного монофосфорилированного производного). Полученный 5'-моноамидофосфат рибодинуклеозид(3'-5')фосфата обрабатывают пирофосфатом с целью получения трифосфатного производного.
Недостатком этого способа является то, что при обработке исходного динуклеотида хлорокисью фосфора на первой стадии синтеза происходит полная изомеризация межнуклеотидной фосфодиэфирной связи с образованием смеси 2'(3')-5'-фосфодиэфирных связей, что снижает выход целевого соединения в 2 раза и усложняет процедуру его очистки. Кроме того, способ не позволяет синтезировать трифосфаты модифицированных олигонуклеотидов, содержащие активные функциональные группы (амино(ди)алкильные, тиоалкильные, оксиалкильные).
Известен также способ получения 2',5'-триаденилил-5'-трифосфата (Seto Y., Abe К., Itoh M., Sawai H. // 2002. Bioconjugate Chem. V. 13. P.303-308), заключающийся в полимеризации имидазолида 5'-аденилилфосфата в присутствии ионов Pb2+с последующим получением 5'-трифосфатного производного олигорибонуклеотида ферментативным путем.
Недостатком этого способа является то, что он не пригоден для получения 5'-трифосфатов олигорибонуклеотидов с природными 3'-5'-фосфодиэфирными связями. Кроме того, с помощью указанного способа можно синтезировать только производные аденозина.
Наиболее близким к заявляемому способу (прототипом) является способ получения 5'-трифосфатов дезоксиолигонуклеотидов (Lebedev A.V., Koukhareva I.I., Beck Т., Vaghefi M.M. Preparation of oligodeoxynucleotide 5'-triphosphates using solid support approach. // Nucleosides, Nucleotides and Nucleic Acids. 2001. V. 20(4-7). P. 1403-1409), заключающийся в следующем. На первой стадии в дезоксиолигонуклеотид вводят первый фосфат с одновременным получением активированного монофосфорилированного производного дезоксиолигонуклеотида, для чего соответствующим образом защищенный дезоксиолигонуклеотид (защитные группы на гетероциклических основаниях нуклеозидов и межнуклеотидных фосфатных группах, свободная 5'-оксигруппа дезоксиолигонуклеотидной цепи), ковалентно связанный с носителем в процессе твердофазного синтеза олигонуклеотидов, обрабатывают раствором 2-хлоро-4Н1,3,2-бензодиоксафосфорин-4-она в смеси 1,4-диоксана с пиридином. На второй стадии промежуточный активированный фосфитилированный продукт обрабатывают раствором бис-трибутиламмонийной соли пирофосфата в смеси ацетонитрила с пиридином. На третьей стадии трехвалентный атом фосфора в продукте окисляют в пятивалентный с помощью раствора йода, продукт отщепляют от твердого носителя и деблокируют. Целевой продукт очищают с помощью анионообменной ВЭЖХ. В результате получают pppdT2, pppdT3, pppdT9, pppdT15, pppd(ACTGT) и pppdC2. Выходы продуктов после очистки составляют 15-30%.
Недостатками указанного способа являются следующие:
1) использование огромных избытков реагентов (до 3000-кратного для 2-хлоро-4Н1,3,2-бензодиоксафосфорин-4-она и до 6000-кратного для пирофосфата), а также больших объемов растворителей в расчете на 1 мкмоль исходного соединения;
2) низкие выходы целевых соединений (15-30%);
3) малое количество получаемого продукта, не превышающее 2-5 мкмоль (2-5 мг), и трудности в масштабировании процесса;
4) наличие значительных количеств побочных продуктов;
5) применение дорогостоящей анионообменной ВЭЖХ для очистки продукта.
Технической задачей изобретения является повышение выхода целевых продуктов, сокращение избытка используемых реагентов и растворителей, а также расширение функциональных возможностей способа за счет обеспечения возможности получения 5'-трифосфатов олигонуклеотидов не только природного строения дезокси- и риборяда, но также и содержащих различные модификации в сахарофосфатном остове и гетероциклических основаниях.
Поставленная техническая задача достигается предлагаемым новым способом получения 5'-трифосфатов природных и модифицированных олигонуклеотидов как дезоксирибо-, так и риборяда с формулой pppN(pN)n, заключающимся в следующем.
На чертеже представлена схема синтеза 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов на примере синтеза 5'-трифосфата модифицированного дезоксидинуклеотида {2'-d-[цитидилил(3'-фосфо-5')-5-аминоаллилуридин]}-5'-трифосфата, где В=N4- бензоилцитозин, В'=5-трифторацетамидоаллилурацил, В2=цитозин, В3=5-(аминоаллил)урацил, R1=O-n-хлорфенил, R2=ацетил, R=R3=Н, R4=О-, Х=О; i), POCl3; ii) [(С4Н9)3N]2Н2Р2O7; iii) NH3/H2O.
