RU2339598C2 - Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута - Google Patents

Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута Download PDF

Info

Publication number
RU2339598C2
RU2339598C2 RU2006142972/03A RU2006142972A RU2339598C2 RU 2339598 C2 RU2339598 C2 RU 2339598C2 RU 2006142972/03 A RU2006142972/03 A RU 2006142972/03A RU 2006142972 A RU2006142972 A RU 2006142972A RU 2339598 C2 RU2339598 C2 RU 2339598C2
Authority
RU
Russia
Prior art keywords
temperature
textured
bismuth
crystallites
basis
Prior art date
Application number
RU2006142972/03A
Other languages
English (en)
Other versions
RU2006142972A (ru
Inventor
Михаил Иванович Петров (RU)
Михаил Иванович Петров
Дмитрий Александрович Балаев (RU)
Дмитрий Александрович Балаев
Ирина Леонидовна Белозерова (RU)
Ирина Леонидовна Белозерова
Денис Михайлович Гохфельд (RU)
Денис Михайлович Гохфельд
Сергей Иванович Попков (RU)
Сергей Иванович Попков
нов Олег Николаевич Марть (RU)
Олег Николаевич Мартьянов
Кирилл Александрович Шайхутдинов (RU)
Кирилл Александрович Шайхутдинов
Original Assignee
Институт физики им. Л.В. Киренского Сибирского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт физики им. Л.В. Киренского Сибирского отделения РАН filed Critical Институт физики им. Л.В. Киренского Сибирского отделения РАН
Priority to RU2006142972/03A priority Critical patent/RU2339598C2/ru
Publication of RU2006142972A publication Critical patent/RU2006142972A/ru
Application granted granted Critical
Publication of RU2339598C2 publication Critical patent/RU2339598C2/ru

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута Pb0.3Bi1.8Sr1.9Ca2Cu3Ox, которая может быть использована в электротехнике и транспорте. Техническим результатом изобретения является получение плотного материала с высокой степенью текстуры простым и нетрудоемким способом. Пористую керамику плотностью от 1.8 г/см3 до 2.4 г/см3 пропитывают этиловым спиртом и подвергают одноосному сжатию давлением 400-500 МПа при комнатной температуре. Затем просушивают и отжигают при температуре 820-850°С в течение 30-100 часов. 5 ил.

