RU2341493C1 - Способ изготовления изделий из наноструктурированной корундовой керамики - Google Patents

Способ изготовления изделий из наноструктурированной корундовой керамики Download PDF

Info

Publication number
RU2341493C1
RU2341493C1 RU2007114443/03A RU2007114443A RU2341493C1 RU 2341493 C1 RU2341493 C1 RU 2341493C1 RU 2007114443/03 A RU2007114443/03 A RU 2007114443/03A RU 2007114443 A RU2007114443 A RU 2007114443A RU 2341493 C1 RU2341493 C1 RU 2341493C1
Authority
RU
Russia
Prior art keywords
alumina
alphabond
mixture
electrocorundum
alumina oxide
Prior art date
Application number
RU2007114443/03A
Other languages
English (en)
Inventor
Борис Лазаревич Красный (RU)
Борис Лазаревич Красный
Вадим Павлович Тарасовский (RU)
Вадим Павлович Тарасовский
Александр Борисович Красный (RU)
Александр Борисович Красный
Антон Сергеевич Енько (RU)
Антон Сергеевич Енько
Original Assignee
Закрытое акционерное общество Научно-технический центр "Бакор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество Научно-технический центр "Бакор" filed Critical Закрытое акционерное общество Научно-технический центр "Бакор"
Priority to RU2007114443/03A priority Critical patent/RU2341493C1/ru
Application granted granted Critical
Publication of RU2341493C1 publication Critical patent/RU2341493C1/ru

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к керамическому материаловедению на базе оксида алюминия с использованием керамических наночастиц и может быть использовано в процессах изготовления изделий с повышенными физико-механическими и термическими характеристиками. Способ включает изготовление формовочной смеси, содержащей фракционированный электрокорунд при соотношении фракций 0,5-3 мм к 0,01-0,5 мм, равном 1:1, бимодальный реактивный глинозем CL 370, гидравлически твердеющую добавку в виде глинозема Alphabond-300, кремнезоль «К3-ТМ» при следующем соотношении компонентов, мас.%: электрокорунд 60-66, глинозем CL370 29-33, глинозем Alphabond-300 2-4, кремнезоль «К3-ТМ» 1-5. Осуществляют сухое смешивание глинозема CL 370 Alphabond-300, в полученную смесь вводят последовательно фракции электрокорунда 0,01-0,5 мм и 0,5-3,0 мм, смесь гомогенизируют, увлажняют кремнезолем «К3-ТМ» при постоянном перемешивании, формование осуществляют под действием виброколебаний, периодически приложенных по вертикальной и горизонтальной оси пресс-формы, полученную заготовку подвергают воздушному твердению, сушат и обжигают. Технический результат: расширение технических возможностей способа и повышение качества керамических материалов.