Синтез осуществляют в три стадии в растворе при комнатной температуре. На первой стадии исходный реагент I - защищенный природный или модифицированный олигонуклеотид, имеющий свободной только одну функциональную группу - 5'-оксигруппу, дезокси- или риборяда, в виде 0,1-0,05 М раствора, монофосфорилируют в пиридине 2-3-кратным избытком хлорокиси фосфора в течение 10-15 мин с получением активированного производного 5'-монофссфата природного или модифицированного защищенного дезокси- или рибоолигонуклеотида. На второй стадии (ii) в раствор 10-15-кратного избытка бис-трибутиламмонийной соли пирофосфата в ацетонитриле и 20-кратного избытка третичного амина (преимущественно трибутиламина) добавляют раствор активированного монофосфорилированного производного в пиридине и выдерживают смесь в течение 15-30 минут. На третьей стадии (iii) производят разложение промежуточного триметафосфатного производного олигонуклеотида триэтиламмонийбикарбонатным буфером (ТЕАБ), рН 7,5, и удаление защитных групп с сахарофосфатного остова, гетероциклических оснований и других функциональных групп олигонуклеотида. Очистку целевого продукта II проводят с помощью обращено-фазовой хроматографии (ОФХ) после разложения реакционной смеси ТЕАБ на сорбенте Porasil С-18 (Waters, США) и повторной ОФХ на том же сорбенте после удаления защитных групп. Чистота полученных соединений более 95% по данным аналитической высокоэффективной жидкостной хроматографии (ВЭЖХ) и ЯМР-спектроскопии.
Исходные реагенты - защищенные природные и модифицированные олигонуклеотиды со свободной 5'-оксигруппой - могут быть получены в больших количествах (до несколько граммов) с помощью триэфирного метода синтеза олигонуклеотидов по одной из известных методик (например, Абрамова Т.В., Комарова Н.И., Мундус Д.А., Перебоева О.С.// Изв. СО АН СССР, сер. хим. наук. 1990. Вып.5. Стр.45-51).
Целевые продукты получают в виде литиевых солей, поскольку они наиболее стабильны при хранении. Для этого после завершения очистки целевой продукт осаждают из водного раствора десятикратным объемом 6% раствора перхлората лития в ацетоне. Осадок промывают ацетоном и серным эфиром и высушивают.
Выходы целевых 5'-трифосфатов природных и модифицированных дезокси- и рибоолигонуклеотидов после очистки составляют 45-92% в зависимости от нуклеотидной последовательности и длины олигонуклеотида. Количество получаемых продуктов составляет 10-100 мкмоль (10-100 мг) и выше.
Примеры модификаций, введенных в 5'-трифосфаты олигонуклеотидов (см. чертеж, соединения II, таблица 1), включают в себя модификации по гетероциклическому основанию (4-N-(аминоалкил)цитозин, в том числе 5-метилированный, 5-(3-аминоаллил)урацил, 5-(3-аминопропилоксиметил)урацил, 6-N-(аминоалкил)аденин), пример конкретного выполнения 1; модификации углеводного остатка (арабиноза вместо рибозы или дезоксирибозы, 2'-дезокси-2'-амино, 2'-азидо или 2'-метоксирибоза, стерически затрудненные 4'-СН2-О-2'-locked-нуклеозиды, пример конкретного выполнения 2; получение химерных рибо-дезоксирибоолигонуклеотидов, пример конкретного выполнения 3; модификации остатка фосфорной кислоты (метилфосфоно, тиофосфаты), пример конкретного выполнения 4, а также не имеющие модификаций - природные, пример конкретного выполнения 5).
5'-Трифосфаты модифицированных дезокси- и рибоолигонуклеотидов, преимущественно в виде литиевых солей, полученные по заявляемому способу, приведены в табл.1 и табл.2, где а P-PhCl - n-хлорфенилфосфатная группа, б P-CNEt - цианоэтилфосфатная группа, в Tfa - трифторацетил, Г ае - аминоэтил, д аа - аминоаллил, е Lev - левулинил, ж LNA - стерически затрудненные 4'-СН2-О-2'-locked-нуклеозиды.
Строение полученных соединений подтверждено с помощью 31Р- и масс-спектроскопии. Данные по некоторым соединениям приведены в табл.1 и табл.2.
Определяющими отличиями предлагаемого способа от прототипа, являются следующие.
1. Синтез проводят в растворе, при этом в качестве исходного реагента используют 0.1-0.05 М раствор предварительно очищенного соответствующим образом защищенного природного или модифицированного динуклеозидфосфата, имеющего свободной только одну функциональную группу - 5'-оксигруппу, дезокси- или риборяда, что позволяет избежать высоких избытков реагентов, а также больших объемов растворителей в расчете на 1 мкмоль исходного реагента, а также легко масштабировать процесс, что обеспечивает получение больших (миллимолярных) количеств продукта. В прототипе получение продукта осуществляют в твердофазном варианте, а в качестве исходного реагента используют соответствующим образом защищенный дезоксиолигонуклеотид (защитные группы на гетероциклических основаниях нуклеозидов и межнуклеотидных фосфатных группах, свободная 5'-оксигруппа дезоксиолигонуклеотидной цепи), взятый непосредственно из реакционной смеси в процессе синтеза олигонуклеотида.
