RU2323231C1 - Мастика резинобитумная - Google Patents

Мастика резинобитумная Download PDF

Info

Publication number
RU2323231C1
RU2323231C1 RU2006145263/04A RU2006145263A RU2323231C1 RU 2323231 C1 RU2323231 C1 RU 2323231C1 RU 2006145263/04 A RU2006145263/04 A RU 2006145263/04A RU 2006145263 A RU2006145263 A RU 2006145263A RU 2323231 C1 RU2323231 C1 RU 2323231C1
Authority
RU
Russia
Prior art keywords
mastic
rubber
bitumen
temperature
mixture
Prior art date
Application number
RU2006145263/04A
Other languages
English (en)
Inventor
Гордей Кириллович Корнейчук (RU)
Гордей Кириллович Корнейчук
Сергей Павлович Дзюбанов (RU)
Сергей Павлович Дзюбанов
Владимир Алексеевич Реутов (RU)
Владимир Алексеевич Реутов
Галина Константиновна Стибло (RU)
Галина Константиновна Стибло
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное объединение "ГИПОЛ" (ООО "НПО ГИПОЛ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное объединение "ГИПОЛ" (ООО "НПО ГИПОЛ") filed Critical Общество с ограниченной ответственностью "Научно-производственное объединение "ГИПОЛ" (ООО "НПО ГИПОЛ")
Priority to RU2006145263/04A priority Critical patent/RU2323231C1/ru
Application granted granted Critical
Publication of RU2323231C1 publication Critical patent/RU2323231C1/ru

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

Изобретение касается мастики резино-битумной, содержащей битум, резиновую крошку, пластификатор и наполнитель, отличается тем, что в ее составе дополнительно использован бутадиен-нитрильный каучук (2,5-4,0 мас.%) и малеиновый ангидрид (2,0-2,5 мас.%), при этом в качестве пластификатора использована жидкая фракция липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С (20,0-30,0 мас.%), а в качестве наполнителя использован тальк (22,5-35,0 мас.%), при этом битум составляет остальную часть мастики. Использование названных компонентов мастики при заявленных пределах содержаний обеспечивает возможность получения повышенных значений эластичности, прочности мастики и ее адгезии с защищаемым материалом, при показателях температур размягчения и хрупкости, обеспечивающих эффективную «работу» мастики в суровых климатических условиях. 1 табл.

