RU2337061C1 - Способ получения углеродных нанотрубок и устройство его осуществления - Google Patents

Способ получения углеродных нанотрубок и устройство его осуществления Download PDF

Info

Publication number
RU2337061C1
RU2337061C1 RU2007102417/15A RU2007102417A RU2337061C1 RU 2337061 C1 RU2337061 C1 RU 2337061C1 RU 2007102417/15 A RU2007102417/15 A RU 2007102417/15A RU 2007102417 A RU2007102417 A RU 2007102417A RU 2337061 C1 RU2337061 C1 RU 2337061C1
Authority
RU
Russia
Prior art keywords
anode
inert gas
cathode
carbon nanotubes
chamber
Prior art date
Application number
RU2007102417/15A
Other languages
English (en)
Other versions
RU2007102417A (ru
Inventor
Геннадий Владимирович Абрамов (RU)
Геннадий Владимирович Абрамов
Сергей Николаевич Аксенов (RU)
Сергей Николаевич Аксенов
Сергей Владимирович Ершов (RU)
Сергей Владимирович Ершов
Геннадий Васильевич Попов (RU)
Геннадий Васильевич Попов
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ВГТА)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ВГТА) filed Critical Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ВГТА)
Priority to RU2007102417/15A priority Critical patent/RU2337061C1/ru
Publication of RU2007102417A publication Critical patent/RU2007102417A/ru
Application granted granted Critical
Publication of RU2337061C1 publication Critical patent/RU2337061C1/ru

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к области нанотехнологий. Устройство для получения углеродных нанотрубок методом дугового разряда включает камеру 5, заполненную инертным газом, углеродосодержащие катод 1 и анод 2, расположенные осесимметрично с возможностью перемещения относительно друг друга в продольном направлении, и нагревательный элемент 3. Анод 2 разделен на рабочий и подводящий участки. Подводящий участок анода 2 выполнен с осесимметричным несквозным каналом 6, у окончания которого выполнено несколько радиальных отверстий 7 для истечения инертного газа в камеру 5 со стороны рабочего участка. С другой стороны подводящий участок соединен трубопроводом 4 с устройством охлаждения инертного газа. Рабочий участок анода 2 расположен с зазором внутри нагревательного элемента 3, выполненного в виде кольцевого индуктора токов высокой частоты. Углеродные нанотрубки получают в дуговом разряде между катодом 1 и анодом 2. Одновременно с нагревом рабочего участка анода 2 токами высокой частоты до 800-2000°С отбирают инертный газ в охлаждающее устройство, затем подают его обратно в канал 6 для охлаждения подводящего участка анода 2. Изобретение позволяет увеличить содержание углеродных нанотрубок в катодном депозите за счет расширения и регулирования зоны действия температур, характерных для первой ионизации углерода. 2 н.п. ф-лы, 5 ил.

