RU2347977C1 - Способ сжигания топлива - Google Patents

Способ сжигания топлива Download PDF

Info

Publication number
RU2347977C1
RU2347977C1 RU2007125595/06A RU2007125595A RU2347977C1 RU 2347977 C1 RU2347977 C1 RU 2347977C1 RU 2007125595/06 A RU2007125595/06 A RU 2007125595/06A RU 2007125595 A RU2007125595 A RU 2007125595A RU 2347977 C1 RU2347977 C1 RU 2347977C1
Authority
RU
Russia
Prior art keywords
flue gases
temperature
air
fuel
heat
Prior art date
Application number
RU2007125595/06A
Other languages
English (en)
Inventor
Дмитрий Львович Астановский (RU)
Дмитрий Львович Астановский
Лев Залманович Астановский (RU)
Лев Залманович Астановский
Павел Васильевич Вертелецкий (RU)
Павел Васильевич Вертелецкий
Original Assignee
Дмитрий Львович Астановский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Львович Астановский filed Critical Дмитрий Львович Астановский
Priority to RU2007125595/06A priority Critical patent/RU2347977C1/ru
Application granted granted Critical
Publication of RU2347977C1 publication Critical patent/RU2347977C1/ru

Links

Images

Abstract

Изобретение относится к способам сжигания топлива в различных теплоиспользующих установках и может быть использовано в энергетике, в промышленности, на транспорте и в быту. Способ сжигания топлива со стабилизацией адиабатической температуры горения и передачей теплоты от продуктов сгорания к теплоприемнику заключается в том, что к воздуху, подводимому для сжигания топлива, подмешивают часть отходящих дымовых газов. Образовавшуюся газовоздушную смесь подают вентилятором в одну из полостей теплообменного аппарата радиально-спирального типа, а через вторую полость этого аппарата прокачивают весь поток отходящих дымовых газов, благодаря чему этот поток охлаждается до температуры 0-60°С, на 10-20°С превышающей температуру окружающей среды, а газовоздушная смесь нагревается, после чего ее и топливо подают на горелку, а часть охлажденных отходящих дымовых газов направляют на рециркуляцию для подмешивания к вновь поступающему холодному воздуху. Стабилизацию температуры горения и поддержание требуемой температуры поступающих к теплоприемнику продуктов сгорания осуществляют изменением количества рециркулирующих дымовых газов. Повышается эффективность сжигания топлива за счет глубокой утилизации теплоты отходящих дымовых газов и конденсации содержащегося в них водяного пара, стабилизируется и расширяется диапазон регулирования температуры греющего потока, поступающего в теплоприемник, а также снижается температура горения для уменьшения количества вредных выбросов в окружающую среду с отходящими дымовыми газами. 3 з.п. ф-лы, 1 табл., 5 ил.

