RU2303205C1 - Солнечная энергетическая установка (варианты) - Google Patents
Солнечная энергетическая установка (варианты) Download PDFInfo
- Publication number
- RU2303205C1 RU2303205C1 RU2006109214/06A RU2006109214A RU2303205C1 RU 2303205 C1 RU2303205 C1 RU 2303205C1 RU 2006109214/06 A RU2006109214/06 A RU 2006109214/06A RU 2006109214 A RU2006109214 A RU 2006109214A RU 2303205 C1 RU2303205 C1 RU 2303205C1
- Authority
- RU
- Russia
- Prior art keywords
- concentrator
- angle
- solar
- solar power
- heliostats
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам с концентраторами солнечного излучения для выработки электроэнергии и высокопотенциального тепла. В результате использования предлагаемого изобретения будет увеличена среднегодовая выработка энергии на 30-45%, что позволит снизить стоимость выработки энергии. В солнечной энергетической установке, содержащей стационарный параболоцилиндрический концентратор солнечной энергии с приемником, установленным в фокальной области, на входной поверхности миделя концентратора на общей раме по оси Восток-Запад размещена система гелиостатов угловой формы, выполненных в виде жалюзи из плоских зеркальных фацет, плоскости которых находятся под углом 120° друг к другу и установлены под углом μ=114-φ+δ к плоскости миделя, где φ - географическая широта местоположения концентратора, δ - склонение солнечных лучей. В другом варианте установки на входной поверхности миделя концентратора на общей раме размещена система гелиостатов угловой формы, выполненных в виде жалюзи из параллельных, одинаково ориентированных половинок параболоцилиндрических фоклинов, оптические оси которых наклонены под углом 120° друг к другу. Изобретение должно увеличить продолжительность работы стационарного концентратора как в суточном, так и в годовом режиме работы, повысить суммарную выработку электроэнергии в год и упростить конструкцию. 2 н. и 2 з.п. ф-лы, 4 ил.
Description
Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам с концентраторами солнечного излучения для выработки электроэнергии и высокопотенциального тепла на основе фотоэлектричества или динамических циклов преобразования.
Известен солнечный модуль с концентратором солнечной энергии, содержащий плоское защитное прозрачное ограждение, нормаль к поверхности которого находится в меридиальной плоскости, и установленный на защитном прозрачном ограждении в фокусе линейно-фокусирующего цилиндрического концентратора приемник излучения в виде полосы, концентратор выполнен в виде несимметричного отражателя, состоящего из двух разновеликих частей, разделенных плоскостью симметрии, проходящей через вершину и фокальную ось отражателя, причем большая часть отражателя выполнена в виде половины параболоцилиндрического отражателя, а меньшая часть - в виде кругового цилиндрического отражателя с радиусом, равным расстоянию от фокальной оси до вершины параболоцилиндрического отражателя, фокальная ось смещена к одной из сторон защитного ограждения параллельно ее основанию и совпадает с краем полосы приемника излучения (патент РФ №2172903 от 27.08.2001 г.).
Недостатком известного фотоэлектрического модуля является то, что при стационарной установке модуль не работает при высоких азимутальных углах в утренние и вечерние часы. Для использования излучения Солнца в утренние и вечерние часы необходимо использовать систему слежения. При установке системы слежения концентратор начинает работать, когда Солнце отклоняется на 30° от оси Восток-Запад, что соответствует 8 часам работы в сутки.
Наиболее близким по технической сущности к предлагаемому изобретению является солнечный фотоэлектрический модуль, содержащий концентратор энергии в виде призмы полного внутреннего отражения, имеющей рабочую поверхность, на которую падает солнечное излучение, тыльную зеркальную поверхность и боковую меньшую грань с установленными на последней скоммутированными фотопреобразователями, на рабочей поверхности призмы установлены в несколько рядов миниатюрные зеркальные экраны с двусторонней зеркальной поверхностью, плоскости которых ориентированы в направлении к грани призмы, содержащей фотопреобразователи (патент РФ №2133415 от 29.04.98).