2. Исходный реагент активируют в пиридине 2-3-кратным избытком хлорокиси фосфора в течение 10-15 минут, что позволяет эффективно и быстро получить монофосфорилированное производное, так как использование соответствующим образом защищенных исходных реагентов исключает возможные побочные реакции с избытком хлорокиси фосфора, в то же время проведение активации в растворе позволяет избежать необходимости применения больших избытков фосфорилирующего агента.
В прототипе в качестве активирующего реагента используют 3000-кратный избыток 2-хлоро-4Н1,3,2-бензодиоксафосфорин-4-она.
3. Активированный монофосфорилированный олигонуклеотид обрабатывают 10-15-кратным избытком раствора бис-трибутиламмонийной соли пирофосфата в ацетонитриле и 20-кратным избытком третичного амина (преимущественно трибутиламина) и выдерживают реакционную смесь в течение 15-30 минут, что позволяет повысить выход целевого продукта и существенно сократить расход пирофосфата. В прототипе используют 6000-кратный избыток пирофосфата.
4. Очистку целевого продукта проводят с помощью двух обращенно-фазовых хроматографий, причем первую обращенно-фазовую ВЭЖХ проводят после разложения промежуточного триметафосфатного производного защищенного олигонуклеотида, а вторую - после удаления защитных групп. Применение двух последовательных обращенно-фазовых ВЭЖХ позволяет обеспечить полное отделение пирофосфата от целевого продукта в случае динуклеотидов, а также избежать применения дорогостоящих анионообменных сорбентов. В прототипе используют анионообменную ВЭЖХ для очистки целевого соединения.
Способ иллюстрируется следующими примерами конкретного выполнения.
Пример 1.
Получение pppd[TpA(6-ae)], {2''-d-[тимидилил(3'-фосфо-5')-6-(2-аминоэтил)аденозин]}-5'-трифосфата в виде трилитиевой соли.
В колбу вместимостью 25 мл загружают 0.340 г (0.4 ммоль) 5'-окси-2'-d-[тимидилил-(3'-n-хлорфенилфосфо-5')-6-(2-трифторацетиламиноэтил)-3'-O-ацетиладенозин]а и 5 мл сухого пиридина, реакционный сосуд охлаждают в ледяной бане. К раствору оксипроизводного (концентрация 0.08 М) при перемешивании на магнитной мешалке добавляют 73 мкл (0.8 ммоль, двукратный избыток) хлорокиси фосфора. Реакционную смесь перемешивают 10 мин, затем переносят при интенсивном перемешивании в круглодонную колбу объемом 100 мл, в которой находятся 8 мл 0.5 М раствора бис-трибутиламмонийпирофосфата в ацетонитриле (4 ммоль, 10-кратный избыток), и 1.92 мл (8 ммоль, 20-кратный избыток) трибутиламина. Охлаждение убирают, перемешивание продолжают в течение 30 минут. По окончании реакции в реакционную смесь добавляют 40 мл 1 М триэтиламмонийбикарбоната, рН 7.5. Через 1 час реакционную смесь упаривают при пониженном давлении на ротационном испарителе, остаток растворяют в 10 мл воды и наносят на колонку (3×20 см) с обращенно-фазовой смолой Porasil С18 (55-100 мкм, Waters, США). Элюцию проводят в градиенте этанола в воде от 0 до 50%. Фракции, содержащие трифосфатное производное, упаривают. К остатку добавляют 20 мл концентрированного водного аммиака для удаления защитных групп (ацильной, n-хлорфенильной, трифторацетильной). Реакционную смесь перемешивают 2 суток при комнатной температуре, затем упаривают. Остаток растворяют в 5 мл 1 М триэтиламмонийацетата (ТЭА-НОАс), рН 7.0, и наносят на колонку с обращенно-фазовой смолой LiChroprep C18 (15-25 мкм, Merck, Германия). Элюцию проводят в градиенте ацетонитрила от 0 до 10% в 0.05 М ТЭА-НОАс, рН 7.0. Целевые фракции упаривают. Продукт - трилитиевую соль {2'-d-[тимидилил(3'-фосфо-5')-6-(2-аминоэтил)аденозин]}-5'-трифосфата Li3pppd[TpA(6-ae)], растворяют в воде (5 мл) и осаждают добавлением 50 мл 6% раствора перхлората лития в ацетоне. Осадок отделяют центрифугированим или фильтрованием, промывают ацетоном и высушивают до постоянного веса в вакууме. Выход Li3pppd[TpA(6-ae)] 270.0 мг, 0.32 ммоль, 80%.
Пример 2.
Получение 5'-трифосфата [2'-d-2'-азидоарабиноаденозил(3'-фосфо-5')цитидин]а в виде трилитиевой соли Li3pppd[А(2'-apaN3)рС]