Description

Изобретение относится к способам сжигания топлива и может быть использовано в энергетике, в промышленности, на транспорте и в быту.
В различных теплоиспользующих установках (котлах, печах, реакторах, сушильных аппаратах, нефте- и газоперерабатывающих установках и др.) в качестве греющего потока используются газообразные продукты сгорания, получаемые в результате сжигания жидкого, газообразного или твердого топлива, причем для выполнения требований технологического процесса необходимо поддержание уровня и стабильности температуры продуктов сгорания перед теплоприемником.
Во многих случаях отходящие дымовые газы сбрасывают в атмосферу с температурой 150-500°С и выше, что приводит к большим потерям теплоты и повышенному расходу топлива, а сжигают топливо при высокой температуре 1500-2000°С и выше, что сопровождается образованием значительного количества вредных примесей (в том числе NOx и СО), которые с отходящими дымовыми газами затем попадают в окружающую среду.
Известен способ сжигания топлива с поддержанием температуры продуктов сгорания путем возврата части отходящих дымовых газов в топку за горелкой и последующего смешения их с продуктами сгорания в пределах топки (FR 1280178 А, 29.12.1961, F22G 5/02).
Недостатками этого способа является проведение процесса горения при высокой температуре (1500-2000°С), что сопровождается образованием вредных примесей (NOx, СО и др.), выбрасываемых вместе с основной частью дымовых газов в окружающую среду, а также невозможность обеспечения равномерного распределения температур в потоке греющей среды, что приводит к нестабильности температурного режима в теплоприемнике.
Другой известный способ сжигания топлива предусматривает снижение температуры горения и температуры греющего потока за счет рециркуляции части отходящих дымовых газов в воздух перед подачей его в горелку с обеспечением заданного содержания кислорода в смеси в пределах 16-18% (SU 569797 А, 25.08.1977, F27B 9/00).
Недостатком этого способа является то, что он не предусматривает утилизации теплоты отходящих дымовых газов, а также то, что ограничение снижения содержания кислорода в смеси, поступающей на горелку, до 16-18% не обеспечивает необходимого для многих технологических процессов снижения температуры греющего потока перед теплоприемником.
Наиболее близким к изобретению является способ сжигания топлива в котле, в соответствии с которым часть отходящих дымовых газов (20-24% от общего количества) отбирается вентилятором, прокачивается через охлаждаемый водой теплообменный аппарат, после чего вместе с образовавшимся в нем конденсатом подается в трубопровод подвода воздуха и топлива к горелке (SU 1509575 А, 23.09.1989, F23C 9/08).
Недостатками этого способа являются следующие:
- отсутствует утилизация теплоты отходящих дымовых газов, сбрасываемых в атмосферу, за счет их глубокого охлаждения;
- смесь воздуха и рециркулирующих дымовых газов подается на горелку без предварительного подогрева;
- вентилятор рециркулирующих дымовых газов работает при высокой температуре прокачиваемой среды;
- конденсат, образующийся в теплообменном аппарате при охлаждении рециркулирующих дымовых газов, полезно не используется (например, в системе водоподготовки питательной воды).
Задача настоящего изобретения - повышение эффективности сжигания топлива за счет глубокой утилизации теплоты отходящих дымовых газов и конденсации содержащегося в них водяного пара, стабилизация и расширение диапазона регулирования температуры греющего потока, поступающего в теплоприемник, а также снижение температуры горения для уменьшения количества вредных выбросов в окружающую среду с отходящими дымовыми газами.
Поставленная задача решается в способе сжигания топлива со стабилизацией адиабатической температуры горения и передачей теплоты от продуктов сгорания к теплоприемнику, заключающемся в том, что к воздуху, подводимому для сжигания топлива, подмешивают часть отходящих дымовых газов, образовавшуюся газовоздушную смесь подают вентилятором в одну из полостей теплообменного аппарата радиально-спирального типа, а через вторую полость этого аппарата прокачивают весь поток отходящих дымовых газов, благодаря чему этот поток охлаждается до температуры 0 - 60°С, на 10-20°С превышающей температуру окружающей среды, а газовоздушная смесь нагревается, после чего ее и топливо подают на горелку, а часть охлажденных отходящих дымовых газов направляют на рециркуляцию для подмешивания к вновь поступающему холодному воздуху, причем стабилизацию температуры горения и поддержание требуемой температуры поступающих к теплоприемнику продуктов сгорания осуществляют изменением количества рециркулирующих дымовых газов.
Кроме того, перед подачей на горелку топливо подогревают отходящими дымовыми газами в теплообменном аппарате радиально-спирального типа, установленном параллельно или последовательно с теплообменным аппаратом, в котором нагревается газовоздушная смесь.
Кроме того, применяют беспламенные или каталитические горелки для сжигания топлива в смеси с воздухом и добавленными в него рециркулирующими дымовыми газами.
Кроме того, при прохождении отходящих дымовых газов через теплообменный аппарат пары воды, содержащиеся в них, конденсируют, выделяют из газового потока и направляют для полезного использования.
