RU2328045C2 - Method of operating atomic steam-turbine power generating system and equipment for implementing method - Google Patents

Method of operating atomic steam-turbine power generating system and equipment for implementing method Download PDF

Info

Publication number
RU2328045C2
RU2328045C2 RU2006128067/06A RU2006128067A RU2328045C2 RU 2328045 C2 RU2328045 C2 RU 2328045C2 RU 2006128067/06 A RU2006128067/06 A RU 2006128067/06A RU 2006128067 A RU2006128067 A RU 2006128067A RU 2328045 C2 RU2328045 C2 RU 2328045C2
Authority
RU
Russia
Prior art keywords
steam
heating
turbine
heated
gas
Prior art date
Application number
RU2006128067/06A
Other languages
Russian (ru)
Other versions
RU2006128067A (en
Inventor
Виталий Витальевич Ершов (RU)
Виталий Витальевич Ершов
Original Assignee
Виталий Витальевич Ершов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виталий Витальевич Ершов filed Critical Виталий Витальевич Ершов
Priority to RU2006128067/06A priority Critical patent/RU2328045C2/en
Publication of RU2006128067A publication Critical patent/RU2006128067A/en
Application granted granted Critical
Publication of RU2328045C2 publication Critical patent/RU2328045C2/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

FIELD: heating; engines and pumps.
SUBSTANCE: method of operating an atomic steam-turbine power generating system involves converting feed-water into steam in a reactor plant, compression of the steam using a compressor, and heating up to conjugated parameters in a steam super-heater. The compressor is rotated thereby activating the generator of the gas turbine power plant. Fuel is supplied to the heating side of the steam super heater. The super heated steam is channelled to the steam turbine, rotating the main generator. The steam turbine is equipped with heaters for the feed-water and intermediate steam super heaters, heated by organic fuel. The device is equipped with an extra gas turbine power unit, rotating an extra generator. In the steam super heaters, there is extra heating of the steam due to extra supply of exhaust gases from the gas turbine units to the heating side of the steam super heaters. From the heating sides of all organic steam super heaters, exhaust gases are channelled to the heating side of the feed-water heaters, and are then channelled to the heating side of the heat exchanger of the heat energy consumer.
EFFECT: increased efficiency of the electric power station.
2 cl, 7 dwg

Description

Текст описания приведен в факсимильном виде.

Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079
The text of the description is given in facsimile form.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Figure 00000023
Figure 00000024
Figure 00000025
Figure 00000026
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Figure 00000031
Figure 00000032
Figure 00000033
Figure 00000034
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
Figure 00000041
Figure 00000042
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Figure 00000047
Figure 00000048
Figure 00000049
Figure 00000050
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Figure 00000055
Figure 00000056
Figure 00000057
Figure 00000058
Figure 00000059
Figure 00000060
Figure 00000061
Figure 00000062
Figure 00000063
Figure 00000064
Figure 00000065
Figure 00000066
Figure 00000067
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Figure 00000072
Figure 00000073
Figure 00000074
Figure 00000075
Figure 00000076
Figure 00000077
Figure 00000078
Figure 00000079

Claims (2)