Недостатком известного фотоэлектрического модуля является неполный годовой режим работы стационарного фотоэлектрического модуля, а также высокая стоимость и точность изготовления зеркальных фоклинов в виде параболоцилиндра.
Задачей предлагаемого изобретения является увеличение времени работы стационарного концентратора как в суточном, так и в годовом режиме работы, повышение суммарной выработки электроэнергии в год и упрощение конструкции солнечных энергосистем (СЭС) за счет исключения из конструкции систем слежения.
В результате использования предлагаемого изобретения будет увеличена среднегодовая выработка энергии на 30-45%, что позволит снизить стоимость выработки энергии.
Предлагаемое устройство позволяет повысить эффективность использования солнечной энергии и снизить стоимость получаемой электроэнергии и теплоты, а также создать эффективные гелиотехнические устройства, встроенные в фасады и крыши зданий для обеспечения их электроэнергией, теплом, горячей водой, энергией для приготовления пищи и естественным солнечным освещением.
Вышеуказанный технический результат достигается тем, что в солнечной энергетической установке, содержащей стационарный параболоцилиндрический концентратор солнечной энергии с приемником, установленным в фокальной области, на входной поверхности миделя концентратора на общей раме по оси Восток-Запад размещена система гелиостатов угловой формы, выполненных в виде жалюзи из плоских зеркальных фацет, плоскости которых находятся под углом 120° друг к другу и установлены под углом μ=114-φ+δ к плоскости миделя, где φ - географическая широта местоположения концентратора, δ - склонение солнечных лучей.
Приемник излучения состоит из n секций, параллельно соединенных из скоммутированных солнечных элементов, длина каждой секции соизмерима с длиной пластины углового гелиостата.
В варианте солнечной энергетической установки, содержащей стационарный параболоцилиндрический концентратор солнечной энергии, в фокальной области которого установлен приемник излучения в виде полосы, на входной поверхности миделя концентратора на общей раме по оси Восток-Запад размещена система гелиостатов угловой формы, выполненных в виде жалюзи из параллельных, одинаково ориентированных половинок параболоцилиндрических фоклинов, оптические оси которых наклонены под углом 120° друг к другу и установлены под углом μ=114°-φ+δ к плоскости миделя, где φ - географическая широта местоположения концентратора, δ - склонение солнечных лучей, при этом вогнутая поверхность половинок фоклинов обращена к фотоприемнику. Фокус каждой половинки фоклина расположен под выпуклой поверхностью соседнего фоклина в непосредственной близости от края его выходного отверстия.
Приемник излучения состоит из n секций, параллельно соединенных из скоммутированных солнечных элементов, длина каждой секции соизмерима с длиной половинки фоклина углового гелиостата.
Конструкция солнечной установки и ее характеристики показаны на фиг.1, 2, 3, 4.
На фиг.1 представлен общий вид стационарной энергетической установки с концентратором и приемником излучения в виде полосы и системой угловых жалюзийных гелиостатов.
На фиг.2 - стационарная энергетическая установка с концентратором и приемником излучения в виде полосы и системой угловых жалюзийных гелиостатов, выполненных в виде жалюзи из параллельных, одинаково ориентированных половинок параболоцилиндрических фоклинов.
На фиг.3 показано соотношение высоты гелиостата и расстояний между ними от минимальной высоты Солнца в определенный день.
На фиг.4 показана экспериментальная зависимость выходной мощности солнечных модулей от азимутного угла отклонения Солнца.
На фиг.1 стационарная солнечная энергетическая установка с параболоцилиндрическим концентратором 1, имеющим апертурный угол α, устанавливается под углом φ к горизонту по линии Восток-Запад и ориентирована на юг. Линейно-фокусирующий концентратор выполнен в виде несимметричного цилиндрического отражателя 2 и кругового цилиндрического отражателя 3, разделенных плоскостью симметрии 4, проходящих через вершину 5 и фокальную ось F параболоцилиндрического отражателя 2. Радиус R кругового цилиндрического отражателя 3 равен расстоянию f от фокальной оси F до вершины 5 параболоцилиндрического отражателя 2. Фокальная ось F совпадает с краем приемника 6, выполненного в виде полосы. На входной поверхности 7 миделя концентратора 1 на общей раме 8 размещается система гелиостатов 9 угловой формы, выполненных в виде жалюзи 10, пластины которых 11 находятся под углом 120° друг к другу. Угол наклона μ пластин угловых жалюзийных гелиостатов к входной поверхности 7 миделя параболоцилиндрического концентратора 1 составляет μ=114-φ+δ к плоскости миделя, где φ - географическая широта местоположения концентратора, δ - склонение солнечных лучей. Угол наклона φ к горизонтальной поверхности 12 является широтой местности в месте установки.
