RU2347755C1 - Способ извлечения ионов металлов из растворов - Google Patents

Способ извлечения ионов металлов из растворов Download PDF

Info

Publication number
RU2347755C1
RU2347755C1 RU2007141310/15A RU2007141310A RU2347755C1 RU 2347755 C1 RU2347755 C1 RU 2347755C1 RU 2007141310/15 A RU2007141310/15 A RU 2007141310/15A RU 2007141310 A RU2007141310 A RU 2007141310A RU 2347755 C1 RU2347755 C1 RU 2347755C1
Authority
RU
Russia
Prior art keywords
ozone
metal ions
rubber
sorption
solutions
Prior art date
Application number
RU2007141310/15A
Other languages
English (en)
Inventor
Олег Олегович Тужиков (RU)
Олег Олегович Тужиков
Тать на Васильевна Хохлова (RU)
Татьяна Васильевна Хохлова
Олег Иванович Тужиков (RU)
Олег Иванович Тужиков
Владимир Федорович Желтобрюхов (RU)
Владимир Федорович Желтобрюхов
Лили Викторовна Каргальска (RU)
Лилия Викторовна Каргальская
Оксана Леонидовна Синкевич (RU)
Оксана Леонидовна Синкевич
Валерий Павлович Мишта (RU)
Валерий Павлович Мишта
Павел Владимирович Гавриленко (RU)
Павел Владимирович Гавриленко
Николай Владимирович Сычев (RU)
Николай Владимирович Сычев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ)
Priority to RU2007141310/15A priority Critical patent/RU2347755C1/ru
Application granted granted Critical
Publication of RU2347755C1 publication Critical patent/RU2347755C1/ru

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к очистке сточных вод в химической и металлургической промышленности. Способ извлечения ионов металлов из растворов включает сорбцию катионитом - продуктом взаимодействия резиновой крошки с озоно-воздушной смесью при содержании озона 1-32 мг/л и скорости потока 9-18 л/ч. В качестве резиновой крошки используют измельченную протекторную резину с размером частиц 0,125-1,0 мм. Полученный продукт с кислотным числом 1.64-10.02 мг КОН/г используют для извлечения металлов. Способ обеспечивает повышение сорбционной емкости сорбента, увеличение количества сорбируемых ионов металлов. 1 з.п. ф-лы, 1 табл.

