RU2337772C1 - Привод волочильного стана - Google Patents

Привод волочильного стана Download PDF

Info

Publication number
RU2337772C1
RU2337772C1 RU2007108115/02A RU2007108115A RU2337772C1 RU 2337772 C1 RU2337772 C1 RU 2337772C1 RU 2007108115/02 A RU2007108115/02 A RU 2007108115/02A RU 2007108115 A RU2007108115 A RU 2007108115A RU 2337772 C1 RU2337772 C1 RU 2337772C1
Authority
RU
Russia
Prior art keywords
pipe
drive
tension
devices
chain
Prior art date
Application number
RU2007108115/02A
Other languages
English (en)
Other versions
RU2007108115A (ru
Inventor
Сергей Владимирович Паршин (RU)
Сергей Владимирович Паршин
Original Assignee
Государственное общеобразовательное учреждение высшего профессионального образования "Уральский государственный технический университет - УПИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное общеобразовательное учреждение высшего профессионального образования "Уральский государственный технический университет - УПИ" filed Critical Государственное общеобразовательное учреждение высшего профессионального образования "Уральский государственный технический университет - УПИ"
Priority to RU2007108115/02A priority Critical patent/RU2337772C1/ru
Publication of RU2007108115A publication Critical patent/RU2007108115A/ru
Application granted granted Critical
Publication of RU2337772C1 publication Critical patent/RU2337772C1/ru

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Metal Extraction Processes (AREA)

Abstract

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Волочильный стан содержит привод, стойку волоки и два тяговых узла, размещенных по обеим сторонам стойки волоки, каждый из которых выполнен в виде двух цепных траковых механизмов с бесконечными цепями, установленными на ведомой и приводной ведущей звездочках. На валах ведомых звездочек установлены средства торможения. Изобретение позволяет путем создания заднего противонатяжения или переднего подпора воздействовать на очаг пластической деформации и, следовательно, повысить точность геометрических размеров готовых труб, а также повысить допустимые значения вытяжек или деформируемости металла. В случае обработки профильных труб применение таких режимов деформации позволяет повысить точность геометрии поперечного контура трубы и уменьшить радиусы закруглений в углах профиля. 2 ил.