В колбу вместимостью 25 мл загружают 0.150 г (0.15 ммоль) 5'-окси-[2'-d-2'-азидоарабиноаденозил-(3'-n-хлорфенилфосфо-5')-2'-d-3'-O-ацетил-4-N-бензоилцитидин]а и 3 мл сухого пиридина, реакционный сосуд охлаждают в ледяной бане. К раствору оксипроизводного (концентрация 0.05 М) при перемешивании на магнитной мешалке добавляют 41 мкл (0.45 ммоль, трехкратный избыток) хлорокиси фосфора. Реакционную смесь перемешивают 15 мин, затем переносят при интенсивном перемешивании в круглодонную колбу объемом 100 мл, в которой находятся 5 мл 0.5 М раствора бис-трибутиламмонийпирофосфата в ацетонитриле (2.25 ммоль, 15-кратный избыток), и 0.72 мл (3 ммоль, 20-кратный избыток) трибутиламина. Охлаждение убирают, перемешивание продолжают в течение 15 минут. По окончании реакции в реакционную смесь добавляют 30 мл 1 М триэтиламмонийбикарбоната, рН 7.5. Далее процесс осуществляют аналогично примеру 1. Из 0.15 г (0.150 ммоль) исходного соединения получают 0.1 г (0.12 ммоль, выход 80%) Li3pppd[A(2'-apaN3)рС].
Пример 3.
Получение 5'-трифосфата [уридилил(3'-фосфо-5')-2'-d-тимидин]а в виде трилитиевой соли проводят аналогично примеру 1 со следующими отличиями. В качестве исходного соединения применяют 5'-окси-[2'-O-трет-бутилдиметилсилилуридин(3'-(2-цианоэтил)фосфо-5')-2'-d-3'-O-ацетилтимидин]. Для удаления трет-бутилдиметилсилильной защитной группы после обработки аммиаком промежуточного продукта реакционную смесь упаривают, к остатку добавляют 10 мл 1 М раствора тетрабутиламмонийфторида в диоксане. Раствор перемешивают 1 сутки и упаривают. Из 0.05 г (0.050 ммоль) исходного соединения получают 18 мг (0.022 ммоль, выход 45%) Li3pppUpdT].
Пример 4.
Получение 5'-трифосфата 2'-d-[цитидилил(3'-метилфосфоно-5')аденозин]а в виде дилитиевой соли Li2pppd[С(рСН3)А] проводят аналогично примеру 1 со следующими отличиями. В качестве исходного соединения берут 5'-окси-2'-d-[4-N-ацетилцитидилил-(3'-метилфосфоно-5')-6-(2-трифторацетиламиноэтил)-3'-O-ацетил-6-N-бензоиладенозин]. Удаление основнолабильных защитных групп проводят путем обработки водным аммиаком в течение 1 суток. Из 0.05 г (0.06 ммоль) исходного соединения получают 24 мг (0,03 ммоль, 50%) Li2pppd[C(pCH3)A].
Пример 5.
Получение 5'-трифосфата 2'-d-[тимидилил(3'-фосфо-5')аденозин]а в виде трилитиевой соли Li3pppd(TpA) проводят аналогично примеру 1 со следующими отличиями. В качестве исходного соединения берут 5'-окси-2'-d-[тимидилил-(3'-N-хлорфенилфосфо-5')-6-N-бензоил-3'-O-ацетиладенозин]. Из 0.1 г (0.1 ммоль) исходного соединения получают 75 мг (0.092 ммоль, 92%) Li3pppd(TpA).
Пример 6.
Получение Na3pppd[TpA(6-ae)], {2'-d-[тимидилил(3'-фосфо-5')-6-(2-аминоэтил)аденозин]}-5'-трифосфата в виде тринатриевой соли проводят аналогично примеру 1 со следующими отличиями. Монофосфорилирование защищенного исходного соединения проводят без охлаждения реакционного сосуда в ледяной бане. После очистки целевого соединения на колонке с обращенно-фазовой смолой LiChroprep С18 (15-25 мкм, Merck, Германия) и упаривания целевых фракций продукт - тринатриевую соль {2'-d-[тимидилил(3'-фосфо-5')-6-(2-аминоэтил)аденозин]}-5'-трифосфата Na3pppd[TpA(6-ae)], растворяют в воде (5 мл) и осаждают добавлением 50 мл 6% раствора перхлората натрия в ацетоне. Осадок отделяют центрифугированим или фильтрованием, промывают ацетоном и высушивают до постоянного веса в вакууме. Выход Na3pppd[TpA(6-ae)] 280.0 мг, 0.31 ммоль, 78%.
Пример 7.
Получение (NH4)3pppd[TpA(6-ae], {2'-d-[тимидилил(3'-фосфо-5')-6-(2-аминоэтил)аденозин]}-5'-трифосфата в виде триаммониевой соли проводят аналогично примеру 1 со следующими отличиями. После очистки целевого соединения на колонке с обращенно-фазовой смолой LiChroprep С18 (15-25 мкм, Merck, Германия) и упаривания целевых фракций продукт - триаммониевую соль {2'-d-[тимидилил(3'-фосфо-5')-6-(2-аминоэтил)аденозин]}-5'-трифосфата (NH4)3pppd[TpA(6-ae)] получают пропусканием раствора трифосфата в воде (15 мл) через колонку (20 мл) со смолой ДЕАЕ-Сефадекс А-25 (Pharmacia, Швеция) в аммониевой форме и промывкой колонки 1.5 М NH4НСО3 20% водным этанолом (40 мл) с последующим упариванием полученного раствора и высушиванием остатка до постоянного веса в вакууме. Выход (NH4)3pppd[TpA(6-ac)] 275.0 мг, 0.33 ммоль, 82%.
Таким образом, разработан универсальный способ получения 5'-трифосфатов дезокси- и рибоолигонуклеотидов в милимолярных количествах с высокими выходами, меньшим избытком реагентов и объемов растворителей, необходимых при синтезе.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005

