RU2172903C1 - Солнечный модуль с концентратом - Google Patents

Солнечный модуль с концентратом Download PDF

Info

Publication number
RU2172903C1
RU2172903C1 RU2000108561/062000108561/06A RU2000108561A RU2172903C1 RU 2172903 C1 RU2172903 C1 RU 2172903C1 RU 2000108561 A RU2000108561 A RU 2000108561A RU 2172903 C1 RU2172903 C1 RU 2172903C1
Authority
RU
Russia
Prior art keywords
reflector
receiver
solar module
plane
parabolic
Prior art date
Application number
RU2000108561/062000108561/06A
Other languages
English (en)
Inventor
Д.С.Стребков Д.С. Стребков
Д.С. Стребков
ЭТверьянович Э.В..В. Тверьянович
Э.В. Тверьянович
А.Е.Иродионов А.Е. Иродионов
А.Е. Иродионов
Ю.К.Кидяшев Ю.К. Кидяшев
Ю.К. Кидяшев
В.Ф.Семененко В.Ф. Семененко
В.Ф. Семененко
А.Г.Ананенков А.Г. Ананенков
А.Г. Ананенков
Ю.В.Неелов Ю.В. Неелов
Ю.В. Неелов
З.Г.Якупов З.Г. Якупов
З.Г. Якупов
А.Н.Исаева А.Н. Исаева
А.Н. Исаева
Е.М.Данько Е.М. Данько
Е.М. Данько
Original Assignee
Стребков Дмитрий Семенович
Тверьянович Эдуард Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Стребков Дмитрий Семенович, Тверьянович Эдуард Владимирович filed Critical Стребков Дмитрий Семенович
Priority to RU2000108561/062000108561/06A priority Critical patent/RU2172903C1/ru
Application granted granted Critical
Publication of RU2172903C1 publication Critical patent/RU2172903C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. В солнечном модуле с концентратором солнечной энергии, содержащем плоское защитное прозрачное ограждение, нормаль к поверхности которого находится в меридиальной плоскости, и установленный на защитном прозрачном ограждении в фокусе линейно-фокусирующего цилиндрического концентратора приемник излучения в виде полосы, концентратор выполнен в виде несимметричного отражателя, состоящего из двух разновеликих частей, разделенных плоскостью симметрии, проходящей через вершину и фокальную ось отражателя, причем большая часть отражателя выполнена в виде половины параболоцилиндрического отражателя, а меньшая часть - в виде кругового цилиндрического отражателя с радиусом, равным расстоянию от фокальной оси до вершины параболоцилиндрического отражателя, фокальная ось смещена к одной из сторон защитного ограждения параллельно его основанию и совпадает с краем полосы приемника излучения. Изобретение позволяет повысить эффективность использования солнечной энергии и снизить стоимость получаемой электроэнергии и теплоты, а также создать эффективные гелиотехнические устройства, встроенные в фасады и крыши зданий для обеспечения их электроэнергией, теплом, горячей водой, энергией для приготовления пищи и естественным солнечным освещением. 16 з.п.ф-лы, 8 ил.