Description

Изобретение относится к способу очистки сточных вод и может быть использовано в химической и металлургической промышленности при очистке сточных вод от ионов металлов.
Известен способ очистки сточной воды от ионов цветных металлов и органических примесей, заключающийся в обработке сточных вод смешанным сорбентом, состоящим из золы и опилок (а.с. 833553, С02F 1/28, С01G 13/00, 1981).
Недостатками этого способа является невозможность извлечения этим сорбентом ионов ртути и кобальта, т.е. ограниченная область его применения, а также невозможность многократного использования.
Известен способ очистки сточных вод от ионов металлов и органических примесей путем пропускания через сорбционную колонну, наполненную смешанным сорбентом, состоящим из резиновой крошки и золы (а.с. 986862, МКИ С02F 1/28, 1983).
Недостатками этого способа являются: невозможность десорбции ионов металлов из сорбента, а также ограниченная область применения предлагаемого сорбента из-за невозможности извлечения ионов ртути и кобальта из сточных вод.
Известен способ извлечения ионов переходных металлов из слабокислых растворов их солей с использованием карбоксильного ионообменного волокна. ВИОН КН-1 (Энтальпия и термокинетика сорбции ионов 3d-металлов карбоксильным ионообменным волокном ВИОН КН-1 / Копылова В.Д., Вальдман А.И., Вальдман Д.И., Портных И.В., Т.И.Иванова // Журнал прикладной химии. - 1996. - N2. - С.302).
Недостатками предложенного метода являются низкая статическая, сорбционная емкость сорбента, невозможность работы в агрессивных средах, низкая механическая прочность. Предлагаемым методом нельзя извлекать ионы ртути из растворов.
Наиболее близким является способ извлечения ионов металлов из растворов путем сорбции на карбоксилсодержащем катеоните, причем в качестве катеонита используют продукт взаимодействия пероксидированной резиновой крошки с концентрацией пероксидных групп 1-5,6% с акриловой кислотой в массовом соотношении 1:1-1,5, полученный в присутствии активатора распада пероксидных групп, а сорбцию ведут при рН 3,5-7,8. (Патент РФ №2161136, МКИ С02F 1/42, 2000 г.).
Недостатком предложенного способа является сложный способ получения катеонита и относительная низкая сорбционная способность катионита.
Задачей предлагаемого технического решении является: разработка нового способа очистки сточных вод от ионов металлов, позволяющего расширить область применения предлагаемого сорбента.
Техническим результатом является повышение сорбционной емкости сорбента, увеличение количества сорбируемых ионов металлов.
Поставленный технический результат достигается в способе извлечения ионов металлов из растворов путем сорбции катеонитом на основе модифицированной резиновой крошки, отличающийся тем, что в качестве модифицированной резиновой крошки используют продукт, полученный путем ее обработки в течение 0.5-3 ч озоно-воздушной смесью с содержанием озона 1-32 мг/л и скоростью подачи 9-18 л/ч, с получением продукта с кислотным числом 1.64-10.02 мг КОН/г.
В качестве резиновой крошки используют измельченную протекторную резину с размером частиц 0,125-1,0 мм.
Сущность изобретения заключается в следующем.
Для получения катионита используют предварительно фракционированную резиновую крошку (РК) измельченных автомобильных покрышек. Фракционирование РК проводят на виброситах с диаметром отверстий 0,125; 0,2; 0,63; 1,0 мм. Для приготовления катионита использовали крошку оставшуюся на ситах соответствующую размерам 0,125-1,0. Это оптимальный размер исходной резиновой крошки, необходимый для получения модифицированной резиновой крошки с кислотным числом 1,64-10,02 мг КОН/г, обеспечивающий высокую сорбционную емкость.
Сорбция ионов металлов происходит в результате замещения подвижного атома водорода в карбоксильной группе на ионы металла, находящиеся в растворе. У ионизированной формы катионита происходит перераспределение электронной плотности и образование равноценных атомов кислорода, которые взаимодействуют с ионами переходных металлов вследствие реализации полярной ковалентной связи с образованием симметричных четырехчленных циклов:
Figure 00000001
Сорбционная емкость материала зависит от количества карбоксильных групп на поверхности озонированной резиновой крошки, характеризуемых кислотным числом образца катионита. Сшитая, эластичная, устойчивая к воде полимерная основа катионита позволяет сорбировать ионы металлов в различных средах в широких пределах рН раствора.