1. Способ эксплуатации атомной паротурбинной энергетической установки, по которому в реакторной установке (РУ) за счет тепла ядерного топлива сжатую насосом питательную воду превращают в носитель тепловой энергии - водяной пар, который сжимают до более высокого давления в, по меньшей мере, одном, например, многоступенчатом компрессоре, преимущественно, с промежуточным охлаждением его ступеней питательной водой установки, который вращают, например, приводящей в действие электрогенератор газотурбинной установкой (ГТУ), камера сгорания которой работает на органическом топливе, затем водяной пар подогревают до сопряженных параметров в, по меньшей мере, одном пароперегревателе, в греющую сторону которого подают для горения, преимущественно, газообразное или жидкое органическое топливо, а также окислитель в виде, например, атмосферного воздуха, а далее перегретый в пароперегревателе водяной пар направляют для совершения работы в соответствующие рабочие цилиндры, то есть в цилиндр высокого давления (ЦВД), цилиндр среднего давления (ЦСД) и, например, в цилиндр низкого давления (ЦНД), по меньшей мере, одной вращающей основной электрогенератор паровой турбины установки, снабженной, в том числе подогревателями питательной воды, в которых воду, полученную в конденсаторе паротурбинной части (ПТЧ) установки, подогревают перед подачей в обогреваемые стороны парогенераторов РУ, отличающийся тем, что водяной пар в обогреваемых органическим топливом пароперегревателях, установленных перед ЦВД, перед ЦСД, а также, например, перед ЦНД паровой турбины, дополнительно, не менее чем, например, на ~25% от суммарной тепловой мощности пароперегревателей, подогревают за счет дополнительной подачи в греющие стороны пароперегревателей выхлопных газов из газотурбинной установки, вращающей компрессор и электрогенератор, а также подачи выхлопных газов из, по меньшей мере, одной дополнительной газотурбинной энергетической установки, вращающей дополнительный электрогенератор и камера сгорания которой работает на органическом (или углеводородном) топливе, при этом из греющих сторон всех органических пароперегревателей отработавший газ направляют в греющие стороны, преимущественно, всех подогревателей питательной воды, из которых газ, при необходимости, направляют в греющую сторону, по меньшей мере, одного теплообменника потребителя тепловой энергии в виде, например, горячей воды или пара, а затем газ выпускают в атмосферу.1. A method of operating an atomic steam turbine power plant, in which in a reactor plant (RU) due to the heat of nuclear fuel, the feed water compressed by a pump is converted into a carrier of thermal energy - water vapor, which is compressed to a higher pressure in at least one, for example , a multi-stage compressor, mainly with intermediate cooling of its stages by the feed water of the installation, which is rotated, for example, by driving an electric generator by a gas turbine installation (GTU), a cat combustion chamber The fuel runs on fossil fuels, then water vapor is heated to coupled parameters in at least one superheater, to the heating side of which, for the most part, gaseous or liquid fossil fuels, as well as an oxidizing agent in the form of, for example, atmospheric air, are fed, and Further, the water vapor superheated in the superheater is sent to the corresponding working cylinders, i.e. to the high pressure cylinder (CVP), the medium pressure cylinder (CSD) and, for example, to the low pressure cylinder ( LPC) of at least one rotary main electric generator of the steam turbine of the installation, equipped with, among other things, feed water heaters, in which the water obtained in the condenser of the steam turbine part (PTC) of the installation is heated before being fed to the heated sides of the steam generators of the reactor, characterized in that that water vapor in superheaters heated by fossil fuels installed in front of the central heating system, in front of the central cylinder, and also, for example, in front of the central turbine of a steam turbine, is additionally not less than, for example, by ~ 25% of the total heat capacity and superheaters, are heated by additional supply to the heating sides of the superheaters of exhaust gases from a gas turbine unit rotating a compressor and an electric generator, as well as by supplying exhaust gases from at least one additional gas turbine power unit which rotates an additional electric generator and a combustion chamber which runs on an organic (or hydrocarbon) fuel, while from the heating sides of all organic superheaters the exhaust gas is directed to the heating sides, etc. Essentially, all feed water heaters, of which the gas, if necessary, is directed to the heating side of at least one heat exchanger of the consumer of thermal energy in the form of, for example, hot water or steam, and then the gas is released into the atmosphere. 