Description

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты.
Известно устройство для солнечного энергоснабжения, в котором солнечное излучение собирается вертикальным прозрачным ограждением, выполненным из набора призм, и отражается на приемник излучения, установленный на нижнем основании устройства с помощью устройства переотражения, выполненного из двух плоских зеркальных отражателей (Donald P. Bellert, США N 4074704, кл. 126-271, 21.02.1978).
Недостатком известного устройства является необходимость использования нескольких оптических устройств: призменного концентратора и двух зеркальных отражателей, что увеличивает потери излучения и увеличивает его стоимость. Другим недостатком является одностороннее освещение приемника концентрированным излучением с использованием только прямого солнечного излучения.
Диффузионная компонента солнечного излучения, которая составляет от 10 до 100% от суммарной радиации, в известном устройстве не используется.
Известен солнечный фотоэлектрический модуль с концентратором солнечной энергии, содержащий скоммутированные и установленные между двумя листами стекла двухсторонние солнечные элементы, в виде полос, перпендикулярных основанию модуля, с тыльной стороны которых симметрично относительно середины солнечных элементов установлена два полуцилиндрических концентратора, суммарная площадь аппаратуры которых в два раза больше площади солнечных элементов. При установке под углом к горизонту, равным широте местности и полярной ориентации оси концентраторов юг-север. Фотоэлектрический модуль работает круглый год без слежения за солнцем с теоретическим коэффициентом концентрации К=2. Фактический коэффициент концентрации с учетом косинусных потерь и потерь на отражение составляет 1,56 (I. Edmonds, Solar Energy Materials. 1990. N 21. P. 173-190).
Недостатком известного фотоэлектрического модуля является низкий коэффициент концентрации и высокая стоимость модуля, практически равная стоимости фотоэлектрического модуля без концентратора. Другим недостатком является невозможность использования модуля при другой, кроме полярной, системы ориентации на Солнце, например в фотоэлектрических фасадах зданий и при ориентации восток-запад.
Еще одним из недостатков известного устройства является невозможность использования его в фасадах зданий для получения теплоты и освещения зданий естественным солнечным излучением.
Задачей изобретения является повышение эффективности использования солнечной энергии и снижение стоимости получаемой электроэнергии и теплоты, а также создание эффективных гелиотехнических устройств, встроенных в фасады и крыши зданий для обеспечения их электроэнергией, теплом, горячей водой, энергией для приготовления пищи и естественным солнечным освещением.
Указанная задача решается тем, что в солнечном модуле с концентратором солнечной энергии, содержащем плоское защитное прозрачное ограждение, нормаль к поверхности которого находится в меридианальной плоскости, и установленный на защитном прозрачном ограждении в фокусе линейно-фокусирующего цилиндрического концентратора приемник излучения в виде полосы, концентратор выполнен в виде несимметричного отражателя, состоящего из двух разновеликих частей, разделенных плоскостью симметрии, проходящей через вершину и фокальную ось отражателя, причем большая часть отражателя выполнена в виде половины параболоцилиндрического отражателя, а меньшая часть - в виде кругового цилиндрического отражателя с радиусом, равным расстоянию от фокальной оси до вершины параболоцилиндрического отражателя, фокальная ось смещена, к одной из сторон защитного ограждения, параллельно его основанию, и совпадает с краем полосы приемника излучения, а угол наклона плоскости симметрии параболоцилиндрического отражателя к горизонтальной поверхности равен α = 114°ш-Φ, если фокальная ось и приемник в северном полушарии смещены к южной стороне несимметричного отражателя, и равен α = 114°ш, если фокальная ось и приемник в северном полушарии смещены к северной стороне параболоцилиндрического отражателя, где δш- широта местности в месте установки солнечного модуля, a Φ - апертурный угол параболоцилиндрического отражателя.
В одном из вариантов конструкции солнечного модуля с концентратором края защитного прозрачного ограждения, параллельно его основанию, совпадают с краями несимметричного отражателя, а второй край полосы приемника излучения совпадает с краем кругового цилиндрического отражателя.
Для снижения объема солнечного модуля с концентратором и температуры приемника на защитном прозрачном ограждении установлено параллельно его основанию с зазором между собой множество скоммутированных между собой параллельных полос приемников из скоммутированных солнечных элементов с двухсторонней чувствительностью, зазор между полосами много больше ширины полос, одинаково ориентированные края у каждой пары соседних полос являются краями несимметричных отражателей, фокальные оси которых параллельны основанию защитного ограждения и совпадают с двумя другими одинаково ориентированными краями у каждой пары соседних полос приемников.