Description

Изобретение относится к области технологии изготовления изделий из сверхпроводящей керамики и может быть использовано в электроэнергетике, транспорте.
Известен способ получения текстурированной высокотемпературной сверхпроводящей (ВТСП) керамики на основе (Bi,Pb)2Sr2Ca2Cu3Ox [N.Chen, А.С.Biondo, S.E.Dorris, K.C.Gorella, M.T.Lanagan, C.A.Youngdahl, R.B.Poeppel, Sinter-forged (Bi,Pb)2Sr2Ca2Cu3Ox superconductors, Superconductor Science & Technology. 1993. Vol.6. P.674-677], использующий сложный технологический процесс, который условно можно разбить на два этапа. На первом этапе приготавливается порошок исходного химического состава (Bi1.8Pb0.4)2Sr2Ca2.2Cu3Ox, затем он прессуется (подвергается одноосному сжатию при давлении 70 МПа) в виде брусков. На втором этапе бруски помещаются в серебряную фольгу и дополнительно подвергаются одноосному сжатию и отжигу при высокой температуре 830-860°С с заданной скоростью сжатия (0.001-0.005 мм/мин) в течение длительного времени (сотни часов). Описанный процесс имеет устоявшееся название - так называемый метод «синтеза в кузнице» ("sinter-forged method").
Недостатком данного метода приготовления текстурированных материалов является трудоемкость технологического процесса.
Наиболее близким техническим решением является метод для получения текстурированных ВТСП керамик на основе Bi1.2Pb0.8Sr2Ca2Cu3Ox и Bi1.6Pb0.4Sr2Ca2Cu3Ox [F.Wellhofer, C.E.Gough, D.A.O'Connor, T.W.Button, N.McN. Alford, Superconductor Science & Technology. 1990. Vol.3. P.611-615]. На первом этапе приготавливается поликристаллический материал - основа будущей текстурированной керамики в виде ленты. На втором этапе полученные ленты прессуют заново, затем отжигают при Т=850°С в течение 50 часов и повторяют указанный цикл прессование - отжиг несколько раз.
Недостатком данного метода приготовления текстурированных материалов является длительность процесса ввиду необходимости проведения неоднократного повторения указанного цикла прессование - отжиг и низкая степень текстуры после проведения первых циклов.
Техническим результатом изобретения является получение плотного материала на основе висмутового ВТСП с высокой степенью текстуры нетрудоемким способом.
Технический результат достигается тем, что в способе получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута, включающем приготовление керамики, ее прессование и отжиг, новым является то, что используют пористую керамику плотностью от 1.8 г/см3 до 2.4 г/см3 состава Pb0.3Bi1.8Sr1.9Ca2Cu3Ox, содержащую микропоры, разделяющие пластинчатые кристаллиты толщиной ~1 мкм, которую пропитывают этиловым спиртом, подвергают одноосному сжатию при давлении 400-500 МПа при комнатной температуре, затем высушивают и отжигают при Т=820-850°С в течение 30-100 часов.
Заявляемый способ отличается от прототипа перечисленными выше признаками, которые не были проявлены в других известных технических решениях, что и обеспечивает заявляемому техническому результату соответствие критериям «новизна» и «изобретательский уровень».
На фиг.1 представлены микрофотографии текстурированного образца Pb0.3Bi1.8Sr1.9Ca2Cu3Ox, полученные сканирующей электронной микроскопией. Снимки сделаны с участка на сломе в направлении оси прессования текстурированного образца (а) и с поверхности плоскости таблетки (б, в).
На фиг.2 представлены дебаеграмма текстурированного Bi1.8Pb0.3Sr2Са2Cu3Ох.
На фиг.3 приведена температурная зависимость удельного электросопротивления ρ(Т) текстурированного ВТСП Bi1.8Pb0.3Sr2Ca2Cu2Ox.
На фиг.4 приведены результаты измерений петель гистерезиса намагниченности М(H) образцов текстурированного ВТСП.
На фиг.5 приведены результаты измерений петель гистерезиса намагниченности М(H) образца текстурированного ВТСП (направление магнитного поля Н параллельно с-оси кристаллитов) и для сравнения М(Н) образца висмутового ВТСП поликристалла.
Пример №1
