RU2315975C1 - Способ оценки технического состояния машин и механизмов - Google Patents

Способ оценки технического состояния машин и механизмов Download PDF

Info

Publication number
RU2315975C1
RU2315975C1 RU2006116812/28A RU2006116812A RU2315975C1 RU 2315975 C1 RU2315975 C1 RU 2315975C1 RU 2006116812/28 A RU2006116812/28 A RU 2006116812/28A RU 2006116812 A RU2006116812 A RU 2006116812A RU 2315975 C1 RU2315975 C1 RU 2315975C1
Authority
RU
Russia
Prior art keywords
liquid
relation
ratio
capacitance
particles
Prior art date
Application number
RU2006116812/28A
Other languages
English (en)
Inventor
Федор Иванович Кукоз
Владимир Дмитриевич Хулла
Марина Владимировна Хулла
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" ГОУ ВПО ЮРГТУ (НПИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" ГОУ ВПО ЮРГТУ (НПИ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" ГОУ ВПО ЮРГТУ (НПИ)
Priority to RU2006116812/28A priority Critical patent/RU2315975C1/ru
Application granted granted Critical
Publication of RU2315975C1 publication Critical patent/RU2315975C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение может быть использовано для анализа соотношения количества частиц износа с разными массами в машинах и механизмах, использующих технологические жидкости. При осуществлении способа жидкость направляют по криволинейной траектории. Соотношение частиц износа по массе определяют путем измерения отношения диэлектрических проницаемостей жидкости с более массивными и жидкости с менее массивными частицами износа путем измерения электрической емкости датчиков, установленных в жидкостной магистрали. Контролируют отношение емкостей конденсаторов, расположенных в потоке жидкости на различных расстояниях от центра кривизны траектории жидкости. Оценку технического состояния машины осуществляют путем определения величин и скорости отклонения отношения электрических емкостей от эталонных, полученных для неработавшей и максимально загрязненной жидкости при условии наиболее эффективной работы жидкостной системы. 2 ил.