Для использования солнечного модуля с концентратором на открытом воздухе плоскость симметрии параболоцилиндрического концентратора установлена под углом к горизонтальной поверхности, равным
α1 = 114°ш-8°•n,
где n - число полных месяцев до 22 июня на дату использования модуля, а приемник установлен горизонтально с северной стороны параболоцилиндрического отражателя таким образом, что по крайней мере одна из сторон основания приемника установлена в плоскости защитного ограждения отражателя и совпадает с фокальной осью параболоцилиндрического отражателя, а три другие стороны основания приемника соединены с краями сторон кругового цилиндрического отражателя, расположенных к северу от фокальной оси, с помощью зеркальных шторок, допускающих вращение солнечного модуля вокруг фокальной оси на 8o один раз в месяц при сохранении горизонтального положения приемника, а приемник содержит со стороны кругового цилиндрического отражателя на нижнем основании покрытие, поглощающее солнечное излучение.
Для получения электроэнергии в качестве приемника, солнечного модуля с концентратором установлен модуль из скоммутированных солнечных элементов.
Для получения горячей воды приемник солнечного модуля с концентратором выполнен в виде теплоизолированного бака-аккумулятора, снабженного термостойким стеклопакетом со стороны кругового цилиндрического отражателя.
Для комбинированного получения электроэнергии и теплоты в качестве покрытия бака-аккумулятора, поглощающего солнечное излучение, установлена полоса из скоммутированных солнечных элементов.
Для высокотемпературной обработки и приготовления пищи приемник выполнен в виде емкости, которая установлена на стеклопакете из термостойкого стекла в теплоизолированном ящике с теплоотражающими стенками и верхней крышкой.
Для энергоснабжения здания защитное прозрачное ограждение солнечного модуля с концентратором установлено на южном фасаде здания в межоконном пространстве в виде навесного козырька, плоскость которого наклонена к плоскости фасада под углом β = δш-2Φ-24°.
Для освещения, горячего водоснабжения, электроснабжения, отопления здания и приготовления пищи северная часть модуля и кругового цилиндрического отражателя от его края до фокальной оси расположена внутри здания со стороны южного фасада.
В другом варианте энергоснабжения здания солнечный модуль с концентратором установлен на крыше здания таким образом, что плоскость ориентированного на юг прозрачного ограждения наклонена к горизонтальной плоскости под углом γ = 114°ш-2Φ и приемник смещен к северной части отражателя, если угол наклона α оси симметрии параболоцилиндрического отражателя менее 90o и γ = 114°ш-3Φ, если α равен или больше 90o, солнечный модуль с концентраторами установлен и на северном скате крыши, если α≥90° и плоскость прозрачного ограждения наклонена к плоскости основания крыши под углом γ = 114°ш-Φ, при этом на южном скате крыши приемник смещен к южной стороне параболоцилиндрического отражателя, а приемник на северном скате крыши смещен к северной части параболоцилиндрического отражателя.
Для естественного освещения и солнечного отопления здания с северной стороны солнечный модуль с концентратором установлен таким образом, что фокальная ось ориентированного на юг параболоцилиндрического отражателя расположена на уровне крыши параллельно плоскости северного фасада, угол наклона ската крыши к горизонтальной плоскости меньше α, плоскость симметрии параболоцилиндрического отражателя составляет с плоскостью фасада угол β = δш+Φ-24°, верхняя часть параболоцилиндрического отражателя до фокальной оси расположена над зданием, а приемник выполнен в виде теплоизолированного стеклопакета и совмещен с окном здания на северном фасаде с помощью пустотелого оптического световода с зеркальными стенками.
Для электроснабжения и горячего водоснабжения здания при вертикальном расположении защитного покрытия солнечный модуль с концентратором выполнен в виде южного вертикального фасада здания, приемник и фокальная ось расположены в нижней части несимметричного параболоцилиндрического отражателя, угол α наклона плоскости симметрии параболоцилиндрического отражателя к горизонтальной плоскости равен α = 114°ш-Φ.
Для обеспечения непрерывной работы солнечный модуль с концентратором установлен стационарно в северном полушарии с 22 февраля по 22 октября, а апертурный угол Φ параболоцилиндрического отражателя равен 31o.
Для обеспечения круглогодичной работы солнечного модуля с концентратором апертурный угол Φ параболоцилиндрического отражателя Φ≥24°, а солнечный модуль снабжен устройством изменения угла наклона к горизонтальной плоскости на 24o два раза в год 22 марта и 22 сентября.
Для обеспечения непрерывной работы солнечного модуля с концентратором в течение года в режиме максимальной концентрации, ширина A полосы приемника, ширина B фокальной области параболоцилиндрического концентратора связаны соотношением A = K•B, где K = 1,4-1,6, а солнечный модуль имеет устройство изменения угла наклона к горизонтальной плоскости на 1,8o один раз в неделю.
