RU2580462C1 - Солнечный модуль с концентратором - Google Patents

Солнечный модуль с концентратором Download PDF

Info

Publication number
RU2580462C1
RU2580462C1 RU2015104574/06A RU2015104574A RU2580462C1 RU 2580462 C1 RU2580462 C1 RU 2580462C1 RU 2015104574/06 A RU2015104574/06 A RU 2015104574/06A RU 2015104574 A RU2015104574 A RU 2015104574A RU 2580462 C1 RU2580462 C1 RU 2580462C1
Authority
RU
Russia
Prior art keywords
mirror
concentrator
angle
working surface
solar
Prior art date
Application number
RU2015104574/06A
Other languages
English (en)
Inventor
Дмитрий Семенович Стребков
Анатолий Евгеньевич Иродионов
Михаил Алексеевич Никитин
Наталья Сергеевна Филиппченкова
Original Assignee
Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) filed Critical Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ)
Priority to RU2015104574/06A priority Critical patent/RU2580462C1/ru
Application granted granted Critical
Publication of RU2580462C1 publication Critical patent/RU2580462C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла. Солнечный модуль с концентратором имеет рабочую поверхность, на которую падает излучение, на рабочей поверхности установлены миниатюрные зеркальные отражатели, выполненные в виде жалюзи из плоских зеркальных отражателей, жалюзи содержат устройство для изменения расстояния между зеркальными отражателями, расстояние а между миниатюрными зеркальными отражателями на рабочей поверхности, угол входа лучей β0, выхода лучей β1 и угол φ наклона зеркальных отражателей связаны соотношениями, указанными в формуле изобретения. Концентратор может быть выполнен в виде призмы полного внутреннего отражения или в виде полупараболоцилиндрического зеркального отражателя. Изобретение должно повысить удельную мощность приемника. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами солнечного излучения для получения электричества и тепла.
Известен солнечный модуль с концентратором на основе параболоцилиндрических фоклинов, установленных с двух сторон по краям фотопреобразователей (Solar Today, July/August 1997, р. 31).
Недостатком известного модуля является низкий коэффициент концентрации 2-2,5. Другим недостатком является большая высота модуля с концентратором, превышающая размер плоского модуля без концентратора в 4-6 раз.
Наиболее близким по технической сущности к предлагаемому изобретению является солнечный модуль, содержащий концентратор энергии, имеющий рабочую поверхность, на которую падает солнечное излучение, на рабочей поверхности призмы установлены миниатюрные зеркальные экраны, выполненные в виде жалюзи из плоских зеркальных отражателей, скоммутированные фотопреобразователи выполнены с двусторонней рабочей поверхностью, концентратор - в виде двух симметрично расположенных призм, имеющих общий фотопреобразователь, а на рабочей поверхности концентратора в зоне одной или обеих призм установлены миниатюрные зеркальные отражатели (патент РФ №2133415. Солнечный фотоэлектрический модуль (варианты) / Безруких П.П., Стребков Д.С., Тверьянович Э.В., Иродионов А.Е. // БИ. 1999. №20).
Недостатками всех известных типов фотоэлектрических модулей является низкая удельная мощность фотопреобразователя.
Задачей предлагаемого изобретения является создание солнечного модуля со статическим концентратором, имеющим размеры в поперечном сечении, соизмеримые с размерами плоского модуля и имеющие повышенную удельную мощность приемника.
В результате использования предлагаемого солнечного модуля повышается удельная мощность приемника.
Вышеуказанный технический результат достигается тем, что в солнечном модуле с концентратором, имеющем рабочую поверхность, на которую падает излучение, на рабочей поверхности установлены миниатюрные зеркальные экраны, выполненные в виде жалюзи из плоских зеркальных отражателей, жалюзи содержат устройство для изменения расстояния между зеркальными отражателями, расстояние а между миниатюрными зеркальными отражателями на рабочей поверхности, угол входа лучей β0, выхода лучей β1 и угол φ наклона зеркальных отражателей связаны соотношениями:
β0=2φ-arctg(2tgφ)
а 0=d·sinφ0
Figure 00000001
где d - длина каждого миниатюрного зеркального отражателя,
φ0 - начальный угол наклона зеркального отражателя,
а0 - расстояние между зеркальными отражателями при начальном угле φ0,
углы β0, β1 φ0 и угол φ отсчитываются от вертикали к рабочей поверхности против часовой стрелки.
В варианте солнечного модуля концентратор выполнен в виде призмы полного внутреннего отражения.
В варианте солнечного модуля концентратор выполнен в виде полупараболоцилиндрического зеркального отражателя.