Description

Изобретение относится к строительным материалам широкого спектра применения и может быть использовано для кровельных, изоляционных, герметизирующих работ.
Известна мастика резино-битумная, включающая битум и дисперсную фазу, содержащую резину, отличающаяся тем, что она дополнительно содержит стабильный свободный радикал, получаемый и вводимый извне или генерируемый в композиции в присутствии радикального инициатора или катализатора на основе соединений переходных металлов, при этом резина присутствует в виде различимых поверхностно-деструктированных частиц, содержащих ненасыщенные связи и продуктов ее деструкции, способных к радикальному соединению с получением в битуме гетерогенной армирующей пространственной структуры из компонентов композиции (см. RU 2167898, C08L 95/00, C08L 17/00, 2001.05.27).
Недостаток этого решения - неудовлетворительный комплекс температур размягчения и хрупкости (если достигается наилучший показатель температуры хрупкости (-28°С), то ему соответствует неудовлетворительная температура размягчения (+50°С), а если достигается наилучший показатель температуры размягчения (+92°С), то ему соответствует неудовлетворительная температура хрупкости (-18°С)). Таким образом данная мастика не может эффективно работать в составе кровельных и изоляционных материалов в суровых климатических условиях (при температурах наружного воздуха ниже -30°С и выше +30°С).
Известна также мастика резино-битумная, содержащая битум, резиновую крошку, пластификатор и наполнитель (см. Руденская И.М., Руденский А.В. Органические вяжущие для дорожного строительства. - М.: Транспорт, 1984 г., с.188). В качестве пластификатора она содержит каменноугольное масло, а в качестве наполнителя смесь асбестового и известнякового порошка при следующем соотношении компонентов, мас.%: битум - 60-70; резиновая крошка - 8-10; пластификатор - 8-10; асбестовый порошок - 5-10; известняковый порошок - 5-10.
Недостаток этого решения - недостаточная эластичность и прочностью при разрыве. Кроме того, в состав композиции входит асбестовый порошок, являющийся вредным для здоровья персонала дефицитным продуктом.
Задача, на решение которой направлено заявленное решение, заключается в обеспечении возможности получения повышенных значений эластичности, прочности и адгезии с защищаемым материалом и при показателях температур размягчения и хрупкости, обеспечивающих эффективную «работу» материала в суровых климатических условиях.
Технический результат, достигаемый при решении поставленной задачи, выражается в обеспечении возможности получения материалов эффективно «работающих» в суровых климатических условиях (при температурах наружного воздуха ниже -30°С и выше +30°С), в широком спектре строительных и дорожных работ.
Поставленная задача решается тем, что мастика резино-битумная, содержащая битум, резиновую крошку, пластификатор и наполнитель, отличается тем, что в ее составе дополнительно использован бутадиен-нитрильный каучук и малеиновый ангидрид, при этом в качестве пластификатора использована жидкая фракция липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С, а в качестве наполнителя использован тальк, при этом названные компоненты в составе мастики использованы при следующем соотношении, мас.%:
Жидкая фракция липтобиолитовой каменноугольной
смолы с температурой кипения выше 230°С 20,0-30,0
Резиновая крошка 3,0-6,0
Бутадиен-нитрильный каучук 2,5-4,0
Малеиновый ангидрид 2,0-2,5
Тальк 22,5-35,0
Битум остальное
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию "новизна".
Признаки отличительной части формулы изобретения обеспечивают решение комплекса функциональных задач.
Признаки, указывающие, что в составе мастики «дополнительно использован бутадиен-нитрильный каучук», обеспечивают возможность его эффективного диспергирования в жидкой фракции липтобиолитовой каменноугольной смолы, а затем и в битуме (при вводе в него добавки), при этом, распределяясь равномерно в объеме мастики, этот компонент способствует повышению ее эластичности после затвердевания.
Признаки, указывающие на использование малеинового ангидрида, обеспечивают создание с указанным типом каучука полимерного комплекса, обеспечивающего повышение адгезии мастики с различными материалами (с наполнителями, с бетоном и металлом).
Признаки, указывающие, что «в качестве пластификатора использована жидкая фракция липтобиолитовой каменноугольной смолы», обеспечивают пластификацию битума и эффективное растворение (диспергацию) синтетического каучука (последнее, в свою очередь, обеспечивает равномерность распределения последнего в объеме битума). Кроме того, этот компонент способствует частичной девулканизации резиновой крошки, что позволяет заменить ею часть каучука. Кроме того, снижается дефицитность основного компонента добавки, т.к. он производится непосредственно в Дальневосточном регионе, на основе липтобиолитовых углей Липовецкого месторождения (Приморский край).
Признаки, указывающие на использование жидкой фракции липтобиолитовой каменноугольной смолы «с температурой кипения выше 230°С», исключают непроизводительные потери этого компонента в процессе приготовления добавки и ее смешивания с битумом, которые сопровождаются термической обработкой, что также повышает безопасность процесса приготовления добавки (для персонала) и снижает выбросы в атмосферу.
Признаки, указывающие, что в качестве наполнителя использован тальк, позволяют широко варьировать характеристиками покрытия, такими, как прочность, абразивная стойкость, отражательная или поглощательная способность по отношению к солнечному свету, себестоимость по материалам и т.п.