Для обеспечения непрерывной работы солнечного модуля в течение года без слежения с наружной стороны защитного прозрачного ограждения установлено с зазором параллельно ему дополнительное защитное прозрачное ограждение, в зазоре между двумя ограждениями установлены управляемые дистанционно горизонтальные жалюзи с фацетами, которые имеют с двух сторон зеркальное покрытие, а ширина фацет в 3-4 раза превышает расстояние между фацетами.
Сущность изобретения поясняется фиг. 1, 2, 3, 4, 5, 6, 7, 8.
На фиг. 1 представлен общий вид солнечного модуля с концентратором и приемником в виде водонагревателя и модуля для горизонтального расположения.
На фиг. 2 - солнечный модуль с концентратором и приемником из солнечных элементов в виде модуля из солнечных элементов для солнечного фасада здания.
На фиг. 3 - солнечный модуль с концентратором для отопления и освещения здания, установленный в виде козырька на южном фасаде.
На фиг. 4 - солнечный модуль с концентратором для отопления и освещения северного фасада.
На фиг. 5 - солнечный модуль с концентратором для приготовления пищи и высокотемпературной обработки с периодическим слежением за Солнцем.
На фиг. 6 - солнечный модуль, состоящий из множества концентраторов и приемников, в виде полос из скоммутированных солнечных элементов, установленных на крыше здания.
На фиг. 7 - солнечный модуль, состоящий из множества концентраторов и приемников из солнечных элементов, установленных на южном фасаде здания.
На фиг. 8 - солнечный модуль, состоящий из множества концентраторов и приемников, и с жалюзи.
На фиг. 1 солнечный модуль с концентратором содержит защитное прозрачное ограждение 1, вектор нормали
Figure 00000002
к поверхности ограждения находится в меридиальной плоскости. Линейно-фокусирующий концентратор выполнен в виде несимметричного цилиндрического отражателя 2, состоящего из параболоцилиндрического отражателя 3 и кругового цилиндрического отражателя 4, разделенных плоскостью симметрии 5, проходящих через вершину 6 и фокальную ось F параболоцилиндрического отражателя 3. Радиус R кругового цилиндрического отражателя 4 равен расстоянию f от фокальной оси F до вершины 6 параболоцилиндрического отражателя 3. Фокальная ось F совпадает с краем приемника излучения 7, который состоит из теплоизолированного бака-аккумулятора 8, содержащего стеклопакет 9 из термостойкого стекла и солнечный фотоэлектрический модуль 10 из скоммутированных солнечных элементов, которые закреплены на поверхности бака-аккумулятора 8 со стороны кругового цилиндрического отражателя 4.
Угол наклона α плоскости симметрии 5 параболоцилиндрического отражателя 3 к горизонтальной поверхности 11 составляет α = 114°ш, где δш - - широта местности в месте установки.
На фиг. 2 - солнечный модуль содержит несимметричный отражатель 2, установленный на южном фасаде здания 12. Прозрачное защитное ограждение 1 установлено параллельно фасаду здания 12 и содержит в качестве приемника модуль 10 из скоммутированных солнечных элементов с двухсторонней рабочей поверхностью. Угол наклона α плоскости симметрии 5 параболоцилиндрического отражателя 3 к горизонтальной поверхности 11 равен α = 114°ш-Φ, где Φ - апертурный угол параболоцилиндрического отражателя.
На фиг. 3 - защитное прозрачное ограждение 1 солнечного модуля установлено на южном фасаде здания 12 в виде навесного козырька 13, плоскость которого наклонена к плоскости фасада под углом β = δш-2Φ-24°. Северная часть модуля содержит круговой цилиндрический отражатель 4 и стеклопакет 9, установленные внутри здания. Часть несимметричного отражателя 2 внутри здания 12 имеет тепловую изоляцию 14. В дополнение к стеклопакету 9, который служит для освещения и отопления здания, в качестве приемника могут быть установлены солнечный модуль 10, водонагреватель 8 или солнечная кухня.
На фиг. 4 солнечный модуль с концентратором установлен с северной стороны здания 12 для отопления и освещения здания. Фокальная ось F ориентированного на юг параболоцилиндрического отражателя 3 расположена на уровне крыши 15 параллельно плоскости северного фасада здания 12. Угол ψ наклона ската крыши 15 к горизонтальной плоскости 11 меньше угла наклона α плоскости симметрии 5 параболоцилиндрического отражателя к горизонтальной поверхности ψ<α = 114°ш-Φ. Плоскость симметрии 5 составляет с плоскостью фасада угол β = δш+Φ-24°. Параболоцилиндрический отражатель 3 до фокальной оси F расположен над зданием 12, а приемник выполнен в виде теплоизолированного стеклопакета 9 и совмещен с окном 16 здания 12.
На фиг. 5 - солнечный модуль с концентратором с солнечной кухней 17 снабжен устройством 18 для изменения угла наклона к горизонтальной плоскости 11 на 24o два раза в год, 22 марта (положение 1) и 22 сентября (положение 2). Поворот модуля осуществляется вокруг фокальной оси F, при этом часть несимметричного отражателя, расположенная под приемником 17, не изменяется, так как эта часть выполнена в виде кругового цилиндрического концентратора 4. Устройство 18 может быть использовано для поворота модуля раз в неделю на 1,8o или один раз в месяц на угол ~ 8o. При слежении один раз в неделю ширина A приемника 17 может быть сделана меньше радиуса R кругового цилиндрического отражателя до величины, равной A = KB, где B - ширина фокальной области, а K = 1,4-1,6.