Сущность изобретения иллюстрируется на фиг. 1-3, где на фиг. 1 показана оптическая система и ход лучей в солнечном модуле с концентратором; на фиг. 2 - солнечный модуль с жалюзи из плоских зеркальных отражателей и призменным концентратором, поперечное сечение; на фиг. 3 - солнечный модуль с концентратором в виде полупараболоцилиндрического зеркального отражателя.
На фиг. 1 солнечный модуль с концентратором содержит жалюзи 1 из N зеркальных отражателей 2 длиной d, установленных друг от друга на расстоянии а под углом φ к вертикальной плоскости. Жалюзи содержат устройство 3 для изменения расстояния между зеркальными отражателями и угла наклона зеркальных отражателей 2. Обозначим через β0 и β1 угол входа луча и выхода лучей в оптической системе. Углы β0 и β1 отсчитываются от вертикальной плоскости. Угол β1 выбирается из условия максимального отклонения отраженного луча на выходе из жалюзи на расстоянии 2 а-δ от точки входа луча, где δ - бесконечно малая величина, обеспечивающая полную оптическую прозрачность жалюзи.
При расчете жалюзи на фиг. 1 принимается, что точки В и D находятся на одной вертикали к поверхности для всех зеркал при любом угле φ. Это означает, что при увеличении φ растет расстояние а между зеркалами. Для практических применений важно использовать жалюзи, в которых ширина зеркала остается постоянной при изменении угла φ наклона зеркал, а расстояние а между зеркалами изменяется. Фиксируем величину AD=d - ширина зеркального отражателя и φ0 - начальный угол наклона зеркального отражателя, при котором точки В и D находятся в одной вертикальной плоскости (фиг. 1).
На фиг. 1 видно, что при φ>φ0, d=const, В′ находится на одной вертикали с точкой D′. На фиг. 1 показаны положения второго зеркала В′Е и ход отраженного луча AE′ при d=const, при котором В′ находится на одной вертикали с D′.
При φ>φ0, чтобы отраженный луч β1 уместился в размер D′E′=а, надо увеличивать β0 и а.
Угол выхода отраженного луча на фиг. 1:
Figure 00000002
Расстояние между миниатюрными отражателями при начальном угле φ0 зеркальных отражателей:
Figure 00000003
При произвольном угле φ наклона зеркальных отражателей
Figure 00000004
Из (2) и (3) следует:
Figure 00000005
На фиг. 2 солнечный модуль с концентратором энергии содержит призму полного внутреннего отражения 4 с острым углом ψ, на боковой грани 5 которой установлен приемник 6. Призма имеет тыльную зеркальную поверхность 7 и рабочую поверхность 8, на которую падает излучение. На рабочей поверхности 8 призмы 4 установлены соединенные в жалюзи 1 миниатюрные зеркальные отражатели 2 с устройством 3 изменения расстояния между зеркальными отражателями и угла наклона зеркальных отражателей.
На фиг. 3 концентратор солнечной энергии выполнен в виде полупараболоцилиндрического отражателя 9 с параметрическим углом δ с фокальной осью 10 и приемником 11.
Приведем пример выполнения солнечного модуля с концентратором (фиг. 3).
Жалюзи 1 состоят из зеркальных отражателей 2 размером d=50 мм, расстояние между отражателями а=20 мм, l=1250 мм. Угол наклона зеркальных отражателей φ=22,5°, угол входа лучей β0=5,4°, углы выхода лучей β5=39,6°, β6=73,8°, пропускание Δ=4,37 мм, апертурный угол полупараболоцилиндрического концентратора 9 δ=26,2°, зеркальные отражатели концентратора 2 выполнены из стеклянных фацет. Приемник 11 имеет размеры 125×1250 мм, состоит из 36 кремниевых солнечных элементов размером 125×31,25 мм, соединенных последовательно. Геометрический коэффициент концентрации к=4,32, косинусные потери 4,4%, оптический КПД 80%, КПД приемника 15%. Площадь модуля 0,6875 м2. Общий КПД модуля 11,946%. Пиковая электрическая мощность 82,13 Вт при освещенности 1 кВт м2 и температуре 25°C.
Солнечный модуль с концентратором работает следующим образом (фиг. 2).
Солнечное излучение поступает на зеркальный отражатель 2 под углом входа β0, попадает на рабочую поверхность призмы 4 под углом β1, под углом β2 поступает на зеркальную поверхность 7 и после отражения от зеркальной поверхности 7 под углом β3 и полного внутреннего отражения от рабочей поверхности 8 под углом β4 попадает на приемник 6. Выполнение модуля в виде полупараболоцилиндрического или призменного концентратора с миниатюрными зеркальными отражателями позволяет увеличить концентрацию солнечного излучения и удельную мощность солнечного модуля с концентратором по сравнению с солнечным модулем с призменным концентратором и уменьшить толщину солнечного модуля за счет снижения острого угла призменного концентратора ψ и параметрического угла δ в полупараболоцилиндрическом концентраторе.