«Выход» значения концентрации битума за нижний предел заявленного диапазона снижает гидроизоляционные свойства мастики, а «выход» значения концентрации битума за верхний предел заявленного диапазона ведет к образованию слабосшитого покрытия с низкими эксплутационными характеристиками.
Признаки, указывающие на диапазон концентраций бутадиен-нитрильного каучука, резиновой крошки и фракции липтобиолитовой каменноугольной смолы, обеспечивают достижение максимально-возможных значений концентраций этих компонентов, при которых наблюдается получение однородного геля. Таким образом, заданный диапазон концентраций этих компонентов определяет не столько технологические и эксплуатационные характеристики мастики, которые изменяются в сравнительно узком диапазоне, сколько гомогенность самой смеси. Кроме того, увеличение содержания пластификатора в мастике свыше заявленного диапазона приводит к его выпотеванию на поверхность отвержденного покрытия или ведет к образованию гелеобразного покрытия. Уменьшение содержания пластификатора ниже заявленного диапазона не позволяет достичь необходимой вязкости мастики и температуры хрупкости.
Признаки, указывающие на диапазон концентраций малеинового ангидрида, обеспечивают температуру размягчения смеси на уровне, меньшем температуры кипения используемой фракции липтобиолитовой каменноугольной смолы. При этом увеличение содержания малеинового ангидрида в мастике свыше заявленного диапазона приводит к его свободному избытку в составе мастики и ее ускоренному разрушению, а уменьшение ниже заявленного диапазона приводит к неэффективному использованию каучука - его свободному остатку в составе мастики, что способствует снижению показателей адгезии.
Признаки, суммарно указывающие на диапазон концентраций резиновой крошки и каучука, обеспечивают эффективное замещение части объема каучука менее дефицитным материалом, увеличение содержания резиновой крошки в мастике свыше заявленного диапазона приводит к увеличению жесткости и, тем самым, к уменьшению эластичности мастики, а уменьшение ниже заявленного диапазона приводит к понижению температуры размягчения.
«Выход» значения концентрации наполнителя за нижний предел заявленного диапазона ведет к снижению твердости покрытия, формирующегося после отвердевания мастики, а «выход» значения его концентрации за верхний предел заявленного диапазона ведет к значительному повышению вязкости мастики, что затрудняет переработку методом свободного литья.
Для приготовления мастики используют:
Битум марки БНК 90/40 (ГОСТ 9548-74) - кровельный покровный битум или БН 90/10 (ГОСТ 6617-76), получаемые при окислении остатков перегонки нефти.
Фракцию с температурой кипения выше 230°С, получаемую из смолы каменноугольной липтобиолитовой (ТУ 14-7-100). Смолу каменноугольную липтобиолитовую получают при полукоксовании липтобиолитовых углей. Названную фракцию получают как жидкий остаток после возгонки легколетучих фракций при термической обработке исходной смолы (нагреве до 230°С).
Используют бутадиен-нитрильный синтетический каучук марки БНКС 28 АСМЭ, производимый ОАО «Красноярский завод синтетического каучука», поставляемый в гранулах.
Используют малеиновый ангидрид по ГОСТ 11153-75.
Резиновая крошка - продукт переработки отходов производства автопокрышек, камер, резинотехнических изделий и самих изношенных изделий, фракция до 1,5 мм.
Используют тальк молотый по ГОСТ 21234 или ГОСТ 19729-74.
Для приготовления мастики используют мешалки известной конструкции, выполненные в виде емкости с лопастной мешалкой и средствами поддержания температурного режима не менее 180°С.
Мастику готовят и используют следующим образом.
При приготовлении и использовании мастики необходимо соблюдение следующего комплекса мер безопасности:
- работники должны быть обеспечены средствами индивидуальной защиты в соответствии с ГОСТ 12.4.103: (комбинезоны, фартуки, ботинки кожаные, средствами защиты органов дыхания - респираторы с аэрозольным фильтром, для защиты глаз - очками);
- работы, связанные с использованием мастики, должны проводиться в соответствии с «Санитарными правилами организации технологических процессов и гигиеническими требованиями к производственному оборудованию» ГОСТ 12.3.002, ГОСТ 12.3.035;
- работы, связанные с приготовлением и применением мастики в замкнутых помещениях, должны проводиться только при непрерывно действующей приточно-вытяжной вентиляции или с использованием средств защиты органов дыхания, при этом запрещается применение открытого огня;
- при работе в закрытых помещениях разрешается применение светильников только во взрывобезопасном исполнении;
- перед началом работы следует проверить исправность электрооборудования и наличие заземления во избежание искрения.
Основу мастики получают путем ввода эффективных количеств каучука и резиновой крошки в нагретую до 80°С жидкую фракцию липтобиолитовой каменноугольной смолы (с температурой кипения выше 230°С), их перемешивания и выдерживания до 6 часов при этой температуре до завершения процесса набухания резиновой крошки. Далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят заявленное количество битума и малеинового ангидрида и перемешивают смесь при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). Предлагаемое изобретение поясняется следующими примерами.