Применение теплообменных аппаратов радиально-спирального типа обеспечивает глубокую рекуперацию теплоты с охлаждением отходящих дымовых газов до температуры не более чем на 10 - 20°С превышающей температуру окружающей среды, т.е. до 40 - 60°С, а в холодное время года до 0°С, благодаря чему значительная часть водяных паров, содержащихся в дымовых газах, конденсируется. При этом теплота конденсации водяных паров рекуперируется, а полученный конденсат после соответствующей обработки может быть полезно использован, например, в качестве питательной воды паровых и водогрейных котлов и т.д. Кроме того, в результате удаления водяных паров сокращается количественный выброс отходящих дымовых газов.
Минимизация вредных выбросов в окружающее пространство обеспечивается снижением температуры сжигания топлива. Это достигается возвратом (рециркуляцией) в поток воздуха части охлажденных отходящих дымовых газов. Чем больше отходящих дымовых газов добавляется в поток воздуха, поступающего на горелку, тем ниже адиабатическая температура горения топлива, и тем меньше количество вредных веществ (NOx, CO) образуется в процессе горения.
При поддержании определенного стабильного соотношения между рециркулирующими дымовыми газами и топливом или воздухом, обеспечивается поддержание требуемой адиабатической температуры горения топлива.
Для сжигания топлива в сильно разбавленном дымовыми газами воздухе должны применяться беспламенные или каталитические горелки, т.к. в этом случае при использовании обычно применяемых факельных горелок стабильный процесс горения не может быть обеспечен.
Отходящие дымовые газы можно охлаждать в двух параллельно или последовательно включенных теплообменных аппаратах радиально-спирального типа, через один из которых для рекуперации теплоты прокачивается топливо, а через другой - газовоздушная смесь.
Ниже изобретение поясняется конкретными примерами его использования и прилагаемыми чертежами, графиками и таблицей.
на фиг.1 представлена принципиальная технологическая схема сжигания топлива с глубокой рекуперацией теплоты отходящих дымовых газов путем подогрева смеси воздуха с добавленными в него рециркулирующими охлажденными дымовыми газами перед подачей их на горелку;
на фиг.2 - принципиальная технологическая схема сжигания топлива с глубокой рекуперацией теплоты отходящих дымовых газов путем подогрева топлива и смеси воздуха с добавленными в него рециркулирующими охлажденными дымовыми газами перед подачей их на горелку;
на фиг.3 показана зависимость теплового потока от температуры отходящих дымовых газов;
на фиг.4 - зависимость адиабатической температуры горения природного газа от объемного соотношения дымовых газов и топлива;
на фиг.5 - зависимость количества выбросов NOx и СО от адиабатической температуры горения природного газа.
В таблице приведен пример расчета процесса сжигания.
Предлагаемый способ сжигания топлива осуществляют следующим образом.
Представлена принципиальная технологическая схема установки с рециркуляцией части отходящих дымовых газов, глубокой рекуперацией теплоты за счет подогрева газовоздушной смеси, с выделением конденсата из отходящих дымовых газов и стабилизацией адиабатической температуры горения топлива и продуктов сгорания, поступающих в теплоприемник (фиг.1).
Природный газ и газовоздушная смесь (воздух с добавленной в него частью отходящих дымовых газов) поступают на горелку 1, где происходит горение топлива. Образовавшиеся продукты сгорания проходят через теплоприемник 2 (нагреватель, реактор и т.д.), охлаждаются в нем до температуры, определяемой требованиями технологического режима теплоприемника, и поступают в теплообменный аппарат радиально-спирального типа 3. В теплообменном аппарате 3 отходящие дымовые газы охлаждаются до возможно низкой температуры 0 - 60°С, на 10 - 20°С превышающей температуру окружающего воздуха, отдавая при этом теплоту прокачиваемой через вторую полость теплообменника 3 смеси воздуха и добавленных в него дымовых газов. При этом часть водяных паров, входящих в состав отходящих дымовых газов, конденсируется и после отделения от охлажденных дымовых газов выводится для полезного использования. После теплообменного аппарата 3 часть охлажденных отходящих дымовых газов с температурой 0 - 60°С подается на всасывание вентилятора 4 и добавляется в воздух, а остальная часть охлажденных дымовых газов сбрасывается в атмосферу. Образовавшаяся газовоздушная смесь вентилятором 4 подается для рекуперации теплоты в теплообменный аппарат 3, нагревается в нем, после чего поступает на горелку 1.
Добавлением отходящих дымовых газов в воздух обеспечивается снижение адиабатической температуры горения топлива и, как следствие, сокращение вредных выбросов в окружающую среду. Поддерживая определенное соотношение дымового газа и воздуха, обеспечивают требуемую температуру продуктов сгорания перед теплоприемником.
Представлена принципиальная технологическая схема установки с рециркуляцией части отходящих дымовых газов, глубокой рекуперацией теплоты за счет подогрева газовоздушной смеси и топлива, с выделением конденсата из отходящих дымовых газов и стабилизацией адиабатической температуры горения топлива и продуктов сгорания, поступающих в теплоприемник (фиг.2).