На фиг.2 угловые жалюзийные гелиостаты (УЖГ) выполнены в виде жалюзи 10 из параллельных, одинаково ориентированных половинок параболоцилиндрических фоклинов 13, оптические оси которых находятся под углом 120° друг к другу, вогнутая поверхность половинок фоклинов обращена к приемнику, а фокус каждой половинки фоклина расположен под выпуклой поверхностью соседнего фоклина в непосредственной близости от края его выходного отверстия.
На фиг.3 показано отношение высоты h гелиостата и расстояний l между ними от минимальной высоты Солнца γmin в определенный день l=h(sin45-γmin), где h - высота крыла пластины УЖГ, γmin - минимальная высота Солнца в определенный день.
Экспериментальные данные и теоретические расчеты показали, что в результате использования предлагаемого солнечного модуля с системой угловых жалюзийных гелиостатов увеличивается продолжительность работы концентратора в суточном режиме (линия 2 на фиг.4) и выработка энергии будет увеличена в утренние и вечерние часы.
На фиг.4 показана зависимость выходной мощности солнечных модулей от азимутного угла отклонения Солнца. Линия 1 - режим работы солнечного модуля без системы жалюзийных гелиостатов. Линия 2 - с системой угловых жалюзийных гелиостатов.
Положительный эффект, т.е. увеличение работы стационарного концентратора, достигается за счет угловой формы жалюзийных гелиостатов. Крылья пластин жалюзи 1 друг к другу находятся под углом β=120° и ориентированы на большие азимутные и малые высотные углы.
Для того чтобы стационарный параболоцилиндрический концентратор, установленный по линии Восток-Запад и ориентированный на юг, эффективно работал, необходимо, чтобы отраженные солнечные лучи попадали в апертурный угол α≤45°.
Солнечные лучи при минимальном высотном угле и при максимальном азимутальном угле не затеняют пластинами жалюзи, так как лучи проходят с востока (утром) или с запада (вечером), а при уменьшении азимутального угла увеличивается высотный угол. Высота и расстояние между пластинами УЖГ находятся в соотношении l=h(sin45-γmin), где h - высота крыла пластины УЖГ, γmin - минимальная высота Солнца в определенный день.
Таким образом, солнечное излучение при минимальном зенитном и максимальном азимутальном угле попадает на приемник параболоцилиндрического стационарного концентратора.
Предлагаемый солнечный модуль со стационарным концентратором работает следующим образом.
При отклонении Солнца от оси Восток-Запад на 30°, что соответствует 8-9 часам утра или 15-16 часам дня летом, осенью 7-8 или 16-17 часам, а зимой с момента восхода Солнца поток солнечных лучей проходит параллельно одной пластине и падает на вторую пластину УЖГ, где она за счет наклона и из-за углового эффекта УГЖ направляет солнечные лучи в область апертурного угла, т.е. на плоскость поверхности приемника. Угол наклона жалюзи μ определяем для конкретного дня, а сам концентратор установлен под углом равным широте местности. При уменьшении азимутного угла увеличивается высотный угол, но поток солнечных лучей проходит не затеняясь жалюзийными гелиостатами из-за того, что концентратор стоит под определенным углом к горизонту. Таким образом, солнечный модуль эффективно работает весь световой день от 8 до 16 часов, т.е. 8 часов в суточном режиме.
Для увеличения годового режима устанавливаем УЖГ под двумя фиксированными углами к плоскости миделя μ1, 2=γmax+23.4, где γmax - высота Солнца в день летнего солнцестояния, или день равноденствия.