Description

Изобретение относится к керамическому материаловедению на базе оксида алюминия с использованием керамических наночастиц и может быть использовано в процессах изготовления изделий с повышенными физико-механическими и термическими характеристиками.
Интенсификация технологических процессов в тепловых агрегатах стекольной, сталелитейной, химической отраслях промышленности определяет необходимость создания керамических материалов и способ изготовления на их основе изделий, макро- и микроструктура которых отвечала бы целевому назначению узлов тепловых агрегатов с заданными условиями эксплуатации.
В технике изготовления изделий из оксида алюминия для повышения термопрочности материала используют композиции зернистого состава, преимущественно с использованием фракционированного электрокорунда, а плотность материала изделий реализуют введением активирующих добавок в совокупности с деформационными усилиями при формировании полуфабриката способами изостатического и квазиизостатического формования, вибронабивкой и вибролитьем (Огнеупоры для вакуумных металлургических агрегатов. - М.: Металлургия 1982, с.92; SU 1013435 А, 23.04.83; RU 2198860 C2, 20.02.2003; VS 3238049 A, 01.031966; DD 60260 А, 05.02.1968; RU 2098386 C1, 10.12.97; Примаченко В.В. и др. О технологии изготовления муллитокорундовых тиглей. Сборник научных трудов. Огнеупоры. - М: Металлургия, 1983, с. 24-27, RU 2280016, 20.07.2006).
Недостатком известных технических решений является соотношение выбранных зернистых компонентов, определяющих высокую открытую пористость и низкую прочность, а добавки, снижающие температуру обжига изделий, не позволяют их использовать при более высоких температурах, так как происходит нерегулируемая структурная перестройка материала, приводящая к деградации эксплуатационных характеристик.
Наиболее близким аналогом-прототипом является способ изготовления тиглей из низкоцементного огнеупорного бетона, содержащего изготовление смеси совместного помола, включающую глинозем, высокоглиноземистый цемент и суперпластификатор, затем приготавливают низкоцементный огнеупорный бетон путем добавления электрокорунда и воды с последующим перемешиванием, затем методом вибролитья изготавливают заготовки тиглей, далее производят их выдержку, сушку и обжиг. При приготовлении смеси совместного помола сначала измельчают глинозем марки ГК- и суперпластификатор, затем добавляют высокоглиноземистый цемент и продолжают измельчение совместно. При изготовлении бетона добавляют в смесь электрокорунд фракции 0,01-3,5 мм и шлифзерно электрокорунда №50 с последующим перемешиванием с водой. После вибролитья с пригрузом заготовки корундовых тиглей выдерживают во влажной среде не менее суток, сушку полуфабрикатов производят не менее 12 ч. При температуре 40-120°С, а обжиг - при температуре 1500-1550°С в течение 6-8 ч (RU 2170717 С1, 20.07.2001 г.).
Недостатком известного способа является отсутствие в шихтовых материалах наночастиц оксида алюминия, позволяющих целенаправленно изменять макро- и микроструктуру материала и, как следствие, физико-механические и термопрочностные характеристики. Использование пригруза при вибролитье усложняет процессы удаления газовых включений в заготовках, а при изготовлении изделий сложного профиля необходимо изготавливать пригрузочный элемент, увеличивающий удельные расходы на единицу продукции. Присутствие значительного количества двухвалентного кальция приводит к нерегулируемому росту зерна мелкодисперсных фракций с неравномерным объемным распределением пористости.
Цель изобретения - разработка способа изготовления изделий из наноструктурированной корундовой керамики и повышение качества керамических материалов.
Достигается это тем, что в отличие от известного способа формовочная смесь содержит фракционированный электрокорунд, при соотношении фракций 0,5-3,0 мм к 0,01-0,5 мм, равном 1:1, и дополнительно бимодальный реактивный глинозем CL 370, гидравлически твердеющую добавку в виде глинозема Alphabond-300, затворяющую жидкость в виде кремнезоля марки «КЗ-ТМ» при следующем соотношении компонентов, мас.%:
Электрокорунд 60-66
Глинозем CL 370 29-33
Глинозем Alphabond-300 2-4
Кремнезоль «КЗ-ТМ» 1-5,
осуществляют сухое смешивание глинозема CL 370 и Alphabond-300, в полученную смесь вводят последовательно фракции электрокорунда, 0,01-0,5 мм и 0,5-3,0 мм смесь гомогенизируют, увлажняют кремнезолем «КЗ-ТМ», при постоянном перемешивании, формование осуществляют под действием виброколебаний, периодически приложенных по вертикальной и горизонтальной оси пресс-формы, полученную заготовку подвергают воздушному твердению, сушат и обжигают.