Description

Изобретение относится к области обработки металлов давлением, в частности к трубоволочильному производству.
Известно устройство (пат. №90903 ЧССР, 1959), содержащее траковый тянущий механизм и предназначенное для использования в качестве привода волочильного стана. В основе механизма лежит использование бесконечных цепей, установленных на ведомой и ведущей звездочках. Ведущая звездочка расположена по ходу волочения вслед за ведомой звездочкой таким образом, что на рабочем участке тракового механизма, где осуществляется процесс перемещения протягиваемого изделия, эта ветвь цепи является растянутой. Каждое звено цепи снабжено роликами, которые на участке волочения перемещаются по прижимным балкам, а также зажимными башмаками, удерживающими трубу при ее подаче в волоку.
Недостатком такого устройства является то, что направление усилия, создаваемого рассмотренным механизмом, может быть только односторонним в сторону от ведомой к ведущей звездочке. Создание тягового усилия в обратную сторону невозможно, поскольку отсутствует элемент для создания такого усилия. Кроме того, особенности цепного механизма таковы, что работа цепи возможна лишь на растяжение, а работа цепи на сжатие - невозможна.
Дальнейшие усовершенствования тракового механизма, известные из патентной литературы, направлены на создание устройств, улучшающих условия работы цепи.
Так, в устройстве по а.с. №159787 СССР, 1964, и патенту №5326010 США, 1994, между опорными балками помещены опорные роликовые цепи. Однако трение скольжения между тяговыми и опорными роликовыми цепями приводит к быстрому износу последних. Кроме того, рассмотренный механизм имеет те же недостатки, что были рассмотрены ранее: невозможность создания усилия, направленного в обратную сторону относительно направления волочения.
В патенте №3684145 США, 1992, приведен механизм, в котором подающие элементы закреплены на цепях через промежуточный блок, выполненный в виде подпружиненной опоры, несущей ролик, который взаимодействует с профильной направляющей. Это дает возможность разгрузить тяговые цепи от нормальных контактных усилий, действующих на подающие элементы со стороны изделия. Однако недостатки, присущие описанным выше устройствам, остаются и в рассмотренном устройстве.
Прототипом заявляемого привода волочильного стана является стан (SU 104401, В21С 1/16, 01.01.1956, 4 л.), в котором используется для перемещения трубы несколько подающе-вытягивающих цепных траковых механизмов, между которыми установлены волоки. Этот стан допускает режим работы, при котором траковый механизм, установленный перед волокой, производит заталкивание трубы, а траковый механизм, установленный за волокой, производит вытягивание трубы. При совместной работе двух механизмов реализуется режим «волочение с задним подпором». Следует заметить, что, управляя задним натяжением трубы перед ее входом в волоку, удается изменять толщину стенки готовой трубы (патент №3668916 США, 1972).
Недостатком прототипа является невозможность создания режимов: «волочение с задним противонатяжением», «заталкивание с передним подпором», что, в частных случаях, не позволяет производить деформирование заготовок из некоторых тяжелодеформируемых материалов, а также приводит к повышенному износу инструмента по сравнению со случаями применения указанных выше режимов. Причинами этого является отсутствие необходимого средства для создания соответствующих режимов волочения, а также то обстоятельство, что цепь должна работать на растяжение, а не на сжатие, поскольку она является гибким элементом.
Задачей изобретения является повышение точности геометрических размеров готовых протянутых трубы, а также повышение допустимых значений вытяжек и деформируемости металла путем создания заднего противонатяжения, а также заднего или переднего подпора трубы в процессе ее деформации.
Задача решается тем, что предлагается волочильный стан, включающий привод, стойку волоки и два тяговых узла, размещенных по обеим сторонам стойки, каждый из которых выполнен в виде двух цепных траковых механизмов с бесконечными цепями, установленными на ведомой и ведущей звездочках, отличающийся тем, что он снабжен устройствами обратного натяжения, установленными соосно с валами ведомых звездочек.
Такое техническое решение позволяет путем создания заднего противонатяжения или переднего подпора воздействовать на очаг пластической деформации и вследствие этого повысить точность геометрических размеров готовых труб, а также повысить допустимые значения вытяжек или деформируемости металла. В случае обработки профильных (квадратных, прямоугольных и др.) труб применение таких режимов деформации позволяет повысить точность геометрии поперечного контура трубы, уменьшить радиусы закруглений в углах профиля.
Привод стана с двумя тяговыми устройствами показан на фиг.1, а конструкция одного из четырех идентичных траковых механизмов показана на фиг.2. Стан включает стойку волоки 1, два тяговых устройства 2 и 3, размещенные по обеим сторонам от стойки волоки и имеющие по два (верхний и нижний) траковых механизма каждое. Тяговые устройства приводятся в движение от приводов 4 и 5, включающих, например, редукторы и электродвигатели. Соединение редукторов с валами приводных звездочек устройств выполнено посредством управляемых муфт 6 и 7. Соосно с валами ведомых звездочек приводных устройств установлены устройства обратного натяжения 8 и 9 с электродинамическим, гидравлическим, механическим или иным способом торможения. Соединение устройств обратного натяжения с валами ведомых звездочек выполнено на основе управляемых муфт 10 и 11.
Цепное тяговое устройство, показанное на фиг.2, содержит бесконечную тяговую цепь 12, содержащую башмаки для зажима протягиваемого изделия. Цепь движется по прижимной 13 и натяжной 14 балкам. Привод цепи производится от ведущей звездочки 15, при движении цепь ведущей звездочки огибает также ведомую звездочку 16.