Природный газ и газовоздушная смесь (воздух с добавленной в него частью отходящих дымовых газов) поступают на горелку 5, где происходит горение топлива. Образовавшиеся продукты сгорания проходят через теплоприемник 6 (нагреватель, реактор и т.д.), охлаждаются в нем до температуры, определяемой требованиями технологического режима теплоприемника, и поступают в теплообменный аппарат радиально-спирального типа 7.
В теплообменном аппарате 7 отходящие дымовые газы частично охлаждаются, нагревая топливо, и поступают в теплообменный аппарат радиально-спирального типа 8, охлаждаются в нем до возможно низкой температуры 0 - 60°С, на 10 - 20°С превышающей температуру окружающего воздуха, отдавая при этом теплоту прокачиваемой через вторую полость теплообменника 8 смеси воздуха и добавленных в него дымовых газов. При этом часть водяных паров, входящих в состав отходящих дымовых газов, конденсируется и после отделения от охлажденных дымовых газов выводится для полезного использования. После теплообменного аппарата 8 часть охлажденных отходящих дымовых газов с температурой 0 - 60°С подается на всасывание вентилятора 9 и добавляется в воздух, а остальная часть охлажденных дымовых газов сбрасывается в атмосферу. Образовавшаяся газовоздушная смесь вентилятором 9 подается для рекуперации теплоты в теплообменный аппарат 8, нагревается в нем, после чего поступает на горелку 5. Топливо, нагретое в теплообменном аппарате 7, также подводится к горелке 5.
Добавлением отходящих дымовых газов в воздух обеспечивается снижение адиабатической температуры горения топлива и, как следствие, сокращение вредных выбросов в окружающую среду. Поддерживая определенное соотношение дымового газа и воздуха, обеспечивают требуемую температуру продуктов сгорания перед теплоприемником.
Приведен пример расчета процесса сжигания 1 нм3/ч природного газа в смеси с 10,5 нм3/ч воздуха без рециркуляции дымовых газов в воздух, предназначенный для подачи на горелку, для двух значений температуры отходящих дымовых газов (200 и 50°С), сбрасываемых в атмосферу (таблица).
Результаты расчета показывают следующее:
а) при отсутствии рециркуляции дымовых газов в воздух, подаваемый для сжигания топлива, процесс горения протекает при весьма высокой адиабатической температуре, равной для данного варианта 2030°С;
б) глубокая утилизация теплоты отходящих дымовых газов до 50°С позволяет существенно увеличить теплосъем, т.е. полезно используемую теплоту от сжигания 1 нм3/ч природного газа (9456 ккал/ч по сравнению с 8595 ккал/ч при охлаждении дымовых газов до 200°С);
в) при охлаждении дымовых газов до 50°С от 1 нм3/ч природного газа можно получить 0,74 кг/ч конденсата.
Аналогичные расчеты процесса сжигания 1 нм3/ч природного газа в смеси с 10,5 нм3/ч воздуха выполнены для различных температур охлажденных дымовых газов (т.е. при различной степени рекуперации теплоты) и с рециркуляцией в воздух части охлажденных дымовых газов. По результатам этих расчетов построены зависимости, показанные на фиг.3÷5, характеризующие параметры процесса.
Представлена зависимость теплового потока (полезного теплосъема) от температуры отходящих дымовых газов при сжигании 1 нм3/ч природного газа в смеси с 10,5 нм3/ч воздуха (фиг.3). Нижняя часть каждого столбика соответствует полезному теплосъему при соответствующей температуре отходящих дымовых газов, причем максимальный теплосъем условно принят для температуры 50°С. Верхняя часть столбика отражает потери теплоты с отходящими газами из-за недоохлаждения газов до температуры 50°С. На графике также показана доля потерь теплоты в % от общего теплового потока. Глубокая рекуперация теплоты согласно изобретению позволяет получить максимальный теплосъем при сжигании топлива, а соответственно и снизить удельный расход топлива.
Представлена зависимость адиабатической температуры горения от объемного соотношения рециркулирующих дымовых газов и топлива (природного газа), нм3/нм3, при сжигании 1 нм3/ч природного газа в смеси с 10,5 нм3/ч воздуха и принятой температуре охлажденных отходящих дымовых газов 200°С (фиг.4.) Как следует из этой диаграммы, чем больше дымовых газов добавляется в воздух или топливо, поступающих на горелку, тем ниже адиабатическая температура горения. Обеспечивая определенное соотношение дымовых газов и топлива или воздуха, можно поддерживать требуемую адиабатическую температуру горения топлива и температуру продуктов сгорания перед теплоприемником.
Представлена зависимость количества вредных выбросов NOx и СО, г/нм3, от адиабатической температуры горения при сжигании 1 нм3/ч природного газа в смеси с 10,5 нм3/ч воздуха (фиг.5). Как видно из представленной диаграммы, поддерживая адиабатическую температуру горения топлива не выше 1000 - 1200°С, можно минимизировать количество вредных выбросов в окружающую среду.
Таблица
Компоненты, параметры Природный газ Воздух Охлажденные отходящие дымовые газы
Температура, °С 10 20 200 50
СН4, % об 90,26
С2Н6, % об 6,49
С3Н8, % об 2,68
CO2, % об 0,01 0,039 8,2648 8,9662
N2, % об 0,56 76,952 69,3636 75,2505
O2, % об 20,642 0,55297 0,5999
Ar, % об 0,923 0,83285 0,90353
Н2O, % об, вт.ч.:
- пар 1,45 19,416 12,5714
- конденсат 0 6,845
СО, % об 1,3288 1,4416
NO, % об 0,241 0,26145
NO2, % об 0,00004
Расход, нм3 1 10,5 11,637 10,726
Масса сконденсированной воды, кг/ч 0 0,74
Низшая теплота сгорания, ккал/нм3 9323
Высшая теплота сгорания, ккал/нм3 10354
Адиабатическая температура горения, °С 2030
Теплосъем, ккал/ч, в т.ч. от конденсации водяных паров 8595 9456
0 274