Таким образом, стационарный солнечный концентратор работает круглогодично и полный световой день. Система угловых жалюзийных гелиостатов будет квазистационарной.
Применение системы угловых жалюзи позволяет увеличить время работы концентратора в суточном и годовом циклах. Стационарно установленный концентратор, даже с большим апертурным углом, не может работать весь световой день и обычно настраивается на полуденные высоты Солнца. Полуденная высота меняется вслед за склонением очень медленно, и концентратор может эффективно работать в околополуденные часы в течение нескольких месяцев подряд, затем прекращает свою работу из-за выхода падающих солнечных лучей за пределы апертурного угла α.
Для получения электроэнергии в качестве приемника солнечного модуля с концентратором с системой жалюзийных гелиостатов установлен модуль из скоммутированных солнечных элементов.
Для получения горячей воды приемник солнечного модуля с концентратором с системой жалюзийных гелиостатов выполнен в виде теплоизолированного бака-аккумулятора.
Для комбинированного получения электроэнергии и теплоты в качестве покрытия бака-аккумулятора, поглощающего солнечное излучение, установлена полоса из скоммутированных солнечных элементов.
Солнечная энергетическая установка, содержащая УЖГ, позволяет избавиться от громоздких и дорогостоящих систем слежения за солнцем или от шарнирных осей, установленных для поворота линейных жалюзийных гелиостатов для изменения азимутных и зенитных углов, что позволит упростить конструкцию и уменьшить затраты на изготовление СЭС; увеличить годовую выработку электроэнергии и тепла.
Предлагаемое устройство может быть реализовано как в системах комбинированного тепло- и электроснабжения, так и в качестве самостоятельного автономного устройства для выработки тепловой или электроэнергии.
Claims (4)
1. Солнечная энергетическая установка, содержащая стационарный параболоцилиндрический концентратор солнечной энергии, приемник, установленный в фокальной области, отличающаяся тем, что на входной поверхности миделя концентратора на общей раме по оси Восток-Запад размещена система гелиостатов угловой формы, выполненных в виде жалюзи из плоских зеркальных фацет, плоскости которых находятся под углом 120° друг к другу и установлены под углом μ=114°-φ+δ к плоскости миделя, где φ - географическая широта местоположения концентратора, δ - склонение солнечных лучей.
2. Солнечная энергетическая установка по п.1, отличающаяся тем, что приемник излучения состоит из n секций, параллельно соединенных из скоммутированных солнечных элементов, длина каждой секции соизмерима с длиной пластины углового гелиостата.
3. Солнечная энергетическая установка, содержащая стационарный параболоцилиндрический концентратор солнечной энергии, в фокальной области которого установлен приемник излучения в виде полосы, отличающаяся тем, что на входной поверхности миделя концентратора на общей раме размещена система гелиостатов угловой формы, выполненных в виде жалюзи из параллельных одинаково ориентированных половинок параболоцилиндрических фоклинов, оптические оси которых находятся под углом 120° друг к другу и установлены под углом μ=114°-φ+δ к плоскости миделя, где φ - географическая широта местоположения концентратора, δ - склонение солнечных лучей, при этом вогнутая поверхность половинок фоклинов обращена к фотоприемнику.