Description

Изобретение относится к области нанотехнологий, в частности к процессу электродугового синтеза углеродных нанотрубок.
Известно устройство непрерывного производства углеродных нанотрубок и углеродного наноматериала, реализующее способ дугового разряда (патент Японии JP 2004-224636, А], предусматривающее охлаждение анода с помощью проточного газа, обтекающего боковую поверхность анода.
Недостатком данного аналога является то, что охлаждение боковой поверхности анода приводит к уменьшению зоны, в которой формируются углеродные нанотрубки.
Известно устройство для получения углеродных нанотрубок методом дугового разряда [патент RU №2220905, 2004], состоящее из двух электродов, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками, изолированными от электродов керамическими гайками, имеющее два скользящих токоподвода, выполненных из неподвижно закрепленных графитовых втулок, реализующее способ, заключающийся в подаче разности потенциалов между катодом и анодом, замыкании электрической цепи накоротко перемещением электродов навстречу друг другу с последующим их размыканием и возникновением электрической дуги в зазоре между катодом и анодом.
Недостатком данного аналога является то, что получаемый катодный осадок имеет низкое содержание углеродных нанотрубок.
Наиболее близким по технической сущности и достигаемому эффекту является способ получения углеродных нанотрубок и устройство его осуществления [патент Японии JP 2004-189501, А], заключающийся в создании дугового разряда между углеродосодержащими полым анодом и катодом, причем полый анод перемещают, а дуговой разряд проводят на воздухе или в окислительной среде.
Недостатком данного способа является то, что он не позволяет создать оптимальное распределение температуры по всей торцевой поверхности анода, что приводит к снижению концентрации однозарядных ионов углерода в плазме и, следовательно, к снижению содержания углеродных нанотрубок в катодном депозите.
Недостатком данного устройства является то, что оно не задействует всю торцевую поверхность анода для образования однозарядных ионов углерода, что приводит к снижению содержания углеродных нанотрубок в катодном депозите.
Технической задачей изобретения является расширение и регулирование зоны действия температур, характерных для первой ионизации углерода, на торцевой рабочей поверхности цилиндрического графитового анода, а также обеспечение устройства элементами конструкции, позволяющими создать распределение температур, характерных первой ионизации углерода, на свободном торце анода по всей его поверхности.
Техническая задача достигается тем, что в способе получения углеродных нанотрубок в дуговом разряде между размещенными в камере катодом и анодом, имеющим выполненный по оси симметрии полый продольный канал, по которому пропускают инертный газ, новым является то, что ведут нагрев части цилиндрической поверхности анода токами высокой частоты, одновременно отбирают инертный газ из камеры в охлаждающее устройство, подают его обратно в продольный канал анода для охлаждения его другой части.
В устройстве для получения углеродных нанотрубок в дуговом разряде, включающем камеру, заполненную инертным газом, углеродосодержащие катод и анод, расположенные осесимметрично с возможностью перемещения относительно друг друга в продольном направлении, причем анод выполнен с полым продольным каналом для пропускания инертного газа, новым является то, что анод разделен на рабочий и подводящий участки, причем подводящий участок выполнен с осесимметричным несквозным канал, соединенным с камерой со стороны рабочего участка несколькими радиальными отверстиями для истечения инертного газа в камеру, расположенными у окончания продольного канала, а с другой стороны соединен трубопроводом с устройством охлаждения инертного газа, а рабочий участок анода расположен с зазором внутри нагревательного элемента, выполненного в виде кольцевого индуктора токов высокой частоты.
Технический результат заключается в повышении концентрации однозарядных ионов на торцевой рабочей поверхности цилиндрического углеродосодержащего анода и, следовательно, увеличении содержания углеродных нанотрубок в катодном депозите.
На фиг.1 изображено распределение образовавшихся фракций в катодном депозите по участкам: А - фуллерены, В - нанотрубки, С - аморфный углерод.
На фиг.2 представлена фотография катода после проведения эксперимента с расположенным на его конце катодным депозитом, на торцевой поверхности которого явно выражены участки, имеющие разный цвет.
На фиг.3 представлена фотография анода после проведения эксперимента с выраженным чашевидным углублением с торцевой стороны.
На фиг.4 представлен вид устройства получения углеродных нанотрубок методом дугового разряда, в котором катод 1 и анод 2 расположены соосно, причем анод с зазором помещен в нагревательный элемент 3. Продольный канал анода 6 соединен трубопроводом 4 с устройством охлаждения инертного газа, заполняющего камеру 5.
На фиг.5 представлен вид графитового анода, где стрелками показано направление движения инертного газа во время проведения процесса получения углеродных нанотрубок. Анод условно разделен на два участка: подводящий участок, который имеет продольный канал, предназначенный для пропускания инертного газа, и рабочий участок, который расходуется в процессе получения углеродных нанотрубок методом дугового разряда.
Устройство состоит из камеры 5 (фиг.4), заполненной инертным газом, катода 1 (фиг.4) и анода 2 (фиг.4), с обеспечением возможности перемещения относительно друг друга в продольном направлении, и нагревательного элемента 3 (фиг.4), выполненного в виде кольцевого индуктора токов высокой частоты, в котором находится анод. Анод состоит из двух участков, как это показано на фиг.5: рабочего, который в процессе получения углеродных нанотрубок полностью расходуется, и подводящего, который служит для подвода инертного газа. В центре подводящего участка анода выполнен продольный канал 6 (фиг.5), обеспечивающий возможность пропускания инертного газа с истечением его в камеру через несколько радиальных отверстий 7 (фиг.5), расположенных у окончания продольного канала, причем с другой стороны он связан трубопроводом 4 (фиг.4) с устройством охлаждения инертного газа.
Способ получения углеродных нанотрубок в установке осуществляется следующем образом.
Предварительно рабочий участок анода (фиг.5) нагревают токами высокой частоты до температуры 800-2000°С. В рабочей атмосфере инертного газа между катодом 1 (фиг.4) и анодом 2 (фиг.4) подают разность потенциалов, после чего электрическая цепь замыкается накоротко перемещением электродов навстречу друг другу с последующим размыканием. В результате возникает электрическая дуга в межэлектродном зазоре. Затем начинают охлаждение центра рабочего участка анода пропусканием через продольный канал в аноде по его оси симметрии инертного газа, при этом одновременно отбирают инертный газ из камеры в охлаждающее устройство, подавая его обратно по трубопроводу 4 (фиг.4) в продольный канал, тем самым осуществляя циркуляцию инертного газа. Вследствие высокой температуры дугового разряда анод 2 (фиг.4) испаряется и углеродный пар конденсируется непосредственно на катоде в виде твердого осадка в форме цилиндрического стержня.
Известно, что на поверхности катода осаждается депозит в форме цилиндра, состоящего из серого стержня, покрытого черным кольцом, окруженным серой оболочкой [Dravid V.P. et al. // Science. 1993. Vol.259. P.1601]. Черное кольцо содержит множество углеродных нанотрубок различного диаметра длиной в десятки микрометров. Переходная область между черным кольцом и внешней оболочкой содержала частицы углерода, заключенные в графитовую оболочку. Наличие областей различного цвета на торце катода также подтверждается фотографией (сделанной после экспериментов) одного из полученных катодных депозитов, представленной на фиг.2.
При этом надо отметить неоднородность условий испарения графита с анода, так как температура плазмы увеличивается с уменьшением ее радиуса, то электрод в центре испаряется более интенсивно, об этом можно судить по профилю выгоревшего электрода, показанного на фиг.3. В работе авторов [Иванов А.И., Попов Г.В. Магнитная гидродинамика как инструмент описания механизма образования углеродных нанотрубок. // "Вопросы современной науки и практики. Университет им. В.И.Вернадского". - Тамбов: ТамГТУ. - №4, 2006] было показано движение однозарядных ионов в плазме и зоны осаждения на катодной торцевой поверхности. Исходя из совпадения зоны преимущественного нахождения углеродных нанотрубок и зоны осаждения на катоде однозарядных ионов углерода был сделан вывод, что углеродные нанотрубки образуются в зоне осаждения однозарядных ионов углерода. Поставив в соответствие условия разложения анода с составом получаемого катодного депозита (фиг.1), можно сделать вывод о том, что при температурах первой ионизации углерода, испаряемого с торцевой поверхности анода, будет формироваться депозит черного цвета, содержащий углеродные нанотрубки.
Таким образом, при реализации предлагаемого способа получения углеродных нанотрубок и устройства его осуществления температура графитового анода в центре торцевой поверхности, с которой происходит испарение, снижается до температур, характерных для первой ионизации углерода, а на боковой цилиндрической поверхности она повышается до этих температур. Тем самым на торцевой поверхности анода создается профиль температур, характерных для первой ионизации углерода, что позволит расширить на катоде зону, в которой образуются углеродные нанотрубки.
По мере испарения рабочего участка анода осуществляют соответствующее продольное перемещение нагревательного элемента в направлении смещения торца анода. После полного расходования рабочего участка анода процесс прерывают: снимают разность потенциалов между катодом 1 (фиг.4) и анодом 2 (фиг.4), заканчивают нагревание анода токами высокой частоты, прекращают процесс охлаждения центра анода, завершая подачу инертного газа в продольный канал анода. Углеродные панотрубки содержатся в черной области сердцевины стержня.
Предлагаемый способ получения углеродных нанотрубок и устройство его осуществления позволяет:
- увеличить зону температуры, характерной для первой ионизации углерода, на торцевой рабочей поверхности цилиндрического графитового анода;
- осуществить регулирование зоны температуры, характерной для первой ионизации углерода, на торцевой рабочей поверхности цилиндрического графитового анода в процессе получения углеродных нанотрубок;
- повысить содержание углеродных нанотрубок в получаемом катодном депозите.