Claims (2)

1. Способ получения солей 5'-трифосфатов природных и модифицированных дезокси- и рибоолигонуклеотидов, заключающийся в том, что исходный реагент - защищенный природный или модифицированный олигонуклеотид, дезокси- или риборяда, в виде 0,1-0,05 М раствора, монофосфорилируют в пиридине 2-3-кратным избытком хлорокиси фосфора в течение 10-15 мин, далее полученное активированное производное олигонуклеотида обрабатывают 10-15-кратным избытком раствора бис-трибутиламмонийной соли пирофосфата в ацетонитриле и 20-кратным избытком третичного амина и выдерживают реакционную смесь в течение 15-30 мин с последующим разложением промежуточного триметафосфатного производного олигонуклеотида триэтиламмонийбикарбонатным буфером, очисткой целевого продукта с помощью обращенно-фазовой хроматографии (ОФХ), удалением защитных групп с функциональных групп олигонуклеотида и повторной очисткой целевого продукта с помощью ОФХ.
2. Способ по п.1, отличающийся тем, что в качестве третичного амина используют трибутиламин.
RU2007133040/04A 2007-09-03 2007-09-03 Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов RU2348643C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007133040/04A RU2348643C1 (ru) 2007-09-03 2007-09-03 Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007133040/04A RU2348643C1 (ru) 2007-09-03 2007-09-03 Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов

Publications (1)

Publication Number Publication Date
RU2348643C1 true RU2348643C1 (ru) 2009-03-10

Family

ID=40528617

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007133040/04A RU2348643C1 (ru) 2007-09-03 2007-09-03 Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов

Country Status (1)

Country Link
RU (1) RU2348643C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460721C1 (ru) * 2011-02-25 2012-09-10 Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) Способ получения амидофосфитного мономера ахиральной ненуклеотидной вставки для модификации олигонуклеотидов
RU2575628C2 (ru) * 2011-09-02 2016-02-20 Глэксо Груп Лимитед Процесс выделения целевого олигонуклеотида из смеси
CN115894577A (zh) * 2022-11-25 2023-04-04 四川青木制药有限公司 一种修饰核苷三磷酸的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nucleic Acids Research, v.5, n.8, 2945-2957 (1978). *
Nucleosides, nucleotides & nucleic acids, 20(4-7), 1403-1409 (2001). *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460721C1 (ru) * 2011-02-25 2012-09-10 Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) Способ получения амидофосфитного мономера ахиральной ненуклеотидной вставки для модификации олигонуклеотидов
RU2575628C2 (ru) * 2011-09-02 2016-02-20 Глэксо Груп Лимитед Процесс выделения целевого олигонуклеотида из смеси
CN115894577A (zh) * 2022-11-25 2023-04-04 四川青木制药有限公司 一种修饰核苷三磷酸的制备方法

Similar Documents

Publication Publication Date Title
CA2790483C (en) Phosphoramidites for synthetic rna in the reverse direction
EP2217612B9 (en) Preparation of ribonucleotide oligomer
Langkjær et al. UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability
JP5689054B2 (ja) Rna化学合成方法
CA2124814C (en) 2'-deoxy-isoquanosines, isosteric analogues and isoquanosine derivatives as well as their use
AU694359B2 (en) Improved methods for oligonucleotide synthesis
JPH0386897A (ja) 検出可能な1本鎖オリゴヌクレオチドの化学的合成に有用な化合物
JPH0359914B2 (ru)
WO2009143369A2 (en) Method of preparing nucleosides and analogs thereof without using chromatography
Gimenez Molina et al. Assembly of short oligoribonucleotides from commercially available building blocks on a tetrapodal soluble support
RU2348643C1 (ru) Способ получения солей 5'-трифосфатов природных и модифицированных дезоксирибо- и рибоолигонуклеотидов
EP0611075A1 (en) Modified oligodeoxyribonucleotides, their preparation and their therapeutic use
WO1990012022A1 (en) Polynucleotide phosphorodithioates as therapeutic agents for retroviral infections
EP2265624A1 (fr) Procede de preparation de nucleotides et analogues a façon par synthese sur support soluble et outils biologiques prepares
US3787392A (en) Process for the preparation of nucleoside diphosphate esters
CN106117289A (zh) 2’‑o‑moe‑3’‑h‑硫代磷酸酯核苷单体及其合成方法
KR20060129026A (ko) 리보핵산 화합물 및 올리고핵산 화합물의 액상 합성법
Ohtsuka et al. A new condensing reagent, 1-(2, 4, 6-triisopropylbenzenesulfonyl)-5-(pyridin-2-yl) tetrazolide and its use in the synthesis of λ cro binding heptadecanucleotide on a polymer support
US6117993A (en) Synthons for oligonucleotide synthesis
RU2326888C1 (ru) Способ получения солей 5'-трифосфатов дезоксирибо- и рибоолигонуклеотидов
CA2036287A1 (en) Polynucleotide phosphorodithioate as therapeutic agents for retroviral infections
EP2948467A1 (en) Method for the solid-phase based synthesis of phosphate-bridged nucleoside conjugates
WO1989009780A1 (en) Site-specific tritium-labeled oligodeoxynucleotides
Gopalakrishnan et al. Chemical synthesis of oligonucleotides. 3: Synthesis and characterization of N, O-protected ribophosphoesters for applications in RNA synthesis
Hari et al. 2′-O, 4′-C-Methyleneoxymethylene Bridged Nucleic Acids (2′, 4′-BNA COC)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090904