Description

Изобретение относится к технической диагностике механизмов и машин, работающих с различными жидкостными системами, и может быть использовано для фракционного анализа частиц износа в работающих жидкостях.
Известен «Способ контроля износа узлов трения» (Пат. RU № 2082150, опубл. 20.06.1997 г.), в котором в жидкой смазке с частицами износа размещают измерительный преобразователь, воздействуют на нее электрическим полем и перемешивают. С момента прекращения перемешивания в течение времени оседания частиц износа измеряют информативный параметр, фиксируя в течение этого времени изменение его величины. По характеру информативного параметра судят о дисперсном составе частиц износа. Измерительный преобразователь может быть помещен в верхней или в нижней части жидкой смазки, а дисперсный состав частиц износа, при этом определяют по снижению или по росту величины информативного параметра соответственно. Определяют также концентрацию частиц износа в жидкой смазке. Износ узлов трения контролируют с учетом дисперсного состава и концентрации частиц износа в жидкой смазке.
Недостатком способа является сложность, неоперативность, невозможность использования мобильными машинами и механизмами.
Наиболее близким к предлагаемому является «Способ оценки технического состояния двигателя внутреннего сгорания» (Пат. RU №97103839, опуб. 27.03.1999 г.), заключающийся в том, что при работе двигателя измеряют показатели состояния диагностируемых систем двигателя, определяют их изменения сравнительно с исходными, полученными при условии наиболее эффективной работы маслоочистителя, проводят вычисления и по результатам оценивают техническое состояние двигателя, причем в качестве показателей принимают параметры амплитудных и фазовых частотных характеристик, получаемых в заданном диапазоне частот путем разложения в гармонический ряд несинусоидальных периодических сигналов на входе и выходе масляного фильтра, отличающийся тем, что с целью повышения эффективности процесса диагностирования одновременно проводят измерение величины диэлектрической проницаемости смазочного масла путем измерения электрической емкости датчика, установленного в масляной магистрали, контролируют отклонение величины емкости датчика от эталонных значений, полученных для неработавшего и максимально загрязненного масла, а оценку технического состояния и остаточного ресурса двигателя осуществляют путем определения величин и скорости отклонения параметров амплитудных и фазовых частотных характеристик и электрической емкости датчика от эталонных, полученных при условии наиболее эффективной работы системы смазки.
Недостатком этого способа является невозможность получения информации о соотношении в жидкости частиц примесей с разной массой. Между тем, соотношение концентраций частиц износа с разной массой в технологических жидкостях связано с техническим состоянием трибозлов машин или механизмов, использующих эту жидкость. Например, предаварийные и аварийные состояния узлов трения машин, омываемых технологическими жидкостями, ведут к повышению концентрации массивных частиц износа по отношению к частицам износа с малой массой.
Задачей изобретения является повышение точности и оперативности оценки технического состояния машин и механизмов, использующих технологические жидкости, путем получения информации о соотношении в жидкости примесей - частиц износа с разными массами.
Решение задачи заключается в следующем. Способ оценки технического состояния машин и механизмов, использующих технологические жидкости, заключается в измерении величины диэлектрической проницаемости технологической жидкости путем измерения электрической емкости датчика, установленного в жидкостной магистрали, контроле отклонения величины емкости датчика от эталонных значений, полученных для неработавшей и максимально загрязненной жидкости, оценке технического состояния и остаточного ресурса двигателя, причем жидкость направляют по криволинейной траектории, соотношение частиц износа по массе определяют путем измерения отношения диэлектрических проницаемостей жидкости с более массивными и жидкости с менее массивными частицами примеси, контролируя отношение емкостей конденсаторов, расположенных в потоке жидкости на различных расстояниях от центра кривизны траектории жидкости, а оценку технического состояния машины осуществляют путем определения величин и скорости отклонения отношения электрических емкостей от эталонных, полученных при условии наиболее эффективной работы жидкостной системы.
Возникающие в криволинейном потоке центробежные силы выталкивают более массивные частицы примесей к внешнему радиусу потока, а менее массивные остаются у внутреннего. В результате диэлектрическая проницаемость жидкости по сечению потока меняется, вдоль радиуса кривизны. Это изменение может быть измерено путем измерения, емкостей конденсаторов, установленных по сечению потока, например, у внешнего и внутреннего радиусов потока. Отношение емкостей этих конденсаторов связано с отношением крупных и мелких (по массе) частиц примеси в потоке жидкости.
Способ оперативен и может быть применен на мобильных машинах и механизмах.
Пример осуществления способа поясняется на фиг.1.
Жидкость 4 направляют по криволинейной траектории, используя криволинейный трубопровод 1. В движущейся по криволинейной траектории жидкости 4 за счет действия центробежных сил частицы примеси с разной массой, увлекаемые жидкостью, движутся по траекториям разного радиуса (подобно движению в центрифуге). Более массивные частицы перемещаются к внешнему радиусу трубопровода, менее массивные остаются у внутреннего радиуса. В результате диэлектрическая проницаемость жидкости по сечению потока изменяется вдоль радиуса кривизны потока. Это изменение контролируется конденсаторами 2, установленными по сечению трубопровода, емкость которых изменяется соответственно концентрации частиц, проходящих вместе с жидкостью между обкладками. Измерение емкостей конденсаторов осуществляется через их выводы 3.
Предварительно, когда машина остановлена, движения жидкости в трубопроводе нет, и частицы с разными массами имеют хаотическое распределение в жидкости, измеряется отношение емкостей конденсаторов. После начала движения жидкости 4 происходит перераспределение частиц и емкость конденсаторов 2 изменяется. По отношению емкостей конденсаторов и судят о соотношении в потоке жидкости числа частиц примеси с разной массой.
Количество конденсаторов, расположенных по сечению трубопровода, определяется необходимостью выявления доли частиц с той или иной массой. Например, для выяснения соотношения самых легких и самых тяжелых частиц примесей достаточно двух конденсаторов, расположенных у внутреннего и внешнего радиусов трубопровода и анализа, например, относительного изменения их емкостей. Для получения электрического сигнала, пропорционального отношению в жидкости числа частиц примесей с разной массой, может быть использована мостовая схема на фиг.2.
Конденсаторы 2 (С1 и С2) включаются в мостовую схему, которая балансируется при условии, что циркуляция жидкости остановлена и жидкость неподвижна. В этот момент частицы износа с разными массами распределены в жидкости хаотично, поэтому диэлектрическая проницаемость жидкостей в обоих конденсаторах примерно одинаковая Под балансировкой понимается начальная установка нулевого напряжения на выходных контактах 3 при помощи переменного резистора 1. Мост питается переменным напряжением через контакты 4. При работе машины жидкость приходит в движение (движение смазочною масла в масляной магистрали, движение охлаждающей жидкости в контуре охлаждения и т.п.).
В результате емкости конденсаторов в ходе эксплуатации машины изменяются на различную величину и мост разбалансируется. Величина напряжения разбаланса пропорциональна отношению концентраций в жидкости частиц с меньшей и большей массами, и может быть использована для оценки технического состояния узлов машины, омываемых данной рабочей жидкостью.