Claims (4)

1. Способ сжигания топлива со стабилизацией адиабатической температуры горения и передачей теплоты от продуктов сгорания к теплоприемнику, заключающийся в том, что к воздуху, подводимому для сжигания топлива, подмешивают часть отходящих дымовых газов, образовавшуюся газовоздушную смесь подают вентилятором в одну из полостей теплообменного аппарата радиально-спирального типа, а через вторую полость этого аппарата прокачивают весь поток отходящих дымовых газов, благодаря чему этот поток охлаждается до температуры 0-60°С, на 10-20°С превышающей температуру окружающей среды, а газовоздушная смесь нагревается, после чего ее и топливо подают на горелку, а часть охлажденных отходящих дымовых газов направляют на рециркуляцию для подмешивания к вновь поступающему холодному воздуху, причем стабилизацию температуры горения и поддержание требуемой температуры поступающих к теплоприемнику продуктов сгорания осуществляют изменением количества рециркулирующих дымовых газов.
2. Способ по п.1, заключающийся в том, что перед подачей на горелку топливо подогревают отходящими дымовыми газами в теплообменном аппарате радиально-спирального типа, установленном параллельно или последовательно с теплообменным аппаратом, в котором нагревается газовоздушная смесь.
3. Способ по п.1, заключающийся в том, что применяют беспламенные или каталитические горелки для сжигания топлива в смеси с воздухом и добавленными в него рециркулирующими дымовыми газами.
4. Способ по п.1, заключающийся в том, что при прохождении отходящих дымовых газов через теплообменный аппарат пары воды, содержащиеся в них, конденсируют, выделяют из газового потока и направляют для полезного использования.
RU2007125595/06A 2007-07-09 2007-07-09 Способ сжигания топлива RU2347977C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007125595/06A RU2347977C1 (ru) 2007-07-09 2007-07-09 Способ сжигания топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007125595/06A RU2347977C1 (ru) 2007-07-09 2007-07-09 Способ сжигания топлива