В данном способе в качестве основы будущего текстурированного материала служит не плотный поликристалл, как в описанных аналоге и прототипе, а пористая керамика Pb0.3 Bi1.8Sr1.9Са2Cu3Ох, полученная способом, разработанным ранее [М.И.Петров, Д.А.Бадаев, К.А.Шайхутдинов, С.И.Попков, Т.Н.Тетюева, С.Г.Овчинников. Способ получения пористой высокотемпературной сверхпроводящей керамики на основе висмута // Патент РФ, RU 2261233]. Пористая керамика Pb0.3Bi1.8Sr1.9Ca2Cu3Ox приготовлялась в два этапа: на первом этапе синтезируют промежуточный продукт номинального состава Pb0.3Bi1.8Sr1.9CayCu3Ох, где 1.0≤y≤1.5, при температуре 800-820°С в течение 12-24 часов, а на втором этапе добавляют в полученный промежуточный продукт карбонат кальция СаСО3 до получения стехиометрической формулы Pb0.3Bi1.8Sr1.9Са2Cu3Ох с последующим совместным помолом, прессуют и окончательно отжигают его при температуре 830-850°С в течение 200-300 часов. Пористая керамика содержит микропоры, размерами 5-20 мкм, разделяющие отдельные кристаллиты, которые имеют форму пластин толщиной ~1 мкм с линейными размерами от ~5 мкм до ~30 мкм. Пористые образцы плотностью от 1.8 до 2.4 г/см3 были взяты в виде таблеток диаметром 20-30 мм и толщиной 7-12 мм. Жидкость (в данном случае - этиловый спирт) легко проникает в поры, т.к. при такой плотности практически все поры открытые. Таблетка подвергалась прессованию в направлении оси симметрии таблетки при давлении до 500 МПа при комнатной температуре. Присутствие пор дает возможность разворота пластинчатых кристаллитов так, чтобы их плоскости становились параллельными плоскости таблетки, при этом уменьшается вероятность слома кристаллитов. Присутствие жидкости с учетом ее практической несжимаемости создает для кристаллитов условия, аналогичные гидростатическому давлению, что способствует равномерному компактированию кристаллитов по всей глубине таблетки. Для выпаривания остатков спирта прессованные таблетки помещают в сушильный шкаф при Т=70°С на 5 часов. После прессования таблетки значительно уменьшаются в размере относительно исходного: толщина - 2-3 мм, диаметр - 20-30 мм (диаметр определяется размером пресс-формы). Затем образцы проходили отжиг при температуре 830°С в течение 30 часов. Отжиг при высокой температуре Т=830°С обеспечивает рост кристаллитов и обеспечивает их спайность и, как следствие, хороший электрический контакт между ними. Плотность полученных образцов составила ρ=5,29±0,01 г/см3 (89% от теоретической, теоретическая плотность составляет 5.95 г/см3). В результате только одного цикла прессование-отжиг получаются таблетки ВТСП с высокой степенью текстуры и большим диамагнитным откликом.
На фиг.1 представлены микрофотографии текстурированного образца Pb0.3Bi1.8Sr1.9Ca2Cu3Ox, полученные сканирующей электронной микроскопией. Снимки сделаны с участка на сломе в направлении оси прессования текстурированного образца (а) и с поверхности плоскости таблетки (б, в). Видно, что в разных направлениях образец демонстрирует качественно различную микроструктуру. В направлении оси прессования (фиг.1а) пластинки расположены в основном перпендикулярно оси прессования, т.е. параллельно плоскости таблетки, пластинки кристаллитов имеют толщину ~1 μm, т.е. ту же толщину, что и пластинки в исходном пористом ВТСП. Кристаллографическая ось-с кристаллитов направлена перпендикулярно плоскости пластин кристаллитов. На фиг.1а отчетливо видны границы между кристаллитами. Микрофотографии поверхности плоскости таблетки (фиг.1б, в) также подтверждают то, что пластинки кристаллитов лежат в плоскости таблетки, т.е. а-b плоскости кристаллитов ориентированы параллельно плоскости таблетки. Анализ микрофотографий, сделанных с поверхности таблетки с разным увеличением (фиг.1б, в), показывает, что нет четких границ, разделяющих отдельный кристаллит со всех сторон. Есть отдельные участки границ между кристаллитами, но они в большинстве не охватывают отдельный кристаллит. Это особенно видно при сравнении изображений межкристаллитных границ в направлении оси прессования (фиг.1а) и в плоскости таблетки (фиг.1б, с). Неоднородности, видимые на микрофотографиях поверхности таблетки, являются областями спайности кристаллитов. Таким образом, по данным электронной микроскопии полученный материал обладает текстурой, в которой пластинчатые кристаллиты ориентированы а-b плоскостями в плоскостях, параллельных поверхности таблетки.