На фиг. 6 - солнечный модуль состоит из множеств несимметричных отражателей 2 и приемников в виде полос 10 скоммутированных солнечных элементов с двухсторонней рабочей поверхностью, установленных на крыше 15 здания 12. Плоскость ориентированного на юг защитного прозрачного ограждения наклонена к горизонтальной плоскости 11 под углом γ = 114°ш-2Φ. Угол α наклона оси симметрии 5 параболоцилиндрического отражателя 2 равен α = 114°ш меньше 90o при δш>24°, поэтому полосы 10 приемников смещены к северной части защитного прозрачного ограждения 1.
На фиг. 7 - солнечный модуль состоит из множества несимметричных отражателей 2 и приемников 10 из скоммутированных солнечных элементов с двухсторонней рабочей поверхностью, установленных на защитном прозрачном ограждении 1 на южном фасаде здания 12. Приемник 10 смещен к нижней части не симметричного отражателя 2, а угол α = 114°ш-Φ.
На фиг. 8 - в солнечном модуле с концентратором с наружной стороны защитного прозрачного ограждения 1 установлено параллельно ему дополнительное защитное прозрачное ограждение 19, в зазоре между двумя ограждениями 1 и 19 установлены управляемые дистанционно горизонтальные жалюзи 17 с фацетами 18 с зеркальным покрытием. Ширина фацет l в 3-4 раза превышает расстояние между фацетами d. Над приемниками 10 фацеты 18 не устанавливают. В случае вертикального расположения модуля в виде солнечного фасада (фиг. 2) жалюзи устанавливают внутри прозрачного ограждения 1 и в этом случае дополнительное прозрачное ограждение 16 не используется.
Примеры конкретного выполнения солнечного модуля с концентратором
Пример 1. Солнечный модуль с концентратором для нагрева воды имеет защитное прозрачное ограждение 1 шириной H=2,05 см. Края несимметричного отражателя 2 совпадают с краями защитного ограждения. Несимметричный отражатель 2 состоит из полупараболоцилиндрического отражателя 3 с апертурным углом Φ = 31° с шириной по защитному ограждению 1 158 см и фокусным расстоянием 42,5 см и кругового цилиндрического отражателя 4 радиусом R = 42,5 см и шириной по защитному ограждению 1 42,5 см. Осевая линия кругового цилиндрического отражателя 4 совпадает с фокальной линией F полупараболоцилиндрического отражателя 3. Защитное ограждение установлено горизонтально под углом γ к горизонтальной плоскости 11 γ = α-2Φ. Угол наклона α плоскости симметрии 5 полупараболического отражателя 3 равен α = 114°ш. Для широты г. Москвы δш= 56°, α = 58°, Φ = 31°, γ = -3°. Знак минус означает, что защитное ограждение 1 наклонено к югу под углом к горизонту 3o. Принимаем ширину водонагревателя, равной ширине R защитного ограждения, от фокальной оси F до края кругового цилиндрического отражателя 4. В этом случае максимально возможный коэффициент концентрации солнечного модуля K = H/R cosξ. Где ξ - угол между нормалью n к поверхности защитного ограждения 1 и плоскостью симметрии 5 параболоцилиндрического отражателя 3 ξ = 90°-2Φ.
При H = 205 см, R = 42,5 см Φ = 31°, ξ = 28°, cosξ = 0,9. Коэффициент концентрации K = 4,36 в 2,18 раза превышает коэффициент концентрации известного модуля с круговыми цилиндрическими отражателями. Принимая длину L солнечного модуля и водонагревателя 1,5 м, получим пиковую тепловую мощность при освещенности 1000 Вт/м2 Pтепл= HLcosξ1 кВт/м2 = 2,77 кВт.
Пример 2. Солнечный модуль с концентратором для электроснабжения содержит защитное прозрачное ограждение 1 шириной 86 см, под которым расположены полупараболоцилиндрический отражатель 3 шириной по защитному ограждению 73,75 см с апертурным углом Φ = 24° и круговой цилиндрический отражатель 4 с радиусом 12,25 см и шириной по защитному ограждению 12,25 см. На защитном прозрачном ограждении 1 со стороны кругового цилиндрического отражателя 4 установлены 18 скоммутированных солнечных элементов 10 размером 125х62,5 мм общей длиной 135 см.
Солнечные элементы 10 имеют двустороннюю рабочую поверхность и герметизированы с одной стороны слоем стекла защитного прозрачного ограждения 1, а с другой стороны полосой стекла размером 13,5х135 см, приклеенного к защитному прозрачному ограждению 1. По сравнению с известным модулем, где солнечные элементы закреплены между двумя листами стекла по всей площади защитного ограждения, в предлагаемой конструкции модуля расход стекла снижен на 30%.
Длина несимметричного отражателя 2L = 160 см выбирается из условия обеспечения работы модуля при косых лучах.
Угол наклона α плоскости симметрии 5 параболоцилиндрического отражателя 3 к горизонтальной поверхности для широты Москвы δш= 56° α = 114°ш= 58°.
Угол наклона плоскости защитного ограждения 1 к горизонтальной поверхности составляет
γ = 114°ш-2Φ = 114°-56°-48°= 11°.
