RU2320422C1 - Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа - Google Patents

Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа Download PDF

Info

Publication number
RU2320422C1
RU2320422C1 RU2006127995/12A RU2006127995A RU2320422C1 RU 2320422 C1 RU2320422 C1 RU 2320422C1 RU 2006127995/12 A RU2006127995/12 A RU 2006127995/12A RU 2006127995 A RU2006127995 A RU 2006127995A RU 2320422 C1 RU2320422 C1 RU 2320422C1
Authority
RU
Russia
Prior art keywords
point
walls
particles
chamber
gas stream
Prior art date
Application number
RU2006127995/12A
Other languages
English (en)
Inventor
Сергей Григорьевич Гостеев (RU)
Сергей Григорьевич Гостеев
Александр Георгиевич Колесников (RU)
Александр Георгиевич Колесников
Владимир Александрович Маевский (RU)
Владимир Александрович Маевский
Владислав Эдуардович Мельников (RU)
Владислав Эдуардович Мельников
Александр Залманович Понизовский (RU)
Александр Залманович Понизовский
Андрей Николаевич Шутов (RU)
Андрей Николаевич Шутов
Original Assignee
Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") filed Critical Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ")
Priority to RU2006127995/12A priority Critical patent/RU2320422C1/ru
Application granted granted Critical
Publication of RU2320422C1 publication Critical patent/RU2320422C1/ru

