RU2318189C1 - Способ определения погрешности аппаратуры навигации - Google Patents

Способ определения погрешности аппаратуры навигации Download PDF

Info

Publication number
RU2318189C1
RU2318189C1 RU2006130601/09A RU2006130601A RU2318189C1 RU 2318189 C1 RU2318189 C1 RU 2318189C1 RU 2006130601/09 A RU2006130601/09 A RU 2006130601/09A RU 2006130601 A RU2006130601 A RU 2006130601A RU 2318189 C1 RU2318189 C1 RU 2318189C1
Authority
RU
Russia
Prior art keywords
navigation
signal
delay
equipment
simulator
Prior art date
Application number
RU2006130601/09A
Other languages
English (en)
Other versions
RU2006130601A (ru
Inventor
Антон Александрович Федоров (RU)
Антон Александрович Федоров
Владимир Иванович Кокорин (RU)
Владимир Иванович Кокорин
Original Assignee
Общество с ограниченной ответственностью "ТЕХНОПАРК "РАДИОЭЛЕКТРОНИКА" (ООО "ТП РЭ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ТЕХНОПАРК "РАДИОЭЛЕКТРОНИКА" (ООО "ТП РЭ") filed Critical Общество с ограниченной ответственностью "ТЕХНОПАРК "РАДИОЭЛЕКТРОНИКА" (ООО "ТП РЭ")
Priority to RU2006130601/09A priority Critical patent/RU2318189C1/ru
Application granted granted Critical
Publication of RU2318189C1 publication Critical patent/RU2318189C1/ru
Publication of RU2006130601A publication Critical patent/RU2006130601A/ru

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

Изобретение относится к области спутниковой навигации и может быть использовано для определения погрешности аппаратуры спутниковых навигационных сигналов. Достигаемый технический результат - определение погрешности аппаратуры навигации при измерении времени задержки распространения радиосигнала. Способ основан на использовании имитатора сигналов навигационного космического аппарата (НКА). Согласно способу имитатор подключают через линию задержки ко входу аппаратуры навигации. Устанавливают нулевое значение задержки линией задержки. Устанавливают с помощью имитатора сигнал с несущей частотой fн, равной несущей частоте имитируемого НКА (этап б). Устанавливают с помощью имитатора дискретные значения задержек сигнала от нуля до
Figure 00000001
(этап в). Измеряют значения задержек сигнала с помощью аппаратуры навигации (этап г). Определяют погрешности измерений путем определения разности задержек сигналов имитатора и задержек, измеренных аппаратурой навигации (этап д). С помощью линии задержки устанавливают дополнительное значение задержки сигнала и повторяют этапы б)-д). О погрешности аппаратуры навигации судят по разности погрешностей измерений для дискретных значений задержек сигнала при нулевой и дополнительной задержке сигнала. 1 ил.