Взаимодействие озона с резиновой крошкой автомобильного протектора, протекая по общим закономерностям топохимических процессов, имеет механизм, аналогичный механизму взаимодействия непредельных каучуков. Это связано с тем, что автомобильные шины изготавливают из резин на основе изопренового, бутадиенового и бутадиенстирольного каучуков и их смесей. Скорость процессов присоединения озона к непредельным каучукам составляет 105 до 107 моль·л/с [Разумовский С.Д. Озон и его реакции с органическими соединениями (кинетика и механизм) /С.Д.Разумовский, Г.Е.Заиков. М.: Наука, 1974, 322 с], поэтому для обеспечения протекания процесса присоединения в кинетической области скорость газового потока и концентрация озона необходимо поддерживать на соответствующих уровнях. В соответствии с этим основными параметрами процесса модификации, при прочих равных условиях, будут являться: скорость подачи озоно-воздушной смеси и ее концентрация. При уменьшении скорости подачи менее 9 л/ч не представляется возможным обеспечить объемный процесс модификации резиновой крошки. При увеличении скорости подачи более 18 л/ч наблюдается значительный проскок озоно-воздушной смеси с повышенным содержанием озона. Оптимальные время обработки резиновой крошки 0,5-3 часа, так как, в зависимости от концентрации озона в озоно-воздушной смеси, в этом промежутке получают максимальное содержание функциональных групп. Необходимая концентрация озона в озоно-воздушной смеси 1-32 мг/л, так как уменьшение концентрации озона менее 1 мг/л значительно увеличивает время процесса, а при концентрациях более 32 мг/л имеет место проскок озона, что приводит к снижению экономической эффективности процесса.
Способ осуществляют следующим образом.
Измельченную крошку протекторной резины, полученной любым известным способом массой 100 г подвергают воздействию озоно-воздушной смеси с содержанием озона 1-32 мг/л при скорости потока 9-18 л/ч. Процесс ведут при комнатной температуре в реакторе с пористым дном и мешалкой, в течение 0,5-3 часов. Средний размер частиц крошки 0.125-1.0 мм. Полученный продукт имеет кислотное число 1,64-10,02 мг КОН/г.
Определение кислотности крошки проводят обратным титрованием образцов (титрованием 0,1 н. раствора гидроксида натрия, полученного после обработки образца крошки в течение 1 часа, 0,1 н. раствором соляной кислоты).
Получение озонированной резиновой крошки иллюстрируется следующими примерами.
Пример 1. В реактор объемом 350 мл снабженный пористым дном, обратным холодильником и мешалкой загружают 100 г измельченной протекторной резины размером частиц 0,125 мм. При перемешивании сухой смеси через пористое дно реактора подают озоно-воздушную смесь с содержанием озона 32 мг/л и скоростью подачи 9 л/ч. Реакцию проводят в течение 3 часов. Продукт имеет кислотное число 10,02 мг КОН/г.
Пример 2. В отличие от примера 1 в реактор загружают 100 г измельченной протекторной резины размером частиц 0,125-0,2 мм. Скорость подачи озоно-воздушной смеси 12 л/ч. Процесс ведут в течение 2,5 часов. Полученный продукт имеет кислотное число 8,65 мг КОН/г.
Пример 3. В отличие от примера 2 в реактор загружают 100 г измельченной протекторной резины размером частиц 0,2-0,63 мм. Концентрацию озона в озоно-воздушной смеси 25 мг/л. Процесс ведут в течение 2 часов. Полученный продукт имеет кислотное число 3,32 мг КОН/г.
Пример 4. В отличие от примера 3 в реактор загружают 100 г резиновой крошки размером частиц 0,63-1,0 мм. Концентрация озона в озоно-воздушной смеси 1 мг/л, скорость подачи 18 л/ч. Реакцию проводят в течение 0,5 часов. Продукт имеет кислотное число 1,64 мг КОН/г.
Натриевую форму катионита получают обработкой озонированной резиновой крошки 0,1 н раствором NaOH, с последующей промывкой и сушкой на воздухе.
Полученные образцы испытывались на предмет извлечения ионов ртути, меди, кобальта, никеля и свинца из водных раствора их солей.
Пример по извлечению ионов металлов осуществляют следующим образом: в коническую колбу помещают раствор, содержащий ионы металла (5 мг/л) и добавляют 1 г карбоксилсодержащей крошки. После истечения 24 часов определяют концентрацию раствора по стандартной методике (Салдадзе К.М., Пашков А.Б., Титов B.C. Ионообменные высокомолекулярные соединения. - М.: Госхимиздат, 1960. - 365 с.). Результаты проведенных исследований представлены в таблице.
Таблица
Сорбционная емкость катионитов
Катионит Размер мм Сорбционная емкость, мг-экв./г
Cu+2 Ni+2 Со+2 Hg+2 Pb+2
Прототип Н-форма
- 1,43 1,48 1,22 0,95 -
Na-форма
- 3,21 1,35 2,56 0,98 -
Катионит по предлагаемому способу Н-форма
Пример 1 0,125 1,05 0,98 1,01 0.99 2,21
Пример 2 0,125-0,2 1,11 1,18 1,17 0.79 1,98
Пример 3 0,2-0,63 1,93 1,61 1,38 0.60 1,65
Пример 4 0,63-1 1,42 1,56 1,29 0.49 1,24
Na-форма
0,2-0,63 3,40 2,96 2,64 1,63 2,89
0,63-1 3,22 2,85 2,35 1,23 2,61
Из представленных примеров видно, что на процесс образования функциональных групп оказывает влияние размер частиц, концентрация озона в смеси, скорость подачи озоно-воздушной смеси и время обработки.
Так же показано, в исследованных условиях образцы модифицированной резиновой крошки имеют более высокую сорбционную емкость в Na-форме, чем образцы в Н-форме. Сорбционная емкость, например, ионов ртути, для полученных катионитов составляет: для размера 0,2-0,63 мм - 0,6 (для Na-формы - 1,63) мг-экв./г; для размера 0,63-1,0 мм - 0,49 (для Na-формы - 1,23) мг-экв./г.