На фиг.2 представлены дебаеграмма текстурированного Bi1.8Pb0.3Sr2Ca2Cu3Ox. Рефлексы соответствуют в основном структуре Bi2223. Из анализа данных на фиг.2 доля низкотемпературной фазы Bi2212 составляет менее 5%. Известно, что в поликристаллической керамике отношение интенсивностей рефлексов Σ(00l) к Σ(hkl) увеличивается с увеличением предпочтительной ориентации с-оси. Это соотношение может быть использовано для определения степени текстуры. Для количественного анализа выбраны рефлексы Bi 2223 (002), (004), (008), (0010), (0014), (0016), (0020), и (115), (119), (1115), (1117) и (1119). Степень текстуры Р определена следующим образом [Xi Zhengping, Zhou Lian. The formation and enhancement of texture in a Bi-system superconductor, Superconductor Science & Technology. 1994. Vol.7. P.908-912]:
P=ΣI(00l)/[ΣI(hkl)],
где I(hkl) - интенсивность (hkl) рефлексов, ΣI(hkl) указывает суммирование интенсивности всех выбранных пиков и ΣI(00l) сумма интенсивностей рефлексов (00l)-типов. Оказалось, что для полученной текстурированной керамики степень текстуры Р=0.97±0.01, что свидетельствует о высокой степени текстуры в данном материале.
На фиг.3 приведена температурная зависимость удельного электросопротивления ρ(Т) текстурированного ВТСП Bi1.8Pb0.3Sr2Ca2Cu3Ox. Транспортный ток задавался в направлении плоскостей а-b кристаллитов. Температура начала перехода в сверхпроводящее состояние составляет ~113 К. Температура, при которой сопротивление образца становится равным нулю, составляет 106 К. Зависимость ρ(Т) выше ТC имеет металлический ход. Полученные результаты свидетельствуют о том, что полученный материал обладает хорошими сверхпроводящими характеристиками, подобно плотным текстурированным образцам.
На фиг.4 приведены результаты измерений петель гистерезиса намагниченности М(H) образцов текстурированного ВТСП. Образец для измерений был выпилен из таблетки в форме куба размерами 2×2×2 мм3. Одна из граней куба совпадала с плоскостью таблетки. Т.е. а-b плоскости пластинчатых кристаллитов расположены параллельно двум противоположным граням куба и, соответственно, перпендикулярны четырем другим граням. Измерения проводились при 2-х вариантах ориентации магнитного поля Н по отношению к преимущественному направлению кристаллитов в образце: H||с и Н||а-b. Из фиг.4 видно, что диамагнитный отклик в направлении Н||с больше, чем в направлении Н||а-b. Т.е. полученный текстурированный материал обладает анизотропией магнитных свойств. Из величины диамагнитного отклика и характерного размера кристаллитов в различных направлениях можно оценить величину внутригранульного критического тока JCa-b и JCc. Для оценки внутригранульного критического тока была использована теория [В.В.Вальков, Б.П.Хрусталев. Намагничивание гранулированных ВТСП в сильных магнитных полях. - ЖЭТФ, 1995. Т.107 (4), С.1221-1231], которая опирается на классическую модель Бина, но в отличие от модели Бина учитывает гранулярную структуру поликристаллического образца. Согласно результатам цитированной работы, для оценки плотности критического тока поликристаллических образцов можно воспользоваться простой формулой JC≈2.7×106×ΔM(0)/d, где JC - плотность критического тока кристаллитов в плоскости, перпендикулярной направлению поля в А/см2; ΔМ(0) - ширина петли намагниченности в нулевом поле в эме/г; d - средний размер кристаллитов в направлении, параллельном вектору внешнего поля, в микрометрах. По данным электронной микроскопии (фиг.1а) толщина кристаллитов в направлении с-оси составляет d~1 μm, тогда внутригранульная плотность тока в ab-плоскости составляет JCab~135×106 А/см2. Для того чтобы получить