Description

Изобретение относится к области спутниковой навигации и может быть использовано для определения погрешности аппаратуры спутниковых навигационных сигналов.
Известен способ поверки аппаратуры навигации с помощью комплекса средств измерений [Патент США №5790438, 1998]. В данном способе радионавигационный сигнал формируется с помощью генераторов псевдослучайной последовательности и генератора радиочастоты. Измерение параметров сигнала тестируемой аппаратуры осуществляется частотомером, миливаттметром, анализатором спектра и цифровым преобразователем.
Недостатком данного способа является низкая точность отдельных измерительных приборов, которые не являются эталонными и, следовательно, вносят дополнительную погрешность в измерения и не позволяют использовать данный комплекс для аттестации аппаратуры навигации.
Известен способ измерения погрешностей аппаратуры навигации с помощью комплекса средств измерений, взятый в качестве прототипа (Донченко С.И. Комплекс средств измерений для испытаний аппаратуры потребителей космических навигационных систем ГЛОНАСС и GPS [Электронный ресурс]: / С.И.Донченко, О.В.Денисенко, В.М.Царев, В.П.Волченков // Новости навигации. - 2004. - №2. - Режим доступа: internavigation.ru/documents/2_04.doc. - Имеется печ. аналог). В данном способе поверка спутниковой навигационной аппаратуры проводится путем измерения погрешности определения координат, скорости и синхронизации к координированной шкале времени UTC при помощи эталонных средств. Основу комплекса составляет имитатор навигационных сигналов, с помощью которого формируют сигнал группы спутников (навигационных космических аппаратов) без погрешностей для определения аппаратной погрешности аппаратуры навигации.
Недостатком данного способа является отсутствие поверки точности измерения аппаратурой навигации радионавигационных параметров, в частности времени задержки распространения радиосигнала.
Задачей изобретения является определение погрешности аппаратуры навигации путем определения погрешностей измерения аппаратурой навигации радионавигационного параметра - времени задержки распространения радиосигнала.
Поставленная задача решается тем, что в способе определения погрешности аппаратуры навигации, при котором с помощью имитатора навигационных сигналов формируют сигнал навигационного космического аппарата (НКА) без погрешностей для определения аппаратной погрешности аппаратуры навигации, согласно изобретению имитатором навигационных сигналов устанавливают сигнал с несущей частотой fн, равной несущей частоте имитируемого навигационного космического аппарата, устанавливают дискретные значения задержек сигнала от нуля до
Figure 00000003
, измеряют разность задержек сигнала имитатора навигационных сигналов и аппаратуры навигации для каждого дискретного значения задержки сигнала, устанавливают дополнительную задержку сигнала с помощью линии задержки, повторно имитатором навигационных сигналов устанавливают дискретные значения задержек сигнала от нуля до
Figure 00000003
, определяют разность задержек для каждого дискретного значения задержки сигнала, и о погрешности аппаратуры навигации судят по разности результатов измерений погрешностей дискретных задержек сигнала при нулевой и дополнительной задержке сигнала, установленной с помощью линии задержки.
Существенное отличие предложенного способа от известных заключается в том, что вместо определения погрешностей измерения навигационной аппаратуры путем сравнения известных значений (образцовых) с данными, полученными в результате измерения поверяемой навигационной аппаратуры, в предлагаемом способе производится выделение погрешности аппаратуры навигации из суммарной погрешности измерения при отсутствии образцового средства по определяемому радионавигационному параметру.
Спутниковые радионавигационные системы ГЛОНАСС и GPS базируются на дальномерном и радиально-скоростном методе измерения, основными измеряемыми параметрами которых являются время распространения радиоволн t и доплеровское смещение частоты F (Сетевые спутниковые радионавигационные системы / B.C.Шебшаевич, П.П.Дмитриев, Н.В.Иванцевич и др.; ред. B.C.Шебшаевича. - М.: Радио и связь, 1993. - С.111). Следовательно, чем более точно удается определить время прохождения сигнала от навигационного космического аппарата до потребителя, тем более точно удается определить координаты потребителя.
Определить погрешность задержки распространения радиосигнала можно с помощью эталонного средства. Для аппаратуры навигации таким эталонным средством служит имитатор навигационных сигналов, способный формировать сигналы, имитирующие сигналы системы НКА ГЛОНАСС и GPS в точке их приема аппаратурой навигации. Аппаратура навигации имеет погрешность измерения задержки распространения радиосигнала. Имитатор навигационных сигналов имеет также погрешность формирования задержки сигнала. Если точность формирования задержки сигнала имитатором навигационных сигналов существенно выше точности измерения задержи сигнала аппаратурой навигации, можно провести измерения погрешности аппаратуры навигации с точностью формирования задержки имитатором навигационных сигналов, как это реализовано в прототипе. Высокоточный имитатор навигационных сигналов, как и любое эталонное средство, является дорогостоящей аппаратурой и, в свою очередь, требует аттестации. Поэтому использовать менее точные имитаторы навигационных сигналов для проведения измерений погрешности задержки распространения радиосигнала напрямую затруднительно. Представляется возможным проводить измерения погрешности задержки распространения радиосигнала имитаторами навигационных сигналов с аппаратными погрешностями формирования задержки сигнала, соизмеримыми с погрешностями измерения задержки сигнала аппаратурой навигации путем разделения погрешностей имитатора навигационных сигналов и аппаратуры навигации из суммарной погрешности имитатора навигационных сигналов и аппаратуры навигации.
На чертеже приведена структурная схема устройства, реализующего предложенный способ.
Устройство содержит имитатор 1 навигационных сигналов ГЛОНАСС/GPS, первый выход которого подключен через линию задержки 2 к первому входу аппаратуры 3 навигации. Два других выхода имитатора 1 навигационных сигналов подключены к соответствующим входам аппаратуры 3 навигации.