Claims (2)

1. Способ извлечения ионов металлов из растворов путем сорбции катионитом на основе модифицированной резиновой крошки, отличающийся тем, что в качестве модифицированной резиновой крошки используют продукт, полученный путем ее обработки в течение 0,5-3 ч озоно-воздушной смесью с содержанием озона 1-32 мг/л и скоростью подачи 9-18 л/ч, с получением продукта с кислотным числом 1,64-10,02 мг КОН/г.
2. Способ извлечения ионов металлов из растворов по п.1, отличающийся тем, что в качестве резиновой крошки используют измельченную протекторную резину с размером частиц 0,125-1,0 мм.
RU2007141310/15A 2007-11-07 2007-11-07 Способ извлечения ионов металлов из растворов RU2347755C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007141310/15A RU2347755C1 (ru) 2007-11-07 2007-11-07 Способ извлечения ионов металлов из растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007141310/15A RU2347755C1 (ru) 2007-11-07 2007-11-07 Способ извлечения ионов металлов из растворов

Publications (1)

Publication Number Publication Date
RU2347755C1 true RU2347755C1 (ru) 2009-02-27

Family

ID=40529815

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007141310/15A RU2347755C1 (ru) 2007-11-07 2007-11-07 Способ извлечения ионов металлов из растворов

Country Status (1)

Country Link
RU (1) RU2347755C1 (ru)

Similar Documents

Publication Publication Date Title
US8399528B2 (en) Method for improved removal of cations by means of chelating resins
Yao et al. Defluoridation of water using neodymium-modified chitosan
US6649663B1 (en) Process for preparing monodisperse ion exchangers having chelating functional groups and the use thereof
US8506818B2 (en) Method for producing chelate resins
Gode et al. Sorption of Cr (III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins
JP5600541B2 (ja) キレート樹脂を用いるカチオンの改善された除去方法
Wawrzkiewicz et al. Remazol Black B removal from aqueous solutions and wastewater using weakly basic anion exchange resins
Jachuła et al. Sorption of Cu (II) and Ni (II) ions in the presence of the methylglycinediacetic acid by microporous ion exchangers and sorbents from aqueous solutions
Huang et al. Removal of fluoride from aqueous solution onto Zr-loaded garlic peel (Zr-GP) particles
Araissi et al. The removal of cadmium, cobalt, and nickel by adsorption with Na-Y zeolite
Zinicovscaia et al. Biosorption of nickel from model solutions and electroplating industrial effluenusing cyanobacterium arthrospira platensis
Yilmaz Ozmen et al. Removal of carcinogenic direct azo dyes from aqueous solutions using calix [n] arene derivatives
Kuang et al. Adsorption kinetics and adsorption isotherm studies of chromium from aqueous solutions by HPAM-chitosan gel beads
CN110115980A (zh) 一种高选择性吸附Cr(VI)的微球吸附剂及其制备方法和应用
CN107572557B (zh) 盐渣精制高效组合深度处理方法
Davidescu et al. Use of di-(2-ethylhexyl) phosphoric acid (DEHPA) impregnated XAD7 copolymer resin for the removal of chromium (III) from water
RU2347755C1 (ru) Способ извлечения ионов металлов из растворов
Khajeh et al. Imprinted polymer particles for iron uptake: synthesis, characterization and analytical applications
Yao et al. Characteristics of Pb 2+ biosorption with aerobic granular biomass
Tsaneva et al. Evaluation of adsorption capacity of chitosan-cinnamaldehyde schiff base
Gomelya et al. Usage of sorbent-catalyst to accelerate the oxidation of manganese
Bulai et al. Study of the copper (II) removal from aqueous solutions by chelating resin Purolite S930.
Gong et al. Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles
Gomelya et al. Sorbent-Catalyst for Acceleration of the Iron Oxidation Process
RU2373998C2 (ru) Способ получения катионита

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091108