Сущность заявляемого технического решения заключается в том, что выполнение предлагаемого способа согласно вышеописанной последовательности операций позволяет конструировать микроструктуру материала с повышенной плотностью, базируясь на содержании зернистых компонентов и высокодисперсных наночастиц исходного высокоглиноземистого сырья. Способность Alphabond-300 образовывать тиксотропные смеси в присутствии кремнезолевого затворителя позволяет под действием вибрационных нагрузок получать жидкотекучие системы, хорошо заполняющие весь объем пресс-форм, а наложение вибронагрузок по вертикальной и горизонтальной осям пресс-формы обеспечивает равномерное распределение компонентов смеси в объеме заготовки, что определяет минимальный доверительный интервал значений прочности и термической устойчивости при их увеличении под действием наноструктурной компоненты.
Сущность изобретения реализуется совокупной последовательностью операций с использованием высокоглиноземистых компонентов в едином технологическом процессе, отличительными особенностями которого являются:
- использование реактивного бимодального глинозема Германской фирмы «Almatis» марки CL 370 состава, мас.%:
Al2О3 в α-фазе - 99,8, NaO - 0,01, Fe2O3 - 0,03, MgO - 0,01, SiO2 - 0,03, CaO - 0,02, содержащего 80-82% наночастиц размером менее 150 нм и 18-20% частиц со средним размером 500-1000 нм.
Материал не требует дополнительных механических и термических обработок, а концентрационные пределы оценены расчетным путем и подтверждены экспериментально;
- использование аморфного глинозема Германской фирмы «Almatis» марки Alphabond-300 позволяет под действием затвердителя образовывать тиксотропные смеси, которые при вибрации образуют жидкотекучие системы, причем при содержании менее 2% происходит быстрое схватывание за 5-15 мин, что технологически невыгодно, а выше 4% время схватывания увеличивается до 1,5-2 ч и приводит к резкому снижению кратности использовании пресс-форм для получения заготовок с достаточной транспортной прочностью, что увеличивает удельные расходы металла на единицу продукции;
- введение затворяющей жидкости в виде кремнезоля «КЗ-ТМ» с массовой концентрацией диоксида кремния 160-320 г/л (ГОСТ (ТУ) 2145-004-12979928-01) и удельной поверхностью ≈535 м2/г позволяет организовать тиксотропные смеси с Alphabond-300 и за счет высокой дисперсности диоксида кремния пассивировать рост наночастиц глинозема CL-370 при обжиге, а содержание кремнезоля 1-5% обеспечено тем, что при 1% резко возрастает вязкость подвижной системы и затруднено объемное заполнение пресс-формы, а при 5% увеличивается время схватывания и удлиняется процесс сушки;
- процесс сухого смешивания позволяет использовать смеситель интенсивного действия типа R фирмы «Айрих», который позволяет смешать наноразмерные порошки глинозема CL 370 и Alphabond-300 без образования конгломератов с последующим равномерным объемным распределением в смеси электрокорунда, а при увлажнении порошковой смеси кремнезолем у технолога появляется альтернативное решение увлажнение проводить непосредственно после смешивания порошков, что целесообразно при изготовлении небольших партий формовочной смеси, или накапливать в емкостях сухие смеси с увлажнением необходимого количества кремнезоля непосредственно перед вибролитьем заготовок;
- периодическое приложение виброколебаний по вертикальной и горизонтальной оси пресс-формы обеспечивает равномерное заполнение объема пресс-формы, исключает расслоение компонентов смеси и обеспечивает естественную упаковку зернистых материалов и свободный выход возможных газовых включений;
- воздушное твердение обеспечивает структурообразование, сопровождающееся возрастанием вязкости и переходом формовочной смеси в твердообразное состояние;
- сушка производится для удаления влаги, чтобы избежать нежелательных дефектов в виде вздутий, раковин, трещин в процессе обжига;
- обжиг закрепляет структурирование материала и обеспечивает физико-механические и термопрочностные характеристики изделий.
В качестве реализации изобретения могут служить примеры изготовления тиглей широкой номенклатуры в соответствии с ТУ 193310-11773998-58-2005, объем которых изменяется от 1,36 л до 93,0 л с соответствующей вариацией массогабаритных и конфигурационных характеристик и плит для технологической оснастки.
Пример 1.
Для изготовления изделий изготавливали формовочную массу в количестве 100 кг, содержащую соответственно: электрокорунд фракции 0,5-3 мм - 31,5 кг, электрокорунд фракции 0,01-0,5 мм - 31,5 кг, глинозем CL 370 - 31 кг, глинозем Alphabond-300 - 3 кг, кремнезоль «КЗ-ТМ» - 3 кг.
Порошковые смеси получали путем сухого смешивания в смесителе фирмы «Айрих», который обеспечивает равномерное распределение компонентов смеси независимо от их доли и физических свойств и небольшую продолжительность цикла.