Publications (1)

Publication Number Publication Date
RU2347977C1 true RU2347977C1 (ru) 2009-02-27

Family

ID=40529919

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007125595/06A RU2347977C1 (ru) 2007-07-09 2007-07-09 Способ сжигания топлива

Country Status (1)

Country Link
RU (1) RU2347977C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444678C1 (ru) * 2011-03-14 2012-03-10 Дмитрий Львович Астановский Установка для сжигания топлива и нагрева технологических сред
WO2014007679A1 (ru) * 2012-07-03 2014-01-09 Kurochkin Andrei Vladislavovich Способ и регулирование нагрева воздуха и устройство для осуществления
RU2544692C1 (ru) * 2014-03-03 2015-03-20 Андрей Владиславович Курочкин Способ сжигания топлив и нагрева технологических сред и устройство для их осуществления
RU2809827C1 (ru) * 2023-08-18 2023-12-19 Общество с ограниченной ответственностью "ФАСТ ИНЖИНИРИНГ" Аппарат для нагрева нефти и продуктов ее переработки

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444678C1 (ru) * 2011-03-14 2012-03-10 Дмитрий Львович Астановский Установка для сжигания топлива и нагрева технологических сред
WO2014007679A1 (ru) * 2012-07-03 2014-01-09 Kurochkin Andrei Vladislavovich Способ и регулирование нагрева воздуха и устройство для осуществления
RU2544692C1 (ru) * 2014-03-03 2015-03-20 Андрей Владиславович Курочкин Способ сжигания топлив и нагрева технологических сред и устройство для их осуществления
RU2809827C1 (ru) * 2023-08-18 2023-12-19 Общество с ограниченной ответственностью "ФАСТ ИНЖИНИРИНГ" Аппарат для нагрева нефти и продуктов ее переработки

Similar Documents

Publication Publication Date Title
CN103062745B (zh) 一种用于煤粉锅炉的水蒸汽循环调节式富氧燃烧方法
US6289851B1 (en) Compact low-nox high-efficiency heating apparatus
US9651253B2 (en) Combustion apparatus
US20060199120A1 (en) Combustion system with recirculation of flue gas
CN104121581A (zh) 一种高效低NOx管式加热炉低浓度富氧燃烧系统及燃烧器
NL8102667A (nl) Inrichting en werkwijze voor rookgasrecirculatie in een met vaste brandstof werkende stoomketel.
CN104864392A (zh) 一种全氧煤粉mild燃烧方法及其使用的装置
RU2347977C1 (ru) Способ сжигания топлива
CN107642789B (zh) 一种分级配风型蓄热式焚烧炉
CN212252644U (zh) 一种节能废气处理装置
JP2014238201A (ja) ストーカ式焼却炉
Bohn et al. Flame temperatures and species concentrations in non-stoichiometric oxycoal flames
RU2506495C1 (ru) Устройство для сжигания топлив и нагрева технологических сред и способ сжигания топлив
KR102348745B1 (ko) 마일드 연소 기술과 배가스 잠열 회수를 통한 고효율 저배출 목재 보일러
CN209840076U (zh) 烟气外循环式nox减排结构
RU2411411C1 (ru) Способ сжигания топлива
CN107185956A (zh) 一种循环供热系统及其供热方法
CN110207145B (zh) 冷凝壁挂炉燃烧控制方法及装置及冷凝壁挂炉
EP2592362B1 (en) Flameless boiler for producing hot water
CN111336531A (zh) 一种节能废气处理装置
RU2553748C1 (ru) Способ сжигания топлива
CN218895407U (zh) 一种固体废弃物热解气化处理系统
US20070251435A1 (en) Fuel and emissions reduction power plant design using Oxygen for combustion and flue gas recirculation to minimize Carbon Dioxide and NOx emissions
RU2684515C1 (ru) Котельная установка
CN209744402U (zh) 基于水换节能体系的NOx减排结构