Claims (3)

1. Солнечный модуль с концентратором, имеющий рабочую поверхность, на которую падает излучение, на рабочей поверхности установлены миниатюрные зеркальные экраны, выполненные в виде жалюзи из плоских зеркальных отражателей, отличающийся тем, что жалюзи содержат устройство для изменения расстояния между зеркальными отражателями, расстояние a между миниатюрными зеркальными отражателями на рабочей поверхности, угол входа лучей β0, выхода лучей β1 и угол φ наклона зеркальных отражателей связаны соотношениями:
β0=2φ-arctg(2tgφ)
a0=d·sin φ0
Figure 00000006

где d - длина каждого миниатюрного зеркального отражателя,
φ0 - начальный угол наклона зеркального отражателя,
a0 - расстояние между зеркальными отражателями при начальном угле φ0,
углы β0, β1, φ0 и угол φ отсчитываются от вертикали к рабочей поверхности против часовой стрелки.
2. Солнечный модуль по п. 1, отличающийся тем, что концентратор выполнен в виде призмы полного внутреннего отражения.
3. Солнечный модуль по п. 1, отличающийся тем, что концентратор выполнен в виде полупараболоцилиндрического зеркального отражателя.
RU2015104574/06A 2015-02-11 2015-02-11 Солнечный модуль с концентратором RU2580462C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015104574/06A RU2580462C1 (ru) 2015-02-11 2015-02-11 Солнечный модуль с концентратором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015104574/06A RU2580462C1 (ru) 2015-02-11 2015-02-11 Солнечный модуль с концентратором

Publications (1)

Publication Number Publication Date
RU2580462C1 true RU2580462C1 (ru) 2016-04-10

Family

ID=55794102

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015104574/06A RU2580462C1 (ru) 2015-02-11 2015-02-11 Солнечный модуль с концентратором

Country Status (1)

Country Link
RU (1) RU2580462C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143640A (en) * 1975-05-08 1979-03-13 Massachusetts Institute Of Technology Venetian-blind solar collector
RU2133415C1 (ru) * 1998-04-29 1999-07-20 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль (варианты)
RU2172903C1 (ru) * 2000-04-07 2001-08-27 Стребков Дмитрий Семенович Солнечный модуль с концентратом
RU2303205C1 (ru) * 2006-03-24 2007-07-20 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Солнечная энергетическая установка (варианты)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143640A (en) * 1975-05-08 1979-03-13 Massachusetts Institute Of Technology Venetian-blind solar collector
RU2133415C1 (ru) * 1998-04-29 1999-07-20 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Солнечный фотоэлектрический модуль (варианты)
RU2172903C1 (ru) * 2000-04-07 2001-08-27 Стребков Дмитрий Семенович Солнечный модуль с концентратом
RU2303205C1 (ru) * 2006-03-24 2007-07-20 Российская Академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ) Солнечная энергетическая установка (варианты)

Similar Documents

Publication Publication Date Title
Ali et al. An optical analysis of a static 3-D solar concentrator
Leutz et al. Design of a nonimaging Fresnel lens for solar concentrators
Ries et al. High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs
Antonini et al. Modelling of compound parabolic concentrators for photovoltaic applications
ES2399254B1 (es) Sistema reflexivo de concentracion solar fotovoltaica
Paul Application of compound parabolic concentrators to solar photovoltaic conversion: A comprehensive review
RU2503895C2 (ru) Солнечный модуль с концентратором и способ его изготовления (варианты)
Khalid et al. Optical performance of quasi-stationary, low-concentration, and low-profile compound parabolic concentrators
Onubogu et al. Optical characterization of two-stage non-imaging solar concentrator for active daylighting system
RU2301379C2 (ru) Гелиоэнергетический модуль для преобразования электромагнитного излучения от удаленного источника светового излучения (варианты)
RU2520803C2 (ru) Солнечный модуль с концентратором и способ его изготовления
ZA200502622B (en) Method of increasing the output power from photovoltaic cells.
RU2576742C2 (ru) Солнечный модуль с концентратором
RU2580462C1 (ru) Солнечный модуль с концентратором
RU2576752C2 (ru) Солнечный модуль с концентратором
RU2576072C2 (ru) Солнечный модуль с концентратором и способ его изготовления
RU2576739C2 (ru) Солнечный модуль с концентратором
RU2154778C1 (ru) Солнечный фотоэлектрический модуль с концентратором
CN104297826B (zh) 一种用于聚光系统的非成像二次反射镜
RU2204769C2 (ru) Солнечный модуль с концентратором
RU2557272C1 (ru) Кровельная солнечная панель
RU2599076C2 (ru) Солнечный модуль с концентратором
RU2608797C2 (ru) Солнечный модуль с концентратором (варианты)
JP2010169981A (ja) 太陽レンズと太陽光利用装置
CN110325801B (zh) 太阳能聚光器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170212