Способ измерения осуществляется следующим образом. В начале проведения измерений, для того чтобы иметь возможность сравнивать задержки, формируемые имитатором 1 навигационных сигналов, с измеренными задержками аппаратуры 3 навигации следует синхронизировать работу обоих приборов от одного генератора, например, так как показано на фиг.1. Далее на выходе имитатора 1 навигационных сигналов устанавливают частоту навигационного сигнала fн, которая соответствует частоте выбранного НКА. Так для спутниковой радионавигационной системы ГЛОНАСС значения несущих частот НКА располагаются в диапазоне 1598.0625-1615.5 МГц с шагом дискретизации 0.5625 МГц (литеры с -7 по 24). В системе GPS все НКА излучают сигналы с частотой 1575.42 МГц. Имитатором 1 навигационных сигналов устанавливают задержку распространения радиосигнала для первой поверяемой точки. Линией задержки 2 устанавливают исходную (нулевую задержку) на частоте Доплера, равную нулю. С равномерным шагом дискретизации τ имитатором 1 навигационных сигналов последовательно устанавливают дискретные значения задержки для второй, третьей и т.д. до последней поверяемой точки, соответствующие задержке
Figure 00000003
. Аппаратурой 3 навигации в каждой поверяемой точке измеряют значения задержки навигационного сигнала. Таким образом, производят измерение суммарной аппаратной погрешности имитатора 1 навигационных сигналов и аппаратуры 3 навигации:
Figure 00000004
где τ1(1), τ2(1), ..., τk(1) - суммарная погрешность имитатора навигационных сигналов и аппаратуры 3 навигации в 1, 2, ..., k-й поверяемой точке для первого цикла измерений (при нулевой задержке);
ΔτП1, ΔτП2, ..., ΔτПk - погрешность, вносимая только аппаратурой 3 навигации в 1, 2, ..., k-й поверяемой точке;
ΔτИ1, ΔτИ2, ..., ΔτИk - погрешность, вносимая только имитатором 1 навигационных сигналов в 1, 2, ..., k-й поверяемой точке;
ΔτЗ(1) - постоянная составляющая суммарной погрешности для первого цикла измерений (при нулевой задержке).
Далее имитатором 1 навигационных сигналов устанавливают задержку навигационного сигнала в первой поверяемой точке. Линией задержки 2 устанавливают дополнительное значение задержки навигационного сигнала
τ=nτ,
где
Figure 00000005
С равномерным шагом дискретизации τ имитатором 1 навигационных сигналов последовательно устанавливают дискретные значения задержки, равные второй, третьей и т.д., до последней поверяемой точки, соответствующие задержке
Figure 00000003
. Аппаратурой 3 навигации в каждой поверяемой точке производят измерение суммарной аппаратной погрешности имитатора 1 навигационных сигналов и аппаратуры 3 навигации:
Figure 00000006
где τ1(2), τ2(2), ..., τk(2) - суммарная погрешность имитатора навигационных сигналов и аппаратуры 3 навигации в 1, 2, ..., k-ой точки измерения для второго цикла измерений;
ΔτП(1-n), ΔτП(2-n), ..., ΔτП(k-n) - погрешность аппаратуры 3 навигации в (k-n) точке измерения при введенной дополнительной задержке навигационного сигнала τ=nτ с помощью линии задержки;
ΔτЗ(2) - постоянная составляющая суммарной погрешности для второго цикла измерений.
Системы уравнений (1) и (2) дают возможность определить погрешность аппаратуры 3 навигации во всех поверяемых точках.
Путем почленного вычитания (1) из (2) получим систему уравнений
Figure 00000007
в этой системе уравнений неизвестными являются k погрешностей задержек и ΔτЗ(1), ΔτЗ(2), а члены τ1(1), τ2(1), ..., τk(1) и τ1(2), τ2(2), ..., τk(2) - известные числа, полученные экспериментально при снятии суммарных погрешностей имитатора 1 навигационных сигналов и аппаратуры 3 навигации.
Система (3) состоит из k уравнений с (k+2) неизвестными, для однозначного ее решения необходимы дополнительные условия. Физически обоснованными можно считать три условия.
1. Погрешности имитатора 1 навигационных сигналов и аппаратуры 3 навигации не меняются при снятии экспериментальных зависимостей для систем (1) и (2), следовательно, сумма левой части системы (3) равна нулю, а неизвестные составляющие суммарной погрешности ΔτЗ(1), ΔτЗ(2) определяются выражением
Figure 00000008
.
2. Погрешности имитатора 1 навигационных сигналов и аппаратуры 3 навигации приравниваются к нулю в первой точке
ΔτП1=0,
ΔτИ1,=0.
3. Исключается постоянная составляющая погрешностей аппаратуры 3 навигации и имитатора 1 навигационных сигналов
Figure 00000009
Figure 00000010
Тогда при n=1, что соответствует τ=τ, получается следующее выражение для погрешности аппаратуры 3 навигации в каждой i-ой точке:
Figure 00000011
где
Figure 00000012
По описанной методике проводятся также измерения на частотах Доплера, отличных от нуля.
Первый выход имитатора 1 навигационных сигналов - выход навигационного сигнала, второй выход имитатора 1 навигационных сигналов - выход сигнала синхронизации 10 МГц, третий выход имитатора 1 навигационных сигналов - выход сигнала синхронизации по 1 секунде. Первый вход аппаратуры 3 навигации - антенный вход, второй вход аппаратуры 3 навигации - вход внешней синхронизации 10 МГц, третий вход аппаратуры 3 навигации - вход внешней синхронизации по 1 секунде.
При практическом использовании предлагаемого способа устанавливают fн=1598.0625 МГц. Устанавливают частоту Доплера, равную нулю. Производят измерение суммарной аппаратной погрешности имитатора 1 навигационных сигналов и аппаратуры 3 навигации в 10 точках (k=10). Получают массив измерений задержек распространения радиосигнала в каждой i точке τi(1). Устанавливают задержку распространения радиоволн
Figure 00000013
Производят измерение суммарной аппаратной погрешности имитатора 1 навигационных сигналов и аппаратуры 3 навигации в 10 точках (k=10). Получают массив измерений задержек распространения радиосигнала в каждой i точке τi(2). По формуле (4) вычисляют значение погрешности задержки распространения радиосигнала в каждой i точке. Производят аналогичные измерения на других частотах fн.
Измеренные экспериментальные данные целесообразно обрабатывать на персональном компьютере.
В качестве имитатора 1 навигационных сигналов может быть использована аппаратура, используемая в прототипе. В качестве аппаратуры 3 навигации может быть использована аппаратура, описанная в (Власов И.В. Точностные характеристики спутниковой навигационной аппаратуры с угломерным каналом / И.Б.Власов, В.Б.Пудловский, С.Н.Тарахнов // Вестник московского государственно технического университета. - 1997. - №1. - С.114-126). Линия 2 задержки может быть реализована на практике, например, на основе измерительной линии Р1-5.
Данный способ позволяет определить погрешность аппаратуры навигации по радионавигационному параметру, а также повысить точность определения погрешности за счет разделения суммарной погрешности аппаратуры навигации и имитатора навигационных сигналов.