2. Атомная паротурбинная энергетическая установка, включающая реакторную установку (РУ), производящую носитель тепловой энергии - водяной пар (рабочее тело ПТЧ установки), а также соединенную трубопроводами с РУ по пару и питательной воде паротурбинную установку, содержащую обогреваемую сторону парогенератора РУ, выход пара из которой соединен через запорные устройства одновременно с входом пара в многоступенчатый охлаждаемый, преимущественно, питательной водой компрессор, приводимый в действие, например, газотурбинной энергетической установкой, камера сгорания которой выполнена с возможностью отопления газообразным или жидким органическим топливом, а также соединен с входом пара в рабочий цилиндр среднего давления (ЦСД), по меньшей мере, одной паровой турбины, приводящей в действие электрогенератор, и, кроме того, также соединен с входом пара в обогреваемую сторону пароперегревателя, которая, в свою очередь соединена с ЦСД паровой турбины, при этом выход сжатого водяного пара из компрессора соединен с входом пара в цилиндр высокого давления (ЦВД) паровой турбины через обогреваемую сторону пароперегревателя, кроме того, выход пара из ЦСД паровой турбины соединен с входом пара в ЦНД паровой турбины, например, через обогреваемую сторону третьего пароперегревателя, при этом греющие стороны всех пароперегревателей энергоустановки соединены через запорно-регулирующие устройства с источниками газообразного или жидкого органического топлива, а также, например, через газодувки с атмосферным воздухом для горения топлива, отличающаяся тем, что в состав энергетической установки введена, по меньшей мере, одна дополнительная газотурбинная установка, вращающая дополнительный электрогенератор и камера сгорания которой выполнена с возможностью отопления газообразным или жидким органическим топливом, при этом греющие стороны, преимущественно, всех пароперегревателей соединены также с трубопроводами выхода выхлопных газов из всех газотурбинных установок, причем выходы отработавшего газа из греющих сторон, преимущественно, всех пароперегревателей соединены с входом газа в греющие стороны, преимущественно, всех подогревателей питательной воды, выходы газа из которых соединены, например, с греющей стороной теплообменника потребителя тепловой энергии, после которой соединены, наконец, с атмосферой.2. Nuclear steam-turbine power plant, including a reactor (RU), generating a carrier of thermal energy - water vapor (working medium of the PTC installation), and also a steam turbine installation containing the heated side of the steam generator of the RU, connected by pipelines to the steam and feed water, steam output from which it is connected through shut-off devices simultaneously with the steam inlet to a multistage compressor cooled, mainly by feed water, driven, for example, by a gas turbine power installation, the combustion chamber of which is made with the possibility of heating with gaseous or liquid organic fuel, and is also connected to the steam inlet to the medium pressure working cylinder (CSD) of at least one steam turbine that drives an electric generator, and, in addition, is also connected with steam entering the heated side of the superheater, which, in turn, is connected to the steam turbine central cylinder, while the output of compressed water from the compressor is connected to the steam inlet to the high pressure cylinder (CVP) of the steam turbine through the heated side of the superheater, in addition, the steam outlet from the central cylinder of the steam turbine is connected to the steam inlet to the low-pressure cylinder of the steam turbine, for example, through the heated side of the third superheater, while the heating sides of all superheaters of the power plant are connected through shut-off and control devices to sources of gaseous or liquid organic fuel , as well as, for example, through gas blowers with atmospheric air for burning fuel, characterized in that at least one is introduced into the power plant an additional gas turbine installation, rotating an additional electric generator and a combustion chamber which is configured to be heated with gaseous or liquid organic fuel, while the heating sides, mainly of all superheaters, are also connected to the exhaust gas pipelines from all gas turbine installations, and the exhaust gas exits from the heating sides, predominantly, all superheaters are connected to the gas inlet on the heating sides, mainly all nutrient heaters s, gas outputs of which are connected, for example, with a heating side of the heat exchanger the heat energy consumer connected after which, finally, to the atmosphere.
RU2006128067/06A 2006-08-01 2006-08-01 Method of operating atomic steam-turbine power generating system and equipment for implementing method RU2328045C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006128067/06A RU2328045C2 (en) 2006-08-01 2006-08-01 Method of operating atomic steam-turbine power generating system and equipment for implementing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006128067/06A RU2328045C2 (en) 2006-08-01 2006-08-01 Method of operating atomic steam-turbine power generating system and equipment for implementing method