Claims (2)

1. Способ получения углеродных нанотрубок в дуговом разряде между размещенными в камере катодом и анодом, имеющим выполненный по оси симметрии полый продольный канал, по которому пропускают инертный газ, отличающийся тем, что ведут нагрев части цилиндрической поверхности анода токами высокой частоты, одновременно отбирают инертный газ из камеры в охлаждающее устройство, подают его обратно в продольный канал анода для охлаждения его другой части.
2. Устройство для получения углеродных нанотрубок в дуговом разряде, включающее камеру, заполненную инертным газом, углеродсодержащие катод и анод, расположенные осесимметрично с возможностью перемещения относительно друг друга в продольном направлении, причем анод выполнен с полым продольным каналом для пропускания инертного газа, отличающийся тем, что анод разделен на рабочий и подводящий участки, причем подводящий участок выполнен с осесимметричным несквозным каналом, соединенным с камерой со стороны рабочего участка несколькими радиальными отверстиями для истечения инертного газа в камеру, расположенными у окончания продольного канала, а с другой стороны соединен трубопроводом с устройством охлаждения инертного газа, а рабочий участок анода расположен с зазором внутри нагревательного элемента, выполненного в виде кольцевого индуктора токов высокой частоты.
RU2007102417/15A 2007-01-22 2007-01-22 Способ получения углеродных нанотрубок и устройство его осуществления RU2337061C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007102417/15A RU2337061C1 (ru) 2007-01-22 2007-01-22 Способ получения углеродных нанотрубок и устройство его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007102417/15A RU2337061C1 (ru) 2007-01-22 2007-01-22 Способ получения углеродных нанотрубок и устройство его осуществления