Claims (1)

  1. Способ определения погрешности аппаратуры навигации с использованием имитатора сигналов навигационного космического аппарата (НКА), заключающийся в том, что имитатор подключают через линию задержки ко входу аппаратуры навигации и
    а) устанавливают нулевое значение задержки линией задержки,
    б) устанавливают сигнал с несущей частотой fн, равной несущей частоте имитируемого НКА, с помощью имитатора,
    в) устанавливают дискретные значения задержек сигнала от нуля до
    Figure 00000014
    с помощью имитатора,
    г) измеряют значения задержек сигнала с помощью аппаратуры навигации,
    д) определяют погрешности измерений путем определения разности задержек сигналов имитатора и задержек, измеренных аппаратурой навигации.
    е) с помощью линии задержки устанавливают дополнительное значение задержки сигнала и повторяют этапы б)-д),
    а о погрешности аппаратуры навигации судят по разности погрешностей измерений для дискретных значений задержек сигнала при нулевой и дополнительной задержке сигнала.
RU2006130601/09A 2006-08-24 2006-08-24 Способ определения погрешности аппаратуры навигации RU2318189C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006130601/09A RU2318189C1 (ru) 2006-08-24 2006-08-24 Способ определения погрешности аппаратуры навигации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006130601/09A RU2318189C1 (ru) 2006-08-24 2006-08-24 Способ определения погрешности аппаратуры навигации