Claims (1)

  1. Способ оценки технического состояния машин и механизмов, использующих технологические жидкости, заключающийся в измерении величины диэлектрической проницаемости технологической жидкости путем измерения электрической емкости датчика, установленного в жидкостной магистрали, контроле отклонения величины емкости датчика от эталонных значений, полученных для неработавшей и максимально загрязненной жидкости, оценке технического состояния и остаточного ресурса двигателя, отличающийся тем, что жидкость направляют по криволинейной траектории, соотношение частиц износа по массе определяют путем измерения отношения диэлектрических проницаемостей жидкости с более массивными и жидкости с менее массивными частицами примеси, контролируя отношение емкостей конденсаторов, расположенных в потоке жидкости на различных расстояниях от центра кривизны траектории жидкости, а оценку технического состояния машины осуществляют путем определения величин и скорости отклонения отношения электрических емкостей от эталонных, полученных при условии наиболее эффективной работы жидкостной системы.
RU2006116812/28A 2006-05-16 2006-05-16 Способ оценки технического состояния машин и механизмов RU2315975C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006116812/28A RU2315975C1 (ru) 2006-05-16 2006-05-16 Способ оценки технического состояния машин и механизмов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006116812/28A RU2315975C1 (ru) 2006-05-16 2006-05-16 Способ оценки технического состояния машин и механизмов

Publications (1)

Publication Number Publication Date
RU2315975C1 true RU2315975C1 (ru) 2008-01-27

Family

ID=39110087

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006116812/28A RU2315975C1 (ru) 2006-05-16 2006-05-16 Способ оценки технического состояния машин и механизмов

Country Status (1)

Country Link
RU (1) RU2315975C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116448835A (zh) * 2023-06-20 2023-07-18 中机生产力促进中心有限公司 运转式齿轮状态监测装置及状态检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116448835A (zh) * 2023-06-20 2023-07-18 中机生产力促进中心有限公司 运转式齿轮状态监测装置及状态检测方法
CN116448835B (zh) * 2023-06-20 2023-10-17 中机生产力促进中心有限公司 运转式齿轮状态监测装置及状态检测方法

Similar Documents

Publication Publication Date Title
TWI480551B (zh) Degradation of lubricating oil ‧ Method for measuring variable mass and its measuring device
US5968371A (en) Lubricant circulation diagnostic and modeling system
US7729870B2 (en) Methods for detecting oil deterioration and oil level
JP6346063B2 (ja) 往復動ピストンエンジンの構成要素の磨耗状態監視装置及び方法
EP1504174B2 (en) Method of analyzing and modifying lubricant in an engine
JPS62226033A (ja) メカニカルシ−ル摺動状態評価装置
KR20070120590A (ko) 엔진 윤활유의 희석을 온-라인으로 모니터링 하는 방법
RU2315975C1 (ru) Способ оценки технического состояния машин и механизмов
MXPA04007090A (es) Deteccion de hollin durante operacion en tiempo real en lubricantes de motores diesel.
RU2398200C1 (ru) Способ безразборной диагностики степени износа подшипников двигателя внутреннего сгорания и фильтроэлементов
JPH02145966A (ja) 潤滑油劣化度の動的分析測定方法および動的分析測定システム
RU2322660C2 (ru) Способ контроля износа трибосистем механизмов и машин, использующих технологические жидкости
RU2413200C1 (ru) Способ непрерывного контроля технического состояния локального трибоузла, работающего в потоке технологической жидкости
RU2310187C1 (ru) Способ контроля технического состояния машин и механизмов
Kuoppala et al. Condition monitoring methods for rotating machinery
RU2318206C1 (ru) Способ определения термоокислительной стабильности смазочных материалов
RU2186386C1 (ru) Способ определения смазывающей способности масел
RU2222012C1 (ru) Способ определения работоспособности смазочных масел
Gur’yanov et al. Fast determination of high wear of friction units based on particle size and concentration
RU2473884C1 (ru) Способ диагностики агрегатов машин по параметрам работающего масла
RU2082150C1 (ru) Способ контроля износа узлов трения
RU2399898C1 (ru) Способ безразборной диагностики степени износа подшипников двигателя внутреннего сгорания
RU2259549C1 (ru) Способ оценки технического состояния двигателя внутреннего сгорания
RU118378U1 (ru) Устройство для диагностирования гидропривода
RU2138046C1 (ru) Способ вибродиагностики смазочной способности масел узлов механизмов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080517