значение критического тока по с-оси необходимо знать характерный размер кристаллитов в ab-плоскости. Как отмечалось выше, в плоскости, параллельной ab-плоскостям кристаллитов, отдельные кристаллиты не разделены четкими границами со всех сторон, см. фиг.1б, в. Четкие границы ограничивают обычно кластер, включающий в себя несколько спаянных кристаллитов. Средний размер такого кластера d~50÷100 мкм. Используя такое значение d, получим для внутригранульного критического тока вдоль с-оси JCc~0.55÷1.1×106 А/см2. Параметр анизотропии, определяемый как JCa-b/JCc, будет достигать значения ~125÷250. Полученные величины критического тока и значение параметра анизотропии типичны для висмутовых ВТСП. Это подтверждает, что полученный материал обладает высокой степенью текстуры.
На фиг.5 приведена зависимость намагниченности от магнитного поля М(H) образца из висмутового ВТСП поликристалла, в котором кристаллиты расположены хаотически, т.е. текстура отсутствует и для сравнения зависимость М(H) текстурированного ВТСП в направлении H⊥a-b (Н||с-оси). Видно, что диамагнитный отклик текстурированного ВТСП в направлении Н⊥a-b в 2.6 раза больше, чем для поликристалла. Высокие значения диамагнитного отклика и, как следствие, силы левитации важны для применений ВТСП в транспорте.
Пример №2
Текстурированный ВТСП был приготовлен аналогичным способом в один цикл прессование-отжиг, как описано в примере №1. Пористая керамика Pb0.3Bi1.8Sr1.9Ca2Cu3Ox плотностью 2.4 г/см3 была взята в виде таблетки диаметром 30 мм и толщиной 12 мм. Она пропитывалась этиловым спиртом, подвергалась прессованию в направлении оси симметрии таблетки при давлении 400 МПа при комнатной температуре. После выпаривания остатков спирта в сушильном шкафу при Т=70°С в течение 5 часов проводился отжиг при температуре Т=850°С в течение 100 часов.
Плотность полученных образцов составила ρ=5,28±0,01 г/см3. Результаты исследования микроструктуры, магнитных и резистивных свойств полученных образцов оказались схожими с результатами, приведенными для примера №1 на фиг.1-5
Пример №3
В данном способе текстурированный ВТСП был приготовлен аналогичным способом в один цикл прессование-отжиг, как описано в примерах №1, №2. В качестве основы будущего текстурированного материала служит пористая керамика Pb0.3Bi1.8Sr1.9Ca2Cu3Ox плотностью 1.8 г/см3, взятая в виде таблетки диаметром 20 мм и толщиной 8 мм. Она пропитывалась этиловым спиртом, подвергалась прессованию в направлении оси симметрии таблетки при давлении 500 МПа при комнатной температуре. После выпаривания остатков спирта в сушильном шкафу при Т=70°С в течение 5 часов проводился отжиг при температуре Т=820°С в течение 50 часов. Плотность полученных образцов составила ρ=5,30±0,01 г/см3. Результаты исследования микроструктуры, магнитных и резистивных свойств оказались идентичны результатам, приведенным для примеров №1, №2 на фиг.1-5.
Основываясь на результатах, полученных для примеров №1, №2, №3, можно сделать следующие выводы:
(1) варьирование давления прессования при комнатной температуре от 400 до 500 МПа,
(2) варьирование температуры отжига в пределах от 820°С до 850°С,
(3) увеличение времени отжига от 30 до 100 часов, практически не изменяет объемную плотность полученных текстурированных образцов, не оказывает заметного влияния на микроструктуру, а также сверхпроводящий переход и магнитные свойства текстурированных образцов.
Таким образом, разработан технологически простой метод получения текстурированных ВТСП на основе висмута, позволяющий получать материалы с высокой степенью текстуры и большими значениями диамагнитного отклика. Использование заявляемого изобретения позволит
- применять текстурированные ВТСП материалы в качестве активных элементов ограничителей тока короткого замыкания на основе ВТСП, работающих при температуре жидкого азота,
- использовать текстурированные ВТСП материалы в сверхпроводящих подвесах, сверхпроводящих подшипниках и сверхпроводящих накопителях энергии.