Пример 1. 24,2 кг (24,2 мас.%) жидкой фракции липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С помещают в емкость, в которую добавляют 2,8 кг (2,8 мас.%) гранулированного синтетического каучука марки БНКС 28 АСМЭ и 3,9 кг (3,9 мас.%) резиновой крошки и перемешивают эти компоненты, выдерживая смесь до 6 часов при температуре 80°С до завершения процесса набухания резиновой крошки, далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят 2,1 кг (2,1 мас.%) малеинового ангидрида и 38,4 кг (38,4 мас.%) битума. Далее смесь выдерживают с перемешиванием при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). При этом за 0,3-0,5 часа до окончания процесса в смесь вводят 28,6 кг (28,6 мас.%) талька. Далее мастику сразу используют в горячем виде или, добавив разбавитель, охлаждают и используют в холодном виде, по мере надобности.
Пример 2. 20 кг (20 мас.%) жидкой фракции липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С, помещают в емкость, в которую добавляют 3 кг (3 мас.%) гранулированного синтетического каучука марки БНКС 28 АСМЭ и 5 кг (5 мас.%) резиновой крошки и перемешивают эти компоненты, выдерживая смесь до 6 часов при температуре 80°С до завершения процесса набухания резиновой крошки, далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят 2 кг (2 мас.%) малеинового ангидрида и 35 кг (35 мас.%) битума. Далее смесь выдерживают с перемешиванием при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). При этом за 0,3-0,5 часа до окончания процесса в смесь вводят 35 кг (35 мас.%) талька. Далее мастику сразу используют в горячем виде или, добавив разбавитель, охлаждают и используют в холодном виде, по мере надобности.
Пример 3. 20 кг (20 мас.%) жидкой фракции липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С помещают в емкость, в которую добавляют 3 кг (3 мас.%) гранулированного синтетического каучука марки БНКС 28 АСМЭ и 5 кг (5 мас.%) резиновой крошки и перемешивают эти компоненты, выдерживая смесь до 6 часов при температуре 80°С до завершения процесса набухания резиновой крошки, далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят 2 кг (2 мас.%) малеинового ангидрида и 45 кг (35 мас.%) битума. Далее смесь выдерживают с перемешиванием при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). При этом за 0,3-0,5 часа до окончания процесса в смесь вводят 25 кг (35 мас.%) талька. Далее мастику сразу используют в горячем виде или, добавив разбавитель, охлаждают и используют в холодном виде, по мере надобности.
Пример 4. 30 кг (30 мас.%) жидкой фракции липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С помещают в емкость, в которую добавляют 2,5 кг (2,5 мас.%) гранулированного синтетического каучука марки БНКС 28 АСМЭ и 3 кг (3 мас.%) резиновой крошки и перемешивают эти компоненты, выдерживая смесь до 6 часов при температуре 80°С до завершения процесса набухания резиновой крошки, далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят 2 кг (2 мас.%) малеинового ангидрида и 40 кг (40 мас.%) битума. Далее смесь выдерживают с перемешиванием при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). При этом за 0,3-0,5 часа до окончания процесса в смесь вводят 22,5 кг (22,5 мас.%) талька. Далее мастику сразу используют в горячем виде или, добавив разбавитель, охлаждают и используют в холодном виде, по мере надобности.
Пример 5. 28 кг (28 мас.%) жидкой фракции липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С помещают в емкость, в которую добавляют 3,5 кг (3,5 мас.%) гранулированного синтетического каучука марки БНКС 28 АСМЭ и 6 кг (6 мас.%) резиновой крошки и перемешивают эти компоненты, выдерживая смесь до 6 часов при температуре 80°С до завершения процесса набухания резиновой крошки, далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят 2,5 кг (2,5 мас.%) малеинового ангидрида и 37 кг (37 мас.%) битума. Далее смесь выдерживают с перемешиванием при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). При этом за 0,3-0,5 часа до окончания процесса в смесь вводят 23 кг (23 мас.%) талька. Далее мастику сразу используют в горячем виде или, добавив разбавитель, охлаждают и используют в холодном виде, по мере надобности.
Пример 6. 24 кг (24 мас.%) жидкой фракции липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С помещают в емкость, в которую добавляют 4 кг (4 мас.%) гранулированного синтетического каучука марки БНКС 28 АСМЭ и 3,2 кг (3,2 мас.%) резиновой крошки и перемешивают эти компоненты, выдерживая смесь до 6 часов при температуре 80°С до завершения процесса набухания резиновой крошки, далее температуру повышают до 180°С и перемешивают смесь до диспергирования резиновой крошки (получения гомогенной массы). Затем, продолжая перемешивание, вводят 2,4 кг (2,4 мас.%) малеинового ангидрида и 43 кг (43 мас.%) битума. Далее смесь выдерживают с перемешиванием при температуре 180°С до окончания реакции (ориентировочно, до 2 часов). При этом за 0,3-0,5 часа до окончания процесса в смесь вводят 23,4 кг (23,4 мас.%) талька. Далее мастику сразу используют в горячем виде или, добавив разбавитель, охлаждают и используют в холодном виде, по мере надобности.
«Горячую» мастику наносят на поверхность наливом и распределяют по ней шпателем.
«Холодную» мастику наносят на защищаемую поверхность вручную с помощью кисти или валика, при температуре окружающей среды от 5 до 60°С. При этом металлические поверхности должны быть очищены до степени 2 по ГОСТ 9.402, а бетонные иметь класс шероховатости 3, поверхностную пористость до 10% по СНиП 3.04.03.
Результаты испытаний защитного покрытия, сформированного на основе приготовленной мастики, приведенные в таблице, показывает, что ее использование позволяет повысить характеристики покрытия по сравнению с аналогичными характеристиками прототипа.
№ примера Температура Эластичность, % Прочность при растяжении, МПа
размягчения, °С хрупкости, °С
1 83 -45 85 2,7
2 80 -35 87 2,6
3 72 -32 80 2,4
4 77 -41 75 2,2
5 88 -30 60 1,4
6 70 -47 86 2,8
Прототип 70 -35 25 0,1