Это означает, что южный край защитного ограждения 1 будет выше северного и нейтраль n плоскости ограждения будет находиться в меридианальной плоскости со сдвигом к северу от нормали к земле на 11o.
Максимальный коэффициент концентрации
K = H/Rcos(90°-2Φ) = 86/125cos42°= 5,44.
Пиковая электрическая мощность модуля при КПД 12% составит
Pэл = 0,86 м • 1,35 м • 1000 Вт/м2 • 0,12 • cos 42o = 109 Вт.
Пример 3. Солнечный модуль с концентратором установлен вертикально на южном фасаде здания 12. Защитное прозрачное ограждение имеет ширину 2,5 м, на которой размещены в 10 рядов несимметричные отражатели шириной H = 24 см. Каждый несимметричный отражатель состоит из полупараболоцилиндрического отражателя с апертурным углом 31o и расположенного под ним кругового цилиндрического отражателя радиусом R=5,0 см. Фокальная ось F каждого параболоцилиндрического отражателя параллельна основанию фасада и расположена на защитном ограждении на расстоянии 19 см от верхнего края параболоцилиндрического отражателя. Солнечные элементы размером 50х100 мм с двусторонней рабочей поверхностью расположены на защитном ограждении между фокальной осью и нижним краем кругового цилиндрического концентратора.
Ось симметрии параболоцилиндрического отражателя наклонена к горизонтальной плоскости под углом
α = 114°ш-Φ.
Для Москвы δш= 56°
α = 114°-56°-31°= 27°.
Максимальный коэффициент концентрации
К = H/R cos 27o = 24/5 cos 27o = 4,28.
Длина защитного прозрачного ограждения составляет 200 мм. Количество солнечных элементов в одном ряду 18, общее количество солнечных элементов в модуле равно 180 и эти солнечные элементы скоммутированы последовательно по 36 элементов в пять параллельных электрических цепей.
Наклон прозрачного ограждения к горизонтальной плоскости составляет γ = 114°ш+Φ = 89°.
Для обеспечения угла наклона защитного прозрачного ограждения 90o при широте местности 56o апертурный угол параболоцилиндрического отражателя необходимо выбрать Φ = 32°
Максимальная электрическая мощность модуля при освещенности 1 кВт/м2 и КПД 12%
Pэл = 2,40•1,80•1 кВт/м2•0,12•cos 27o = 0,460 кВт.
Модуль установлен на фасаде таким образом, что касательная к верхней части полупараболоцилиндрического отражателя имеет угол наклона к горизонтальной плоскости 58o, соответствующий высоте солнца над горизонтом в полдень 22.06. Солнечный модуль с апертурным углом Φ = 31° работает в стационарном режиме без слежения за солнцем с 22.02 до 22.10, что в условиях выше 56o северной широты дает возможность использовать от 85 до 100% годового поступления солнечной энергии.
Пример 4. Солнечный модуль с концентратором содержит множество несимметричных отражателей 2, установленных на защитном прозрачном ограждении 1 рядов, параллельных основанию, таким образом, что фокальные оси F и приемников 10 в виде полос из скоммутированных солнечных элементов смещены к северной части несимметричных отражателей 2. Параболоцилиндрические отражатели 3 имеют апертурный угол Φ = 31°. Размеры несимметричных отражателей в модуле выбраны такие же, как в примере 3. Плоскость симметрии 5 параболоцилиндрических отражателей 3 наклонена к горизонтальной плоскости 11 под углом α = 20°. Плоскость защитного прозрачного ограждения 1 наклонена к горизонтальной поверхности 11 под углом 42o.
Модуль установлен на широте Москвы δш= 56°. Над защитным прозрачным ограждением 1 установлено дополнительное прозрачное ограждение 19 с зазором 40 мм, между ограждениями 1 и 16 установлены наклонные горизонтальные жалюзи 17 с зеркальными фацетами 18. Ширина фацет 18 l равна 35 мм, а расстояние между фацетами d = 10 мм. Фацеты установлены под углом 19o к потоку солнечного излучения и отраженный луч составляет с падающим излучением угол 38o.
Солнечный модуль может работать без фацет при углах падения солнечного излучения 11 - 20o, что соответствует работе солнечного модуля на широте 56o с 15 ноября по 1 февраля.
В диапазоне углов наклона солнечного излучения к горизонту 11o-58o жалюзи 17 обеспечивают фокусировку солнечного излучения в фокальной области полупараболоцилиндрического отражателя 3, что позволяет увеличить коэффициент концентрации, уменьшить апертурный угол концентратора, размеры приемника излучения и снизить его стоимость.
Солнечный модуль с концентратором работает следующим образом.
Суммарное солнечное излучение в пределах апертурного угла поступает на отражающие поверхности параболоцилиндрического и кругового цилиндрического отражателя и фокусируется на приемнике. Переотраженное излучение, используемое приемником, суммируется с излучением, поступающим непосредственно на вторую поверхность приемника. Выполнение модуля в виде составного концентратора из двух отражающих поверхностей параболоцилиндрического и кругового цилиндрического концентратора позволяет увеличить удельную мощность приемника и концентрацию более чем в 2 раза по сравнению с концентратором на основе кругового цилиндрического отражателя и использовать солнечный модуль для энергоснабжения и освещения зданий и создания автономных энергетических установок.