Работа такого привода стана возможна в нескольких режимах. Рассмотрим режим 1, при котором работают приводы 4 и 5 и включены муфты 6 и 7, а устройства обратного натяжения 8 и 9 не работают и муфты 10 и 11 отключены. В этом случае тяговое усилие на цепь прикладывается со стороны приводных звездочек 15. Устройство 2 проталкивает трубу в волоку, а устройство 3 вытягивает готовую трубу. Этот режим волочения с задним подпором, идентичный тому, что производится на приводе, принятом за прототип.
Режимом 2 назовем такой, при котором работают привод 5 и устройство обратного натяжения 8, включены муфты 7 и 10, не работает привод 4, отключены муфты 6 и 11. Это режим вытягивания трубы устройством 3 с заданным противонатяжением, осуществляемым устройством 2. Цепи устройств 2 и 3 работают на растяжение.
Режимом 3 назовем такой, при котором работают привод 4 и устройство обратного натяжения 9, включены муфты 6 и 11 и отключены муфты 7 и 10. Это режим проталкивания трубы через волоку с передним подпором. Как и в режиме 2, здесь цепи устройств 2 и 3 также работают на растяжение.
Причина повышения точности труб при использовании предложенного привода стана состоит в том, что, управляя приводами цепей и устройствами обратного натяжения, т.е. создавая в каждом отдельном случае режим 1, 2 или 3, возможно управлять течением металла при его деформации.
С использованием конечно-элементного расчетного метода были проанализированы процессы профилирования труб волочением, заталкиванием трубы в волоку при помощи толкающих устройств, а также заталкиванием при наличии встречного подпора на выходном конце трубы (Паршин С.В., Семенова Н.В. Конечно-элементное моделирование процесса пластической деформации при профилировании труб. Вестник УГТУ-УПИ №11 (63). Компьютерный инженерный анализ. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005, - с.84-85).
Анализ производился для компьютерной твердотельной модели процесса профилирования.
Все вышеуказанные способы моделировались при профилировании квадратной трубы в волоке одной и той же формы, а именно с плавным переходом от круга к квадрату, с прямолинейным калибрующим участком и плавным переходом от конусной рабочей к прямолинейной калибрующей части. Угол конусности рабочей части составлял 8°. Размер выходного квадрата 25 мм. Проводилось исследование формоизменения труб, имеющих исходный диаметр 30 мм.
В процессе расчета анализировались следующие величины, характеризующие процесс:
1. Максимальная интенсивность деформаций.
2. Показатель напряженного состояния σ/Т.
3. Степень использования ресурса пластичности ω.
4. Распределение давлений по поверхности волоки.
Поскольку при разработке технологии и оценке стойкости волочильного инструмента определяющим будет степень использования ресурса пластичности и давление на инструмент, то ниже приведены результаты анализа лишь по этим показателям.
Исследование степени использования ресурса пластичности производилось в опасной точке сечения трубы, расположенной на внутренней поверхности трубы на ребре готового профиля. Было установлено, что для случая профилирования волочением (осуществляется профилирование вышеуказанного типоразмера квадратной трубы из стали 20) происходит полное исчерпание ресурса пластичности (величина степени использования ресурса пластичности 1,2), что говорит о невозможности осуществления процесса с данной схемой приложения рабочих нагрузок без применения многопроходной технологии профилирования, промежуточных термообработок и др.
В случае профилирования с заталкиванием (приложением нагрузок к заднему концу трубы) достигается значительное снижение степени использования запаса пластичности до величины 0,63, вследствие чего возникает принципиальная возможность профилирования труб указанного типоразмера за один проход без осуществления дополнительных, зачастую весьма дорогостоящих операций.
Кроме того, профилирование заталкиванием с использованием дополнительного встречного подпора постоянным давлением (0,4 σS) с переднего конца трубы позволяет добиться дополнительного снижения степени использования ресурса пластичности до величины 0,59.
Для случая профилирования труб из титана ВТ 1-0 наблюдаются еще более значительные степени использования ресурса пластичности. Для профилирования волочением происходит полное исчерпание ресурса пластичности, в случае проталкивания величина ресурса равна 0,7, а в случае проталкивания с подпором 0,57, т.е. только применение подпора для указанного материала и типоразмера трубы позволяет снизить степень использования ресурса пластичности материала в опасных точках сечения на 13%.
Таким образом, использование схемы профилирования с заталкиванием, а в особенности и с передним подпором позволяет получить возможность профилирования труб в инструменте весьма простой конфигурации при тех же условиях трения, а также осуществить значительную экономию времени и ресурсов при повышении надежности готовых труб.
При исследовании распределения давления прежде всего была проанализирована величина максимума абсолютного значения давления на поверхности контакта трубы и волоки. Установлено, что значительного повышения давления в связи с переходом со схемы с протягиванием трубы на схему с заталкиванием и далее заталкиванием и подпором не происходит. Так, максимум давления для случая волочения составляет 289 МПа, для случая проталкивания 281 МПа, для случая проталкивания с подпором 290 МПа. Вышеуказанные факты позволяют заключить, что применение схем приложения рабочих нагрузок с проталкиванием не приводит к повышению (а в ряде случаев и приводит к снижению) скорости износа рабочего инструмента вследствие повышенных давлений.