Publications (2)

Publication Number Publication Date
RU2007102417A RU2007102417A (ru) 2008-07-27
RU2337061C1 true RU2337061C1 (ru) 2008-10-27

Family

ID=39810618

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007102417/15A RU2337061C1 (ru) 2007-01-22 2007-01-22 Способ получения углеродных нанотрубок и устройство его осуществления

Country Status (1)

Country Link
RU (1) RU2337061C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446095C2 (ru) * 2010-04-01 2012-03-27 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Установка для получения углеродных нанотрубок
RU2471706C1 (ru) * 2011-06-09 2013-01-10 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Устройство для получения массивов углеродных нанотрубок на металлических подложках
RU2482059C2 (ru) * 2011-05-31 2013-05-20 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Устройство для получения углеродных нанотрубок
RU2504514C2 (ru) * 2011-12-22 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ выделения углеродных наночастиц
RU2559481C2 (ru) * 2013-12-13 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ синтеза углеродных нанотрубок и устройство его осуществления

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446095C2 (ru) * 2010-04-01 2012-03-27 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Установка для получения углеродных нанотрубок
RU2482059C2 (ru) * 2011-05-31 2013-05-20 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Устройство для получения углеродных нанотрубок
RU2471706C1 (ru) * 2011-06-09 2013-01-10 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Устройство для получения массивов углеродных нанотрубок на металлических подложках
RU2504514C2 (ru) * 2011-12-22 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") Способ выделения углеродных наночастиц
RU2559481C2 (ru) * 2013-12-13 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВПО "ВГУИТ") Способ синтеза углеродных нанотрубок и устройство его осуществления

Also Published As

Publication number Publication date
RU2007102417A (ru) 2008-07-27

Similar Documents

Publication Publication Date Title
US8387561B2 (en) Method and apparatus for cathodic arc ion plasma deposition
JP2577311B2 (ja) 化学的プロセスのためのトーチ装置
RU2337061C1 (ru) Способ получения углеродных нанотрубок и устройство его осуществления
CN103493601B (zh) 等离子体焰炬
CN108990249B (zh) 一种等离子炬装置及延长电极寿命的方法
US20050061785A1 (en) Nanopowder synthesis using pulsed arc discharge and applied magnetic field
JP7271489B2 (ja) 高エネルギー効率、高出力のプラズマトーチ
WO2010107484A2 (en) Hybrid nozzle for plasma spraying silicon
KR20110134406A (ko) 측면 분사기를 가진 플라즈마 토치
KR20030077369A (ko) 계단형 노즐 구조를 갖는 자장인가형 비이송식 플라즈마토치
CN108633159A (zh) 等离子体发生器
RU2009102170A (ru) Способ получения наночастиц и устройство для его осуществления
GB2484209A (en) Plasma Furnace
RU2614533C1 (ru) Электродуговой плазмотрон
RU2559481C2 (ru) Способ синтеза углеродных нанотрубок и устройство его осуществления
US9966234B2 (en) Film forming device
RU2315813C1 (ru) Плазменная печь для прямого восстановления металлов
JP6573276B2 (ja) 磁化同軸プラズマ生成装置を用いる薄膜生成装置
RU2220905C2 (ru) Устройство для получения углеродных нанотрубок методом дугового разряда
RU140498U1 (ru) Плазматрон для порошкового напыления
RU2390109C1 (ru) Катодный узел вакуумной электронно-плазменной печи
RU2184160C1 (ru) Электродуговая плавильная печь, электродный узел и способ электродуговой плавки
US4227031A (en) Nonconsumable electrode for melting metals and alloys
RU2575202C1 (ru) Электродуговой плазмотрон постоянного тока для установок плазменной переработки отходов
RU85158U1 (ru) Свч плазмохимический реактор

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090123