4. Солнечная энергетическая установка по п.3, отличающаяся тем, что приемник излучения состоит из n секций, параллельно соединенных из скоммутированных солнечных элементов, длина каждой секции соизмерима с длиной половинки фоклина углового гелиостата.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006109214/06A RU2303205C1 (ru) | 2006-03-24 | 2006-03-24 | Солнечная энергетическая установка (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006109214/06A RU2303205C1 (ru) | 2006-03-24 | 2006-03-24 | Солнечная энергетическая установка (варианты) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2303205C1 true RU2303205C1 (ru) | 2007-07-20 |
Family
ID=38431171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006109214/06A RU2303205C1 (ru) | 2006-03-24 | 2006-03-24 | Солнечная энергетическая установка (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2303205C1 (ru) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446363C2 (ru) * | 2009-10-19 | 2012-03-27 | Магомедриза Салихович Гамидов | Способ и устройство создания высокоэффективной солнечной батареи (варианты) |
RU2456515C2 (ru) * | 2010-06-18 | 2012-07-20 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Солнечный модуль с концентратом (варианты) |
RU2468305C1 (ru) * | 2011-05-27 | 2012-11-27 | Общество с ограниченной ответственностью "Аккорд" | Солнечный модуль |
RU2572167C1 (ru) * | 2014-05-27 | 2015-12-27 | Дмитрий Семенович Стребков | Солнечный модуль с концентратором (варианты) |
RU2576752C2 (ru) * | 2014-05-19 | 2016-03-10 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
RU2576742C2 (ru) * | 2014-05-08 | 2016-03-10 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
RU2580462C1 (ru) * | 2015-02-11 | 2016-04-10 | Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
RU2599076C2 (ru) * | 2014-11-27 | 2016-10-10 | Федеральное агентство научных организаций Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
-
2006
- 2006-03-24 RU RU2006109214/06A patent/RU2303205C1/ru not_active IP Right Cessation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446363C2 (ru) * | 2009-10-19 | 2012-03-27 | Магомедриза Салихович Гамидов | Способ и устройство создания высокоэффективной солнечной батареи (варианты) |
RU2456515C2 (ru) * | 2010-06-18 | 2012-07-20 | Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) | Солнечный модуль с концентратом (варианты) |
RU2468305C1 (ru) * | 2011-05-27 | 2012-11-27 | Общество с ограниченной ответственностью "Аккорд" | Солнечный модуль |
RU2576742C2 (ru) * | 2014-05-08 | 2016-03-10 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
RU2576752C2 (ru) * | 2014-05-19 | 2016-03-10 | Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
RU2572167C1 (ru) * | 2014-05-27 | 2015-12-27 | Дмитрий Семенович Стребков | Солнечный модуль с концентратором (варианты) |
RU2599076C2 (ru) * | 2014-11-27 | 2016-10-10 | Федеральное агентство научных организаций Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства" (ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
RU2580462C1 (ru) * | 2015-02-11 | 2016-04-10 | Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) | Солнечный модуль с концентратором |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2303205C1 (ru) | Солнечная энергетическая установка (варианты) | |
US20100313933A1 (en) | Reflector-solar receiver assembly and solar module | |
JP5898674B2 (ja) | クロスライン型太陽熱集光装置 | |
US20100051016A1 (en) | Modular fresnel solar energy collection system | |
AU2011242409B2 (en) | A solar energy collector system | |
US20100206302A1 (en) | Rotational Trough Reflector Array For Solar-Electricity Generation | |
US20110168232A1 (en) | Method and System for Providing Tracking for Concentrated Solar Modules | |
CA2717314A1 (en) | Solar power generator | |
JP2012038954A (ja) | 集光型太陽光発電システム | |
US20160079461A1 (en) | Solar generator with focusing optics including toroidal arc lenses | |
CN103077990A (zh) | 一种波长选择性广角聚光光伏发电系统及其方法 | |
EP4145699A1 (en) | Photovoltaic system for low solar elevation angles | |
Ma et al. | A review on solar concentrators with multi-surface and multi-element (MS/ME) combinations | |
US9520519B2 (en) | Direct solar-radiation collection and concentration element and panel | |
Tripanagnostopoulos | New designs of building integrated solar energy systems | |
JP2013228184A (ja) | 線形太陽光集光装置、および太陽光集光発電システム | |
CN101419333A (zh) | 凹面反射镜组合式聚光发电单元 | |
RU2172903C1 (ru) | Солнечный модуль с концентратом | |
RU2206837C2 (ru) | Солнечный модуль с концентратором (варианты) | |
CN201725081U (zh) | 一种平板型平面玻璃镜反射太阳能聚光器 | |
KR101612426B1 (ko) | 반사경이 구비된 고정형 태양광 발전기 | |
KR101570741B1 (ko) | 반사경이 구비된 고정형 태양광 발전기 | |
JP2011129847A (ja) | 反射集光型太陽発電モジュール | |
CN102081223B (zh) | 太阳能光伏l型聚光器 | |
Ameer et al. | Characteristics review of optical concentrators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20100325 |