Первоначально получали смесь глинозема CL 370 (31 кг) и Alphabond-300 (3 кг). Время смешивания составляло 3 мин. В полученную глиноземную смесь вводили электрокорунд фракции 0,01-0,5 мм в количестве 31,5 кг и проводили смешивание в течение 2-х мин, после введения электрокорунда фракции 0,5-3,0 мм 31,5 кг проводили цикл гомогенизации в течение 4-5 мин.
Полученную сухую смесь увлажняли кремнезолем «КЗ-ТМ» в количестве 3 кг и проводили гомогенизацию смеси в течение 3-4 мин.
Из полученной формовочной смеси изготавливали тигли объемом 20 л и весом 32,5 кг. Расчетное количество смеси помещали в разборную металлическую пресс-форму с сердечником, установленную на вибростоле. После заполнения пресс-формы осуществляли вибролитье с частой 50 Гц и амплитудой колебания 1,5 мм.
В результате приложения вибронагрузки вертикально оси пресс-формы смесь приобретала жидкотекучее состоянии. Время цикла составляло 20 с. Последующий цикл осуществляли в направлении горизонтальной оси пресс-формы в течение 20 с.
Заполнение пресс-формы смесью до расчетного объема проводили путем 2-3-кратных циклов смены направлений приложения вибронагрузок.
Отформованную заготовку после снятия вибронагрузок оставляли в пресс-форме, где она в течение 1-1,5 часов приобретала транспортную прочность, достаточную для разборки пресс-формы и перемещения заготовки на стеллаж, где заготовка выдерживалась в течение 10-12 часов до операции сушки.
Сушку заготовок осуществляли в камерной сушилке с постепенным подъемом температуры до 100-120°С со скоростью 40-50°С в сутки. Визуальный контроль заготовок после сушки не обнаружил дефектов в виде вмятин, вздутий, каверн или микротрещин.
Обжиг изделий осуществляли в туннельной печи при температуре 1550±30°С с изотермической выдержкой 6-8 часов.
Пример 2.
Изготавливали тигли объемом 12,1 л и весом 18,5 кг при содержании в формовочной смеси 1% кремнезоля «КЗ-ТМ» и 4% глинозема Alphabond-300.
При идентичной последовательности операций, как в примере 1, изменялись параметры формования и сушки.
Доброкачественные заготовки получали при 7-8 циклах приложения вибронагрузок в направлениях вертикальной и горизонтальной оси пресс-формы. Время до извлечения заготовки из пресс-формы составляло 30-40 мин.
Процесс сушки ускорялся до скорости подъема температуры 80-90°С в сутки.
Пример 3.
Изготовляли тигли объемом 20 л и весом 32,5 кг при содержании в формовочной смеси 5% кремнезоля «КЗ-ТМ» и 2% глинозема Alphabond-300.
При идентичности последовательности операций, как в примере 1, доброкачественные заготовки получали при одноцикловом режиме приложения вибронагрузки. Время до извлечения заготовки из пресс-формы увеличивалось до 2-2,5 часов, воздушное твердение проходило в течение суток.
Скорость подъема температур сокращалась до 20-30°С в сутки до достижения 100-120°С.
Пример 4.
Из формовочной смеси, как в примере 1, при сохранении последовательности операций изготавливали плиты размером 900×300×50 мм для технологического использования, причем плиты в посадочной плоскости имели трапециальные выемки по ширине плиты для свободной циркуляции горячего газа.
Установлено, что наиболее эффективное использование разработанного способа осуществляется при первичном наложении виброколебаний в горизонтальной плоскости с последующим приложением виброколебаний в вертикальном направлении.
При сохранении параметров вибронагрузок доброкачественные заготовки получали при количестве циклов не более 2-х.
Параллельно с изготовлением изделий по примерам 1-4 получали образцы-свидетели для определения физико-механических характеристик и термостойкости.
Контроль качества изделий по бракующим признаком, в основном деформации стенок, показал выход годного 97-98% и был обусловлен нестационарным распределением поля температур в туннельной печи.
Общая пористость изделий колебалась в пределах 10-11% при открытой пористости 0,5-0,7. Прочность материала на сжатие в зависимости от содержания наночастиц компонентов глинозема колебалась в пределах 130-150 МПа при доверительном интервале ±1,0 МПа, что обеспечено равномерным распределением зернистых компонентов и наноразмерных корундовых составляющих.
Термостойкость материалов при циклировании 1200° - вода составляет не менее 25 циклов.
Полученные характеристики материалов по своим значениям превосходят аналоговые решения, а следовательно, разработанный способ обеспечивает изготовление крупногабаритных изделий сложной формы из наноструктурированной корундовой керамики с гарантированными эксплуатационными характеристиками. Кроме того, способ обеспечивает точность повторения (цикличность) получаемых характеристик изделий, что повышает гарантии получения качественной продукции у потребителя, например, при плавке высоколегированных сплавов в индукционных тигельных печах.