Publications (2)

Publication Number Publication Date
RU2006128067A RU2006128067A (en) 2008-02-10
RU2328045C2 true RU2328045C2 (en) 2008-06-27

Family

ID=39265898

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006128067/06A RU2328045C2 (en) 2006-08-01 2006-08-01 Method of operating atomic steam-turbine power generating system and equipment for implementing method

Country Status (1)

Country Link
RU (1) RU2328045C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550362C1 (en) * 2014-01-22 2015-05-10 Виктор Николаевич Иванюк Device for increase of efficiency and power of transportable nuclear power plant
RU2733499C1 (en) * 2017-07-27 2020-10-02 СУМИТОМО ЭсЭйчАй ФВ ЭНЕРДЖИА ОЙ Boiler unit with fluidised bed and gas pre-heating method for combustion in boiler unit with fluidised bed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550362C1 (en) * 2014-01-22 2015-05-10 Виктор Николаевич Иванюк Device for increase of efficiency and power of transportable nuclear power plant
RU2733499C1 (en) * 2017-07-27 2020-10-02 СУМИТОМО ЭсЭйчАй ФВ ЭНЕРДЖИА ОЙ Boiler unit with fluidised bed and gas pre-heating method for combustion in boiler unit with fluidised bed
US11079108B2 (en) 2017-07-27 2021-08-03 Sumitomo SHI FW Energia Oy Fluidized bed boiler plant and a method of preheating combustion gas in a fluidized bed boiler plant

Also Published As

Publication number Publication date
RU2006128067A (en) 2008-02-10

Similar Documents

Publication Publication Date Title
RU2525569C2 (en) Combined-cycle topping plant for steam power plant with subcritical steam parameters
RU2335641C2 (en) Method of enhancing efficiency and output of two-loop nuclear power station
CN103452670A (en) Micro gas turbine combined circulating system based on renewable energy sources
RU2639397C1 (en) Mode of gas turbine plant operation on methane-contained steam-gas mixture and its actualization device
RU2328045C2 (en) Method of operating atomic steam-turbine power generating system and equipment for implementing method
RU2409746C2 (en) Steam-gas plant with steam turbine drive of compressor and regenerative gas turbine
RU2650238C1 (en) Gas distribution station power plant or the gas control unit operation method
RU2003102313A (en) METHOD FOR OPERATING ATOMIC STEAM TURBINE INSTALLATION AND INSTALLATION FOR ITS IMPLEMENTATION
RU2280768C1 (en) Thermoelectric plant with gas-turbine unit
SK58694A3 (en) Device with combined gas-steam turbine power station
KR20190069994A (en) Power plant sysyem combined with gas turbine
RU2533601C2 (en) Power plant with combined-cycle plant
RU126373U1 (en) STEAM GAS INSTALLATION
RU2647013C1 (en) Method of operation of the compressed-air power station
RU2272914C1 (en) Gas-steam thermoelectric plant
RU2391515C1 (en) Electro-generating installation with carbon-hydrogen fuel
RU124080U1 (en) ELECTRICITY GENERATION DEVICE
RU2403407C1 (en) Steam-gas power plant
RU2261337C1 (en) Power and heating plant with open power and heat supply system
RU167924U1 (en) Binary Combined Cycle Plant
RU58613U1 (en) COMBINED STEAM-GAS UNIT WITH PARALLEL OPERATION DIAGRAM
RU2674089C1 (en) Method of forcing gas turbine plant
RU2775732C1 (en) Oxygen-fuel power plant
RU2555609C2 (en) Combined cycle cooling unit operating method and device for its implementation
RU2795147C1 (en) Combined-cycle plant with a semi-closed gas turbine plant

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120802

NF4A Reinstatement of patent

Effective date: 20140210

MM4A The patent is invalid due to non-payment of fees

Effective date: 20160802