Claims (1)

  1. Мастика резинобитумная, содержащая битум, резиновую крошку, пластификатор и наполнитель, отличающаяся тем, что в ее составе дополнительно использован бутадиен-нитрильный каучук и малеиновый ангидрид, при этом в качестве пластификатора использована жидкая фракция липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С, а в качестве наполнителя использован тальк, при этом названные компоненты в составе мастики использованы при следующем соотношении, мас.%:
    Жидкая фракция липтобиолитовой каменноугольной смолы с температурой кипения выше 230°С 20,0-30,0 Резиновая крошка 3,0-6,0 Бутадиен-нитрильный каучук 2,5-4,0 Малеиновый ангидрид 2,0-2,5 Тальк 22,5-35,0 Битум Остальное
RU2006145263/04A 2006-12-19 2006-12-19 Мастика резинобитумная RU2323231C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006145263/04A RU2323231C1 (ru) 2006-12-19 2006-12-19 Мастика резинобитумная

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006145263/04A RU2323231C1 (ru) 2006-12-19 2006-12-19 Мастика резинобитумная

Publications (1)

Publication Number Publication Date
RU2323231C1 true RU2323231C1 (ru) 2008-04-27

Family

ID=39453110

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145263/04A RU2323231C1 (ru) 2006-12-19 2006-12-19 Мастика резинобитумная

Country Status (1)

Country Link
RU (1) RU2323231C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448134C1 (ru) * 2010-10-11 2012-04-20 Общество с ограниченной ответственностью "Полимод" (ООО "Полимод") Способ приготовления резинобитумной композиции

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
И.М.Руденская, А.В.Руденский, Органические вяжущие для дорожного строительства. М.: - Транспорт, 1984, с.188. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448134C1 (ru) * 2010-10-11 2012-04-20 Общество с ограниченной ответственностью "Полимод" (ООО "Полимод") Способ приготовления резинобитумной композиции

Similar Documents

Publication Publication Date Title
US4139511A (en) Asphalt compositions
CN108892886A (zh) 改性碳酸钙增强pvc管材及制备方法
RU2323231C1 (ru) Мастика резинобитумная
Iqbal et al. Understanding the role of isocyanate dilution toward spraying of polyurea
RU2559508C1 (ru) Модификатор битума для дорожного асфальтобетона
RU2489464C1 (ru) Способ приготовления резинобитумной композиции
US20160194498A1 (en) Heat Resistant Polymer Modified Asphalt Composition
RU2448134C1 (ru) Способ приготовления резинобитумной композиции
CN106832979A (zh) 一种建筑防水沥青嵌缝油膏及其制备方法
RU2220171C1 (ru) Битумсодержащий материал
Hayeemasae et al. Enhancing the thermal stability of natural rubber/recycled ethylene propylene diene rubber blends through the use of bio‐compatibilizers
RU2318848C1 (ru) Модифицирующая добавка к битумам
RU2277108C1 (ru) Резиновая смесь для получения гидроизоляционных материалов (варианты)
RU2550888C2 (ru) Способ приготовления резинобитумной композиции
CN102532922A (zh) 一种合成橡胶沥青及其制备方法
RU2355723C2 (ru) Битумополимерный материал и способ его получения
Van Dyke et al. Effect of butyl rubber type on properties of polyamide and butyl rubber blends
RU2320682C1 (ru) Полимерная композиция
CN104250433A (zh) 一种pbt用阻燃增韧剂及由其制备的高强度阻燃pbt材料
RU2521582C1 (ru) Состав для получения покрытий
US3053781A (en) Mastic coating material
RU2300542C1 (ru) Битумно-полимерная мастика и способ ее изготовления
CN114891445B (zh) 一种耐根穿刺型喷涂速凝沥青防水涂料及其制备方法
US246359A (en) William b
JPS6284144A (ja) 防塵性に優れた粉状フェノール樹脂結合剤組成物およびその製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081220

NF4A Reinstatement of patent

Effective date: 20100820

MM4A The patent is invalid due to non-payment of fees

Effective date: 20121220