Claims (1)

  1. Волочильный стан, включающий привод, стойку волоки и два тяговых узла, размещенных по обеим сторонам стойки, каждый из которых выполнен в виде двух цепных траковых механизмов с бесконечными цепями, установленными на ведомой и ведущей звездочках, отличающийся тем, что он снабжен устройствами обратного натяжения, установленными соосно с валами ведомых звездочек.
RU2007108115/02A 2007-03-05 2007-03-05 Привод волочильного стана RU2337772C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007108115/02A RU2337772C1 (ru) 2007-03-05 2007-03-05 Привод волочильного стана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007108115/02A RU2337772C1 (ru) 2007-03-05 2007-03-05 Привод волочильного стана

Publications (2)

Publication Number Publication Date
RU2007108115A RU2007108115A (ru) 2008-09-10
RU2337772C1 true RU2337772C1 (ru) 2008-11-10

Family

ID=39866590

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007108115/02A RU2337772C1 (ru) 2007-03-05 2007-03-05 Привод волочильного стана

Country Status (1)

Country Link
RU (1) RU2337772C1 (ru)

Also Published As

Publication number Publication date
RU2007108115A (ru) 2008-09-10

Similar Documents

Publication Publication Date Title
KR20170056321A (ko) 장입실린더와 클램프를 이용한 스테인리스 소재 성형 장치 및 그 장치를 이용한 스테인리스 소재 제조방법
CN105431611B (zh) 具有液压牵引滑动减轻回路的缠绕管注入机及用于控制缠绕管注入机的牵引的方法
CN109317539A (zh) 一种校直方法及应用该方法的校直装置和导轨校直机
US9266155B2 (en) Super large diameter longitudinal welded pipe forming machine set
CN101180487A (zh) 管子拉紧机器
RU2337772C1 (ru) Привод волочильного стана
CN106623507B (zh) 一种管材辊式连续矫形设备及加工方法
KR100943111B1 (ko) 외경에 단차가 있는 금속관 인발축경장치 및 외경에 단차가 있는 금속관
US20040250588A1 (en) Sheet processing apparatus, method of use, and plastically deformed sheet
CN201960009U (zh) 一种用于铝型材在线矫直用的过桥提升机构
CN204525726U (zh) 抽拔橡胶管用抽拔机
SE441899B (sv) Anordning for kallbearbetning av metaller
CN204035251U (zh) 快速直管机
CN107389250A (zh) 塑料管材摩擦力测试装置
CN203245200U (zh) 一种控制钢管壁厚均匀度的装置
CN109290408B (zh) 顶拉式型钢弯曲机
CN207222591U (zh) 一种坦克链式铜线材连续拉拔机组
CN106001207A (zh) 一种大型三辊卷板机
US20140137621A1 (en) Apparatus and method for producing shear deformation
CN206332380U (zh) 履带式布缆机
IT201900008901A1 (it) Banco di trafilatura per macchina trafilatrice
RU2553733C2 (ru) Способ холодной деформации непрерывной металлической полосы
CN105424477A (zh) 一种金属软管拉压刚度测量装置
CN210614955U (zh) 一种防护性好的自动镦头机
CN201863147U (zh) 一种零件用侧面夹紧自锁装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090306