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

Изобретение относится к области очистки газа, а именно к способу отделения частиц и/или капель веществ микронного и субмикронного размера от потока газа, и может быть использовано в металлургической, химической и других отраслях промышленности. При отделении частиц и/или капель веществ микронного и субмикронного размера из потока газа осуществляют пропускание потока газа через осадительную камеру с заземленными стенками, подачу высокого напряжения на расположенные внутри осадительной камеры точечные ионизирующие электроды для формирования ионного пучка между каждым точечным ионизирующим электродом и стенками камеры. Для образования ионных пучков посредством импульсного стримерного коронного разряда на точечные ионизирующие электроды подают постоянное напряжение 20-50 кВ и накладывают на него импульсы с амплитудой, кратной нечетному числу величины постоянного напряжения, длительностью 100-700 нс и частотой следования 50-2000 Гц. Заявленный способ обеспечивает повышение технологичности очищения газового потока от загрязняющих его материалов в форме частиц и/или капель при одновременном снижении габаритов используемых устройств, увеличении их производительности. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области очистки газа, а именно к способу отделения частиц и/или капель веществ микронного и субмикронного размера от потока газа, и может быть использовано в металлургической, химической и других отраслях промышленности.
Одним из наиболее эффективных способов очистки газов является электрический способ, использующий электрофизические методы, основанные на зарядке мелкодисперсных частиц и/или ионизации паров загрязнителей, отделении последних от потока газа электрическим полем с одновременным их осаждением на заземленных поверхностях.
Известны способы очистки газа от взвешенных в нем твердых или жидких частиц [1, 5], где поток газа направляют через осадительную камеру, частицам сообщается электрический заряд, поступающий с острийных электродов осадительной камеры, на которые подают высокое напряжение.
Известен также способ отделения диоксинов и других высокотоксичных органических примесей от газов, включающий предварительный контакт газового потока, содержащего примеси, с жидким аэрозолем, электрическую зарядку твердых и жидких аэрозольных частиц примесей и осаждение последних в электростатическом фильтре [3].
Однако применение существующих электрофизических методов для очистки газов от субмикронных аэрозолей высокотоксичных органических и неорганических загрязнений (таких, например, как диоксины, ангидрид хрома, фтористый водород, и др.) ограничено из-за сложности их улавливания в электростатических электрофильтрах. Это, в частности, связано с малым КПД зарядки таких частиц в поле постоянного коронного разряда и низкой скоростью дрейфа частиц.
Разработка способов, позволяющих эффективно отделять от газового потока загрязняющие его вещества в форме мелкодисперсных частиц и/или капель, является актуальной.
Увеличить скорость дрейфа при малой концентрации частиц веществ-загрязнителей и малых размерах последних можно, например, путем создания необходимой плотности заряда коронирующими устройствами с очень высоким постоянным напряжением [2] или приложением напряжения, в частности, равного по величине, но противоположного по знаку, к слою диэлектрика на осадительной поверхности [4].
В известном способе [4] предложено создавать дополнительное электрическое поле между игольчатыми электродами и стенками осадительной камеры. При подаче высокого напряжения на осадительные поверхности перед осадительной поверхностью формируется электрическое поле, притягивающее к этой поверхности ионы противоположного знака и заряженные частицы, имеющие противоположную полярность. По мнению автора указанного способа, наилучшие результаты по очистке получаются при использовании равных по абсолютной величине напряжений противоположных полярностей.
В случае использования способа по патенту [4] возникает необходимость применения двух разнополярных источников высокого постоянного напряжения, синхронизации их совместной работы, а увеличение напряженности электрического поля между электродами и осадительными поверхностями повышает вероятность пробоя изоляционных промежутков электрофильтра.
Наиболее близким по технической сущности к заявляемому является способ отделения частиц и/или капель веществ микронного и субмикронного размера из потока газа [2], включающий пропускание потока газа через осадительную камеру с заземленными стенками, подачу высокого напряжения на расположенные внутри осадительной камеры точечные ионизирующие электроды для формирования ионного пучка между каждым точечным ионизирующим электродом и стенками камеры. В данном способе на точечные ионизирующие электроды подают высокое напряжение 100-250 кВ, посредством чего от одноточечных электродов создаются серии неперекрывающихся конических ионных пучков. Расстояние между точечными ионизирующими электродами и стенками камеры выбирают из условия формирования конического ионного потока, который и производит работу по отделению частиц и/или капель веществ от потока газа. Величины этого расстояния находятся в диапазоне 100-1000 мм. При этом вещество, аккумулированное на стенках осадительной камеры, в соответствии с указанным способом, удаляют путем промывки осадительных поверхностей водой, подаваемой нормально к стенкам осадительной камеры.