Claims (1)

  1. Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута, включающий приготовление керамики, ее прессование и отжиг, отличающийся тем, что используют пористую керамику плотностью от 1,8 до 2,4 г/см3 состава Pb0.3Bi1.8Sr1.9Ca2Cu3Ox, содержащую микропоры, разделяющие пластинчатые кристаллиты толщиной ~1 мкм, которую пропитывают этиловым спиртом, подвергают одноосному сжатию при давлении 400-500 МПа при комнатной температуре, затем высушивают и отжигают при Т=820-850°С в течение 30-100 ч.
RU2006142972/03A 2006-12-04 2006-12-04 Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута RU2339598C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006142972/03A RU2339598C2 (ru) 2006-12-04 2006-12-04 Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006142972/03A RU2339598C2 (ru) 2006-12-04 2006-12-04 Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута

Publications (2)

Publication Number Publication Date
RU2006142972A RU2006142972A (ru) 2008-06-20
RU2339598C2 true RU2339598C2 (ru) 2008-11-27

Family

ID=40193402

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006142972/03A RU2339598C2 (ru) 2006-12-04 2006-12-04 Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута

Country Status (1)

Country Link
RU (1) RU2339598C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532867C1 (ru) * 2013-12-13 2014-11-10 Александр Юрьевич Широков Способ химической очистки внутренних полостей теплообменного оборудования от накипно-коррозионных отложений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WELLHOFER F. et al. Superconductor Science & Technology. 1990. Vol.3. P.611-615. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2532867C1 (ru) * 2013-12-13 2014-11-10 Александр Юрьевич Широков Способ химической очистки внутренних полостей теплообменного оборудования от накипно-коррозионных отложений

Also Published As

Publication number Publication date
RU2006142972A (ru) 2008-06-20

Similar Documents

Publication Publication Date Title
Ersin Aytekin et al. Physical, magnetic and mechanical properties of Bi-2212 superconductors prepared by high pelletization pressure
JP2008130291A (ja) 超電導体膜及びその製造方法
Kahraman et al. Relationship between microstructure and superconducting properties in hot-pressed Bi-2212/Ag ceramic composites
RU2339598C2 (ru) Способ получения плотной текстурированной высокотемпературной сверхпроводящей керамики на основе висмута
KR950011339B1 (ko) 초전도 세라믹스막 형성용 타아겟재
Huang et al. Influences of Tape Thickness on the Properties of Ag-Sheathed Sr 1-x K x Fe 2 As 2 Superconducting Tapes
Suasmoro et al. Microstructural and electrical characterization of bulk YBa2Cu3O7− δ ceramics
RU2768221C1 (ru) Модификатор и способ изменения электрофизических и магнитных свойств керамики
JPH0780710B2 (ja) 酸化物高温超電導体の製造法
Briant et al. Microstructural evolution of the BSCCO-2223 during powder-in-tube processing
Noudem et al. Superconducting cryo-magnets processed by spark plasma sintering and texturing
Lelovic et al. The effect of cooling rates on transport current properties and the critical temperature of Ag-sheathed BSCCO-2223 superconducting tapes
Goretta et al. Processing and properties of bulk BiSrCaCuO superconductors
JPH06219736A (ja) 超電導体
Hishinuma et al. Microstructure and Jc property on the Bi-2223 bulk prepared by inserting Ag layers
Asghari et al. Investigation of niobium (Nb) substitution on structural and superconducting properties of (Bi, Pb)-based superconductors
Guilmeau et al. Influence of the sinter-forging temperature on the superconducting properties of Bi2223 textured discs
井上芳樹 et al. Grain orientation and electrical properties of hot-pressed bismuth titanate ceramics.
Santos et al. An approach of the sintering YBa2Cu3O7− δ system
KR100232296B1 (ko) Tl-1223상 고온초전도 복합선재 및 그 제조방법
Zhu et al. Compressive anneal processing (CAP) of Bi2223 superconducting tapes
Vienna et al. Processing and characterization of cobalt-stabilized YBa2Cu3Oy as a substrate for bulk superconductors
Sedghi et al. Investigation of structural and Magnetic properties of (Nb) Substituted YBCO-system
Jassim et al. The Role of Cooling Condition on the Superconducting Properties of Tl2-xHgxSr2Ca2Cu3O10+ δ System
JP3164640B2 (ja) 酸化物超電導体の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081205