Claims (1)

  1. Способ изготовления изделий из наноструктурированной керамики, включающий изготовление формовочной смеси, содержащей электрокорунд фракций 0,01-3,5 мм, глинозем, гидравлически твердеющую добавку, затворяющую жидкость, формование методом вибролитья, сушку полуфабриката и обжиг при температурах 1500-1550°С, отличающийся тем, что формовочная смесь содержит фракционированный электрокорунд при соотношении фракций 0,5-3,0 мм к 0,01-0,5 мм, равном 1:1, и дополнительно бимодальный реактивный глинозем CL 370, гидравлически твердеющую добавку в виде глинозема Alphabond-300, затворяющую жидкость в виде кремнезоля «К3-ТМ» при следующем соотношении компонентов, мас.%:
    Электрокорунд 60-66 Глинозем CL 370 29-33 Глинозем Alphabond-300 2-4 Кремнезоль «К3-ТМ» 1-5
    осуществляют сухое смешивание глинозема CL 370 и Alphabond-300, в полученную смесь вводят последовательно фракции электрокорунда 0,01-0,5 мм и 0,5-3,0 мм, смесь гомогенизируют, увлажняют кремнезолем «К3-ТМ» при постоянном перемешивании, формование осуществляют под действием виброколебаний, периодически приложенных по вертикальной и горизонтальной осям пресс-формы, полученную заготовку подвергают воздушному твердению, сушат и обжигают.
RU2007114443/03A 2007-04-18 2007-04-18 Способ изготовления изделий из наноструктурированной корундовой керамики RU2341493C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007114443/03A RU2341493C1 (ru) 2007-04-18 2007-04-18 Способ изготовления изделий из наноструктурированной корундовой керамики

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007114443/03A RU2341493C1 (ru) 2007-04-18 2007-04-18 Способ изготовления изделий из наноструктурированной корундовой керамики

Publications (1)

Publication Number Publication Date
RU2341493C1 true RU2341493C1 (ru) 2008-12-20

Family

ID=40375178

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007114443/03A RU2341493C1 (ru) 2007-04-18 2007-04-18 Способ изготовления изделий из наноструктурированной корундовой керамики

Country Status (1)

Country Link
RU (1) RU2341493C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637264C2 (ru) * 2015-12-30 2017-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" Способ изготовления огнеупорных изделий из корундовой керамики
RU2637266C1 (ru) * 2016-06-14 2017-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" Шихта для изготовления корундовых огнеупорных изделий
RU2749520C2 (ru) * 2016-09-29 2021-06-11 Рифрэктори Интеллектчуал Проперти Гмбх Унд Ко. Кг Огнеупорная керамическая смесь, а также способ получения керамического огнеупора

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2637264C2 (ru) * 2015-12-30 2017-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" Способ изготовления огнеупорных изделий из корундовой керамики
RU2637266C1 (ru) * 2016-06-14 2017-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" Шихта для изготовления корундовых огнеупорных изделий
RU2749520C2 (ru) * 2016-09-29 2021-06-11 Рифрэктори Интеллектчуал Проперти Гмбх Унд Ко. Кг Огнеупорная керамическая смесь, а также способ получения керамического огнеупора

Similar Documents

Publication Publication Date Title
RU2640684C2 (ru) Обработка зольного уноса и изготовление изделий, содержащих составы на основе зольного уноса
Wang et al. Effect of fly ash cenospheres on the microstructure and properties of silica-based composites
Sadik et al. Processing and characterization of alumina–mullite ceramics
CN108623314B (zh) 未成形混凝土以及制造固化的和烧结的混凝土的方法
Mostafa et al. Sintering mechanism of blast furnace slag–kaolin ceramics
HUE030569T2 (hu) Könnyû kerámiaanyag
RU2341493C1 (ru) Способ изготовления изделий из наноструктурированной корундовой керамики
JPH08283073A (ja) 窯道具
Khattab et al. Alumina–zircon refractory materials for lining of the basin of glass furnaces: effect of processing technique and TiO2 addition
CN104326757B (zh) 原位生成莫来石晶须增强透气砖的方法及莫来石晶须增强透气砖
CN106946550B (zh) 一种抗剥落性能优良的镁尖晶石砖及其制备方法
JP2018165224A (ja) 多孔質セラミックス
CN102746004A (zh) 一种铝溶胶结合的中间包用挡渣堰
RU2742265C1 (ru) Сырьевая смесь для изготовления огнеупорных изделий
RU2751616C1 (ru) Способ приготовления суспензии для литья керамических изделий
CN113149671A (zh) 轻质莫来石-氧化铝空心球-钛酸铝匣钵浇注成型工艺
JP2006290657A (ja) 耐火物およびその製造方法
WO2017085667A2 (en) Lightweight concrete with a high elastic modulus and use thereof
JP4504036B2 (ja) 非晶質シリカ成形体およびその製造方法
RU2284974C1 (ru) Способ изготовления муллитокорундовых огнеупорных изделий
CN106001426B (zh) 一种联板铸造工艺
RU2245864C1 (ru) Способ изготовления огнеупорных изделий
RU2203247C1 (ru) Способ изготовления безобжиговых огнеупорных изделий, применяемых в металлургической промышленности
RU2242437C2 (ru) Шихта для изготовления ячеистого стекла
CN117756512A (zh) 一种高强度莫来石质自流浇注料及其制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100419