Claims (15)

1. Солнечный модуль с концентратором, содержащий плоское защитное прозрачное ограждение, нормаль к поверхности которого находится в меридиональной плоскости, и установленный на защитном прозрачном ограждении в фокусе линейно-фокусирующего цилиндрического концентратора приемник излучения в виде полосы, отличающийся тем, что концентратор выполнен в виде несимметричного отражателя, состоящего из двух разновеликих частей, разделенных плоскостью симметрии, проходящей через вершины и фокальную ось отражателя, причем большая часть отражателя выполнена в виде половины параболоцилиндрического отражателя, а меньшая часть в виде кругового цилиндрического отражателя с радиусом, равным расстоянию от фокальной оси до вершины параболоцилиндрического отражателя, фокальная ось смещена к одной из сторон защитного ограждения параллельно его основанию и совпадает с краем полосы приемника излучения, а угол наклона плоскости симметрии параболоцилиндрического отражателя к горизонтальной поверхности равен
α = 114°ш-Φ,
если фокальная ось и приемник в северном полушарии смещены к южной стороне несимметричного отражателя, и равен
α = 114°ш,
если фокальная ось и приемник в северном полушарии смещены к северной стороне несимметричного отражателя, где δш- широта местности в месте установки комбинированного солнечного модуля;
Φ- апертурный угол параболоцилиндрического отражателя.
2. Солнечный модуль с концентратором по п.1, отличающийся тем, что края защитного прозрачного ограждения, параллельные его основанию, совпадают с краями несимметричного отражателя, а второй край полосы приемника излучения совпадает с краем кругового цилиндрического отражателя.
3. Солнечный модуль с концентратором по п.1, отличающийся тем, что на защитном ограждении установлено параллельно его основанию с зазором между собой множество скоммутированных между собой параллельных полос приемников из скоммутированных солнечных элементов с двухсторонней чувствительностью, зазор между полосами много больше ширины полос, одинаково ориентированные края у каждой пары соседних полос являются краями несимметричных отражателей, фокальные оси которых параллельны основанию защитного ограждения и совпадают с двумя другими одинаково ориентированными краями у каждой пары соседних полос приемников.
4. Солнечный модуль с концентратором по пп.1 и 2, отличающийся тем, что плоскость симметрии параболоцилиндрического концентратора установлена под углом к горизонтальной поверхности, равным
α1 = 114°ш-8°•n,
где n - число полных месяцев до 22 июня на дату использования модуля,
а приемник установлен горизонтально с северной стороны параболоцилиндрического отражателя таким образом, что по крайней мере одна из сторон основания приемника установлена в плоскости защитного ограждения отражателя и совпадает с фокальной осью параболоцилиндрического отражателя, а три другие стороны основания приемника соединены с краями сторон кругового цилиндрического отражателя, расположенных к северу от фокальной оси, с помощью зеркальных шторок, допускающих вращение солнечного модуля вокруг фокальной оси на 8o один раз в месяц при сохранении горизонтального положения приемника, а приемник содержит со стороны кругового цилиндрического отражателя на нижнем основании покрытие, поглощающее солнечное излучение.
5. Солнечный модуль с концентратором по пп.1, 2, 4, отличающийся тем, что в качестве приемника установлен модуль из скоммутированных солнечных элементов.
6. Солнечный модуль с концентратором по пп.1, 2, 4, отличающийся тем, что приемник выполнен в виде теплоизолированного бака-аккумулятора, снабженного термостойким стеклопакетом со стороны кругового цилиндрического отражателя.
7. Солнечный модуль с концентратором по пп.1, 2, 4, 6, отличающийся тем, что в качестве покрытия приемника в виде бака-аккумулятора, поглощающего солнечное излучение, установлена полоса скоммутированных солнечных элементов.
8. Солнечный модуль по пп.1, 2, 4, отличающийся тем, что приемник выполнен в виде емкости для высокотемпературной обработки и приготовления пищи, которая установлена на стеклопакете из термостойкого стекла в теплоизолированном ящике с теплоотражающими стенками и верхней крышкой.
9. Солнечный модуль с концентратором по пп.1-8, отличающийся тем, что защитное ограждение установлено на южном фасаде здания в межоконном пространстве в виде навесного козырька, плоскость которого наклонена к плоскости фасада под углом.
β = δш-2Φ-24°.
10. Солнечный модуль с концентратором по пп.1, 2, 4 - 9, отличающийся тем, что северная часть модуля и кругового цилиндрического отражателя от его края до фокальной оси расположена внутри здания со стороны южного фасада.
11. Солнечный модуль с концентратором по пп.1-8, отличающийся тем, что модуль установлен на южном скате крыши здания, плоскость ориентированного на юг прозрачного ограждения наклонена к горизонтальной плоскости под углом γ = 114°ш-2Φ и приемник смещен к северной части отражателя, если угол наклона α оси симметрии параболоцилиндрического отражателя менее 90o, и γ = 114°ш-3Φ, если α≥90°, солнечный модуль с концентраторами установлен и на северном скате крыши, если α равен или больше 90o и плоскость прозрачного ограждения наклонена к плоскости основания крыши под углом γ = 114°ш-Φ, при этом на южном скате крыши приемник смещен к южной стороне параболоцилиндрического отражателя, а приемник на северном скате крыши смещен к северной части параболоцилиндрического отражателя.
12. Солнечный модуль с концентратором по пп.1-8, отличающийся тем, что фокальная ось ориентированного на юг параболоцилиндрического отражателя расположена на уровне крыши параллельно плоскости северного фасада, угол наклона ската крыши к горизонтальной плоскости меньше α, а плоскость симметрии параболоцилиндрического отражателя составляет с плоскостью фасада угол β = δш+Φ-24°, верхняя часть параболоцилиндрического отражателя до фокальной оси расположена над зданием, а приемник выполнен в виде теплоизолированного стеклопакета и соединен окном здания на северном фасаде с помощью пустотелого оптического световода с зеркальными стенками.
13. Солнечный модуль с концентратором по пп.1-3, отличающийся тем, что защитное прозрачное ограждение выполнено в виде южного вертикального фасада здания, приемник и фокальная ось расположены в нижней части несимметричного параболоцилиндрического отражателя, а угол α наклона плоскости симметрии параболоцилиндрического отражателя к горизонтальной плоскости равен α = 114°ш-Φ.
14. Солнечный модуль с концентратором по пп.1-13, отличающийся тем, что модуль установлен стационарно в северном полушарии с 22 февраля по 22 октября, а апертурный угол Φ несимметричного параболоцилиндрического отражателя равен 31o.
15. Солнечный модуль с концентратором по пп.1-3, 5-13, отличающийся тем, что апертурный угол Φ параболоцилиндрического отражателя равен 24o, а солнечный модуль снабжен устройством изменения угла наклона к горизонтальной плоскости на 24o два раза в год 22 марта и 22 сентября.
16. Солнечный модуль с концентратором по пп.1-3, 5-13, отличающийся тем, что ширина А полосы приемника и ширина В фокальной области несимметричного цилиндрического концентратора связаны соотношением А = К х В, где К = 1,2 - 1,6, а солнечный модуль снабжен устройством изменения угла наклона к горизонтальной плоскости на 1,8o один раз в неделю.
17. Солнечный модуль с концентратором по пп.1-3, 5-13, отличающийся тем, что с наружной стороны защитного прозрачного ограждения установлено с зазором параллельно ему дополнительное защитное прозрачное ограждение, в зазоре между двумя ограждениями установлены управляемые дистанционно горизонтальные жалюзи с фацетами, которые имеют с двух сторон зеркальное покрытие, а ширина фацет в 3-4 раза превышает расстояние между фацетами.
RU2000108561/062000108561/06A 2000-04-07 2000-04-07 Солнечный модуль с концентратом RU2172903C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000108561/062000108561/06A RU2172903C1 (ru) 2000-04-07 2000-04-07 Солнечный модуль с концентратом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000108561/062000108561/06A RU2172903C1 (ru) 2000-04-07 2000-04-07 Солнечный модуль с концентратом