Publications (2)

Publication Number Publication Date
RU2318189C1 true RU2318189C1 (ru) 2008-02-27
RU2006130601A RU2006130601A (ru) 2008-02-27

Family

ID=39278694

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006130601/09A RU2318189C1 (ru) 2006-08-24 2006-08-24 Способ определения погрешности аппаратуры навигации

Country Status (1)

Country Link
RU (1) RU2318189C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498225C1 (ru) * 2012-06-19 2013-11-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ определения погрешности формирования псевдодальности навигационного сигнала
RU2680091C1 (ru) * 2017-12-20 2019-02-15 Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) Метод калибровки имитаторов сигналов глобальных навигационных спутниковых систем
RU2697811C2 (ru) * 2018-01-22 2019-08-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Имитатор навигационных радиосигналов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Донченко С.И. и др. Комплекс средств измерений для испытаний аппаратуры потребителей космических навигационных систем ГЛОНАС и GPS. Новости навигации, 2004, № 2, с.9-12. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498225C1 (ru) * 2012-06-19 2013-11-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ определения погрешности формирования псевдодальности навигационного сигнала
RU2680091C1 (ru) * 2017-12-20 2019-02-15 Российская Федерация, от имени которой выступает Федеральное агентство по техническому регулированию и метрологии (Росстандарт) Метод калибровки имитаторов сигналов глобальных навигационных спутниковых систем
RU2697811C2 (ru) * 2018-01-22 2019-08-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Имитатор навигационных радиосигналов

Also Published As

Publication number Publication date
RU2006130601A (ru) 2008-02-27

Similar Documents

Publication Publication Date Title
CN101692163B (zh) 一种频率标准远程校准方法及其系统
CN104950169B (zh) 一种高速光纤陀螺频率特性的测试方法与系统
RU2634733C2 (ru) Способ и устройство для определения параметров матрицы рассеяния испытуемого устройства преобразования частоты
CN106124033B (zh) 一种激光测振校准用大触发延迟的累积校准方法
Petit et al. Absolute calibration of an Ashtech Z12-T GPS receiver
RU2318189C1 (ru) Способ определения погрешности аппаратуры навигации
JP2002323556A (ja) 距離計測装置
CN109752705B (zh) 高频水声阵列性能参数测量方法及系统、设备及存储介质
Lin et al. A modification of Z12T metronome time transfer system
JP2006504960A (ja) 非正弦波測定信号を用いるマルチポート・ネットワーク・アナライザを使用してテスト対象のマルチポート・デバイスの散乱パラメータを測定する方法
Pecheritsa et al. Calibration of simulators of the signals of global navigation satellite systems
RU2498225C1 (ru) Способ определения погрешности формирования псевдодальности навигационного сигнала
CN113986633A (zh) Fpga测量单元及基于fpga测量单元的通道延迟补偿方法、装置
CN111064533B (zh) 时延测量系统、时延测量的方法、电子设备及存储介质
Delporte et al. CNES Accurate monitoring of GNSS time scales based on absolute calibration
Bauer et al. Characterization of GPS disciplined oscillators using a laboratory GNSS simulation testbed
Fishta et al. A Baseband Wireless VNA for the Characterization of Multiport Distributed Systems
KR20030037891A (ko) 지피에스 시스템에서의 지피에스 정보 자동 후처리 방법
Monka et al. M-sequence-based material characterisation
US11137501B2 (en) System for measuring inter channel latencies and method of measuring inter channel latencies
CN103278827A (zh) 一种卫星导航信号模拟源量值检定方法
Jachna et al. Parallel data processing in a 3-channel integrated time-interval counter
Savin et al. A test equipment for the navigation receivers of space vehicles
CN108490405B (zh) 一种目标模拟器中模拟高度的校准方法
Boerner et al. SARIS: Synthetic aperture radar instrument simulator

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110825