Недостатком данного способа является необходимость применения надежной высоковольтной изоляции точечных ионизирующих электродов относительно осадительной камеры на класс напряжения 110-220 кВ, а применение только постоянного напряжения и одноточечных ионизирующих электродов увеличивает размеры осадительных камер.
В этой связи в филиале МКБ «Горизонт» ФГУП ММПП «Салют» был разработан способ высокоэффективной зарядки и удаления мелкодисперсных частиц, который осуществляется при одновременном воздействии на поток газа наносекундной импульсной стримерной короны и постоянного электрического поля.
Техническим результатом заявленного способа является повышение технологичности очищения газового потока от загрязняющих его материалов в форме частиц и/или капель при одновременном снижении габаритов используемых устройств, увеличении их производительности.
Указанный технический результат достигается тем, что способ отделения частиц и/или капель веществ микронного и субмикронного размера из потока газа включает пропускание потока газа через осадительную камеру с заземленными стенками, подачу высокого напряжения на расположенные внутри осадительной камеры точечные ионизирующие электроды для формирования ионного пучка между каждым точечным ионизирующим электродом и стенками камеры, причем для формирования ионных пучков посредством импульсного стримерного коронного разряда на точечные ионизирующие электроды подают постоянное напряжение 20-50 кВ и накладывают на него импульсы с амплитудой, кратной нечетному числу величины постоянного напряжения, длительностью 100-700 нс и частотой следования 50-2000 Гц.
При этом расстояния между точечными ионизирующими электродами выбирают из условия неэкранирования объемным зарядом пучков заряженных частиц точечных ионизующих электродов, обеспечивая значения линейной плотности импульсного тока не менее 0,8 кА/м.
Для перезарядки, абсорбирования и удаления частиц и/или капель, отделенных от потока газа, по стенкам осадительной камеры подают жидкость, при этом обеспечивают сплошность потока последней.
Стримерная корона в воздухе при нормальных атмосферных условиях характеризуется значительными плотностями и энергиями электронно-ионного потока, способного эффективно осуществить диффузионную электронно-ионную зарядку субмикронных аэрозолей. Удаление аэрозолей и твердых частиц из потока осуществляется благодаря непрерывному воздействию высокого постоянного напряжения.
При наличии паров галогеносодержащих соединений такие процессы происходят вследствие эффекта прилипания электронов к молекулам загрязнителей. Однако в этом случае необходимо абсорбировать эти пары на заземленных поверхностях жидким реагентом. Это связано с тем, что при абсорбционных процессах скорость удаления частиц загрязнителей каплями воды или других абсорбционных составов определяется скоростью диффузии газов. При зарядке частиц загрязнителей и капель зарядами различных знаков скорость абсорбционных процессов увеличивается в десятки раз за счет сил электростатического притяжения при одновременном снижении расхода реагента.
Использование в заявленном способе импульсного напряжения позволяет получить стримерную корону, которая создает высокую объемную плотность зарядов (импульсная плотность потока заряженных частиц более чем 105 раз выше, чем при постоянной короне). Это резко сокращает время зарядки аэрозолей и твердых частиц до максимально возможного значения, так как для мелкодисперсных частиц субмикронного диапазона величина приобретаемого заряда при диффузионном процессе зарядки прямо пропорциональна концентрации ионов или току пучка [5]. В результате, в паузах между импульсами, за счет ускоренного дрейфа частиц в постоянном поле до стенок осадительной камеры, осуществляется практически полная очистка потока воздуха от загрязнений.
В заявляемом способе ионный пучок между каждым точечным ионизирующим электродом и стенками камеры формируют посредством импульсного стримерного коронного разряда. Для этого на точечные ионизирующие электроды подают постоянное напряжение 20-50 кВ и накладывают на него импульсы с амплитудой, кратной нечетному числу величины постоянного напряжения, длительностью 100-700 нс и частотой следования 50-2000 Гц.