Publications (1)

Publication Number Publication Date
RU2172903C1 true RU2172903C1 (ru) 2001-08-27

Family

ID=48231207

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000108561/062000108561/06A RU2172903C1 (ru) 2000-04-07 2000-04-07 Солнечный модуль с концентратом

Country Status (1)

Country Link
RU (1) RU2172903C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798967A (zh) * 2012-07-09 2012-11-28 赵淑明 Cdc免跟踪太阳能复合聚光器及其阵列
RU2488915C2 (ru) * 2011-06-07 2013-07-27 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Солнечный концентраторный модуль (варианты)
RU2572167C1 (ru) * 2014-05-27 2015-12-27 Дмитрий Семенович Стребков Солнечный модуль с концентратором (варианты)
RU2576752C2 (ru) * 2014-05-19 2016-03-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) Солнечный модуль с концентратором
RU2580462C1 (ru) * 2015-02-11 2016-04-10 Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) Солнечный модуль с концентратором
RU2593598C1 (ru) * 2015-03-03 2016-08-10 ОАО "Концерн "Орион" Система дистанционного контроля и управления солнечным концентраторным модулем
CN108978962A (zh) * 2018-08-01 2018-12-11 天津大学 一种基于复合抛物面聚光器的太阳能幕墙模块结构
RU2704645C1 (ru) * 2018-12-14 2019-10-30 Общество с ограниченной ответственностью "Исар" Система для очистки космического пространства от объектов космического мусора
CN116067023A (zh) * 2023-02-01 2023-05-05 昆明理工大学 一种基于单臂设计的太阳能复合平面聚光系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. EDMONDS. Solar Energy Materials. 1990, № 21, р.173 - 190. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2488915C2 (ru) * 2011-06-07 2013-07-27 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Солнечный концентраторный модуль (варианты)
CN102798967A (zh) * 2012-07-09 2012-11-28 赵淑明 Cdc免跟踪太阳能复合聚光器及其阵列
RU2576752C2 (ru) * 2014-05-19 2016-03-10 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт электрификации сельского хозяйства"(ФГБНУ ВИЭСХ) Солнечный модуль с концентратором
RU2572167C1 (ru) * 2014-05-27 2015-12-27 Дмитрий Семенович Стребков Солнечный модуль с концентратором (варианты)
RU2580462C1 (ru) * 2015-02-11 2016-04-10 Федеральное агентство научных организаций Федеральное Государственное Бюджетное Научное Учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ФГБНУ ВИЭСХ) Солнечный модуль с концентратором
RU2593598C1 (ru) * 2015-03-03 2016-08-10 ОАО "Концерн "Орион" Система дистанционного контроля и управления солнечным концентраторным модулем
CN108978962A (zh) * 2018-08-01 2018-12-11 天津大学 一种基于复合抛物面聚光器的太阳能幕墙模块结构
RU2704645C1 (ru) * 2018-12-14 2019-10-30 Общество с ограниченной ответственностью "Исар" Система для очистки космического пространства от объектов космического мусора
WO2020122756A1 (ru) * 2018-12-14 2020-06-18 Елена Валерьевна ПЕТРАКОВА Система для очистки космического пространства от объектов космического мусора
CN116067023A (zh) * 2023-02-01 2023-05-05 昆明理工大学 一种基于单臂设计的太阳能复合平面聚光系统

Similar Documents

Publication Publication Date Title
Li et al. Building integrated solar concentrating systems: A review
US4088116A (en) Radiant energy collector
JP5497037B2 (ja) 太陽エネルギー変換
US4238246A (en) Solar energy system with composite concentrating lenses
AU2011242409B2 (en) A solar energy collector system
US20120255540A1 (en) Sun tracking solar concentrator
RU2694066C1 (ru) Солнечный дом
US4230094A (en) Solar concentrator
CN101189480A (zh) 太阳能集中器
Hadjiat et al. Design and analysis of a novel ICS solar water heater with CPC reflectors
US4572160A (en) Heliotropic solar heat collector system
US20110209743A1 (en) Photovoltaic cell apparatus
RU2303205C1 (ru) Солнечная энергетическая установка (варианты)
RU2172903C1 (ru) Солнечный модуль с концентратом
US12051759B2 (en) Photovoltaic solar collection system and natural illumination apparatus for building integration
Kasaeian et al. Solar energy systems: An approach to zero energy buildings
RU2503895C2 (ru) Солнечный модуль с концентратором и способ его изготовления (варианты)
WO2012107605A1 (es) Elemento, y panel de captación y concentración de la radiación solar directa
RU2520803C2 (ru) Солнечный модуль с концентратором и способ его изготовления
ES2750551T3 (es) Aparato colector de energía solar y método de diseño
RU2206837C2 (ru) Солнечный модуль с концентратором (варианты)
AU2015101876A4 (en) Solar concentrator comprising flat mirrors oriented north-south and a cylindrical-parabolic secondary mirror having a central absorber
RU2612725C1 (ru) Гибридная кровельная солнечная панель
RU2225965C1 (ru) Солнечный модуль с концентратором
RU2225966C1 (ru) Солнечный модуль с концентратором (варианты)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070408

NF4A Reinstatement of patent

Effective date: 20080310

MM4A The patent is invalid due to non-payment of fees

Effective date: 20100408