Указанный выше диапазон высокого постоянного напряжения, равный 20-50 кВ, является оптимальным диапазоном для эффективного обеспечения процесса отделения частиц и/или капель веществ от потока газа. Значения величин постоянного напряжения ниже 20 кВ не позволяют обеспечить эффективность процесса отделения частиц и/или капель веществ от потока газа, достаточную для реализации заявленного способа в промышленных масштабах, а величины напряжения более 50 кВ ограничены сегодняшним уровнем развития технической базы, необходимой для создания устройств высокого напряжения, осуществляющих питание очистных установок. По тем же причинам ограничен интервал частоты следования импульсов. Пределы для длительности импульсов определяются физическими процессами, ответственными за формирование ионных пучков с необходимыми параметрами для конкретных конструкций осадительных камер.
Расположение точечных ионизирующих электродов на таком расстоянии, чтобы не было экранирования объемным зарядом пучка заряженных частиц точечных ионизирующих электродов, позволяет обеспечить среднее значение стримерного тока 100 мА с каждой точки [6] и получить величину линейной плотности импульсного тока ионного пучка не менее 0,8 кА/м. Оптимум импульсного тока достигается при радиусе экранирования около 5 мм. При этом величина среднего тока в 10-100 раз выше, чем при использовании известного способа по патенту [2].
Подача по стенкам осадительной камеры жидкости с обеспечением сплошности потока последней позволяет не осуществлять зарядку капель воды или абсорбционных составов. Жидкий реагент подается, например, тангенциально относительно стенок осадительной камеры, стекает по ним в направлении, противоположном потоку газа, собирается в буферной емкости и вновь может быть направлен на поглощение загрязнителей. Благодаря тому, что скорость дрейфа заряженных частиц в постоянном электрическом поле имеет порядок десятков метров в секунду, заряженные частицы загрязнителей за время прохождения по осадительной камере дойдут до стенок осадительной камеры и поглотятся жидкостью, постоянно стекающей по ней тонкой пленкой с толщиной слоя, обеспечивающей сплошность потока.
Для реализации заявленного способа отделения частиц и/или капель веществ микронного и субмикронного размера от потока газа может быть использовано устройство, конструкция которого позволяет генерировать наносекундные импульсы напряжения, наложенные на постоянное напряжение, например устройство, приведенное в патенте РФ № 2036017, 27.05.1995, В03С 3/68.
Полезность предложенного способа подтверждается результатами тестовых испытаний по очистке вентиляционных выбросов различных участков производства ФГУП ММПП «Салют», представленных на примере в таблице. В данном примере были взяты следующие значения параметров: постоянное напряжение 30 кВ, наложенные на него импульсы с амплитудой 90 кВ, длительностью 100 нс и частотой следования 400 Гц.
Таблица
Вещество Триоксид хрома CrO3 Бифторид калия KHF2 Тетрофтороборат калия KBF4
Начальная концентрация мг/м3 1 40 170
Расход вентвыбросов м3 200 50 1 (50% аргон)
Степень очистки % 99 96 94
Энергозатраты кВт·ч/м3·мг 0,003 0,0003 0,005
Предлагаемый способ может обеспечить очистку газовоздушных потоков от частиц и/или капель веществ из различных материалов, при этом ни размер частиц, ни их концентрация и диэлектрические свойства не представляют препятствий для отделения загрязнений.
При очистке воздушного потока с применением заявленного способа синтезируется озон в регулируемом количестве, поэтому в осадительной камере происходят не только окислительно-восстановительные реакции, но и глубокая дезинфекция очищаемого воздуха.
Способ по заявленному изобретению может быть также применим в различном оборудовании по обезвреживанию органических соединений. Энергия импульсного коронного разряда вызывает диссоциацию молекул примесей электронной бомбардировкой с образованием радикалов из летучих органических соединений. В свою очередь, высокая кинетическая скорость возбужденных радикалов вызывает деструкцию молекул, их окисление или полимеризацию с дальнейшим удалением из газового потока согласно заявленному способу.
Таким образом, применение заявленного способа позволяет уменьшить в 5 раз уровень высокого постоянного напряжения, снизить энергозатраты при увеличении производительности по очищаемому потоку газа (скорость потока может достигать 10 м/с при сохранении требуемой степени очистки), устранить необходимость остановки процесса очистки потока газа, так как удаление загрязнений со стенок осадительной камеры осуществляется без снятия высокого напряжения, сэкономить реагент за счет использования небольшого количества оборотной жидкости.
Источники информации
1. Левитов В.И. «Дымовые электрофильтры», М., «Энергия», 1980 г., стр.448.
2. ЕР 0424335 А2, опубл. 24.04.1991, В03С 3/12.
3. US 500762 А, опубл. 19.03.1991, В03С 3/00.
4. Патент РФ № 2235601, опубл. 10.09.2004, В03С 3/02.
5. Страус В. «Промышленная очистка газов» (пер. с англ.), М., «Химия», 1981 г., стр.616.
6. Понизовский А.З., Понизовский Л.З., Крючков С.П. «Зондовые исследования параметров одиночных стримеров в многоточечной коронирующей системе». Х Конференция по физике газового разряда. Тезисы докладов. Рязань, 2000 г., стр.117.

Claims (3)

1. Способ отделения частиц и/или капель веществ микронного и субмикронного размера из потока газа, включающий пропускание потока газа через осадительную камеру с заземленными стенками, подачу высокого напряжения на расположенные внутри осадительной камеры точечные ионизирующие электроды для формирования ионного пучка между каждым точечным ионизирующим электродом и стенками камеры, отличающийся тем, что для формирования ионных пучков посредством импульсного стримерного коронного разряда на точечные ионизирующие электроды подают постоянное напряжение 20-50 кВ и накладывают на него импульсы с амплитудой, кратной нечетному числу величины постоянного напряжения, длительностью 100-700 нс и частотой следования 50-2000 Гц.
2. Способ по п.1, отличающийся тем, что расстояния между точечными ионизирующими электродами выбирают из условия неэкранирования объемным зарядом пучков заряженных частиц точечных ионизующих электродов, обеспечивая значения линейной плотности импульсного тока не менее 0,8 кА/м.
3. Способ по п.1 или 2, отличающийся тем, что для перезарядки, абсорбирования и удаления частиц и/или капель, отделенных от потока газа, по стенкам осадительной камеры подают жидкость, при этом обеспечивают сплошность потока последней.
RU2006127995/12A 2006-08-02 2006-08-02 Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа RU2320422C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006127995/12A RU2320422C1 (ru) 2006-08-02 2006-08-02 Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006127995/12A RU2320422C1 (ru) 2006-08-02 2006-08-02 Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа

Publications (1)

Publication Number Publication Date
RU2320422C1 true RU2320422C1 (ru) 2008-03-27

Family

ID=39366150

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006127995/12A RU2320422C1 (ru) 2006-08-02 2006-08-02 Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа

Country Status (1)

Country Link
RU (1) RU2320422C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733395C1 (ru) * 2020-06-19 2020-10-01 Александр Залманович Понизовский Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации
RU2733755C1 (ru) * 2020-07-13 2020-10-06 Александр Залманович Понизовский Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации с помощью комбинации частотно-импульсного и высоковольтного постоянного напряжения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВЕРЕЩАГИН И.П. Высоковольтные электротехнологии. - М.: МЭИ, 1999, с.92. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733395C1 (ru) * 2020-06-19 2020-10-01 Александр Залманович Понизовский Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации
RU2733755C1 (ru) * 2020-07-13 2020-10-06 Александр Залманович Понизовский Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации с помощью комбинации частотно-импульсного и высоковольтного постоянного напряжения

Similar Documents

Publication Publication Date Title
KR101112002B1 (ko) 집진 시스템
JP4491675B2 (ja) エレクトロハイドロダイナミック噴霧手段
US7597750B1 (en) Hybrid wet electrostatic collector
US7534288B2 (en) High performance electrostatic precipitator
JP4687595B2 (ja) 電気集塵装置
KR100710697B1 (ko) 가스 흐름으로부터 입자 및/또는 소적 형태의 물질을분리시키는 방법 및 장치
WO2014014090A1 (ja) 湿式電気集塵装置及び除塵方法
KR20140030124A (ko) 원하지 않는 성분들로부터 공기를 정화하고 그 성분들을 제거하기 위한 장치 및 방법
CN106051918B (zh) 等离子空气净化装置
KR101105306B1 (ko) 습식전기집진기의 집진판 균일수막 유지시스템
CN103742984A (zh) 磁电微水幕空气净化方法及装置
RU2320422C1 (ru) Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа
US5476538A (en) Method of removing aerosols by the radiation effect
KR100475863B1 (ko) 고효율 집진장치
KR100538989B1 (ko) 교류 고전압을 이용한 먼지 제거장치
EP3974062A1 (en) Apparatus for electrostatic de-activation and removal of hazardous aerosols from air
KR20210135051A (ko) 대전된 미세기포를 이용한 수중의 미세플라스틱 제거장치와 이를 이용한 수중의 미세플라스틱 제거방법
JP2007245094A (ja) 電気集塵装置
EP4257242A1 (en) Air purification device
RU2176561C1 (ru) Способ и устройство для очистки газа
RU2095150C1 (ru) Способ очистки газов
RU2635316C2 (ru) Электрический очиститель воздуха
Liu Electrostatic precipitation of fine airborne particles and biological decontamination: efficiency and energy consumption tendencies
RU2665583C1 (ru) Способ пылеулавливания с помощью лазерной установки
JP2009211889A (ja) 低エネルギー電子線を用いた無発塵イオナイザーシステム

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20151012

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20190801