RU2302048C2 - Силикатная матрица для кондиционирования радиоактивных отходов - Google Patents

Силикатная матрица для кондиционирования радиоактивных отходов Download PDF

Info

Publication number
RU2302048C2
RU2302048C2 RU2005125884/06A RU2005125884A RU2302048C2 RU 2302048 C2 RU2302048 C2 RU 2302048C2 RU 2005125884/06 A RU2005125884/06 A RU 2005125884/06A RU 2005125884 A RU2005125884 A RU 2005125884A RU 2302048 C2 RU2302048 C2 RU 2302048C2
Authority
RU
Russia
Prior art keywords
matrix
sum
radioactive waste
oxides
zro
Prior art date
Application number
RU2005125884/06A
Other languages
English (en)
Other versions
RU2005125884A (ru
Inventor
Аркадий Тимофеевич Агеенков (RU)
Аркадий Тимофеевич Агеенков
Андрей Владимирович Демин (RU)
Андрей Владимирович Демин
Павел Петрович Полуэктов (RU)
Павел Петрович Полуэктов
Сергей Владимирович Юдинцев (RU)
Сергей Владимирович Юдинцев
Original Assignee
Российская Федерация в лице Федерального агентства по атомной энергии
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация в лице Федерального агентства по атомной энергии, Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара" filed Critical Российская Федерация в лице Федерального агентства по атомной энергии
Priority to RU2005125884/06A priority Critical patent/RU2302048C2/ru
Publication of RU2005125884A publication Critical patent/RU2005125884A/ru
Application granted granted Critical
Publication of RU2302048C2 publication Critical patent/RU2302048C2/ru

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение относится к области иммобилизации радиоактивных отходов. Сущность изобретения: силикатная матрица для кондиционирования радиоактивных отходов, содержащая SiO2, Na2O, K2О, СаО, Fe2O3, Cr2О3, NiO, Al2О3, ZrO2, оксиды компонентов радиоактивных отходов, в том числе продуктов деления ядерного топлива, U и трансурановых элементов. При этом матрица содержит указанные компоненты в следующем соотношении, мол.%: SiO2 60-68; сумма Na2O, K2O, Cs2O 11-18; сумма СаО, SrO, BaO 3-6; сумма Fe2O3, Cr2O3, NiO 2-4; Al2O3 1-3; ZrO2 4-7; сумма оксидов редкоземельных элементов, U и трансурановых элементов 1,5; остальное до 3. Преимущества изобретения заключаются в повышении химической и термической стойкости матрицы. 3 табл., 3 ил.

Description

Предлагаемое изобретение относится к атомной промышленности и может быть использовано для отверждения радиоактивных отходов преимущественно высокого уровня. Наиболее эффективно заявляемое изобретение может быть реализовано при отверждении радиоактивных отходов (РАО), содержащих радионуклиды редкоземельных элементов (РЗЭ), урана, трансурановых элементов (ТУЭ), а также цезия и стронция.
При регенерации отработавшего ядерного топлива одной из задач является сокращение объемов радиоактивных отходов и перевод их в стабильную форму, пригодную для безопасного длительного хранения, с последующим захоронением в геологические формации.
С этой целью жидкие радиоактивные отходы (ЖРО) вначале концентрируют путем выпаривания, сушки, кальцинации, а затем включают в различные твердые матрицы: цемент, термопластичные связующие, стеклоподобные и минералоподобные материалы.
В качестве матрицы для фиксации радиоактивных отходов используют фосфатные стеклоподобные материалы (Фосфатные стекла с радиоактивными отходами. Под ред. А.А.Вашмана и А.С.Полякова. М., ЦНИИАтоминформ, 1997, стр.21).
Также было предложено включать радиоактивные и опасные отходы в монолитные блоки фосфатного стекла (Пат. США №5840638, 1998 г.).
Достоинством фосфатного стекла при включении РАО наряду с высокой способностью удерживать радионуклиды длительное время является простота флюсования исходных ЖРО жидкой ортофосфорной кислотой и сравнительно невысокая температура синтеза 900-1000°С.
К недостаткам фосфатного стекла следует отнести высокую коррозионную активность расплава, что ограничивает ресурс аппаратов (плавителей) для его синтеза, а также невысокую растворимость в нем важных компонентов РАО: редкоземельных элементов и плутония, а также нежелательное расстекловывание (кристаллизация) при длительном хранении, в 10-100 раз снижающее химическую стойкость стекла и приводящее к выходу из стекла радионуклидов.
Для включения РАО используют боросиликатные стекла. Например, в состав стекла, предложенного для фиксации РАО (Пат. США №4376070, 1983 г.), входят стеклообразующие оксиды при следующем соотношении компонентов, мол.%: кремния 30-85, натрия 5-30, алюминия до 30, бора, кальция или магния 5-30 и оксиды металлов - компонентов радиоактивных отходов.
Наиболее близким к предлагаемому изобретению является силикатная матрица, охарактеризованная в PUYOU M, Nuclear technology, 1995, №1, p.163-168 и выбранная в качестве прототипа.
В состав известной матрицы для иммобилизации радиоактивных отходов входят следующие компоненты, мас.%: SiO2 - 45,1; Al2О3 - 4,9; В2О3 - 13,9; Na2O - 9,8; Li2O - 2,0; CaO - 4,0; Fe2O3 - 2,9; ZnO - 2,5; оксиды Ni; Cr - 0,9; Zr - 1,0; оксиды РЗЭ и актинойдов - 11,2; платиноиды - 1,8, что в пересчете на мол. % составляет: SiO2 - 53,4; Al2О3 - 3,4; В2О3 - 14,2; Na2О - 10,6; Li2O - 4,8; CaO - 5,0; Fe2O3 - 1,2; ZnO - 2,1; оксиды Ni; Cr - 0,4; Zr - 0,6; оксиды РЗЭ и актиноидов - 2,4; платиноиды - 1,0.
Недостатком прототипа является недостаточно высокая стабильность высокоактивной матрицы с включенными долгоживущими трансурановыми элементами при повышенной температуре и внутреннем облучении в условиях захоронения в геологические формации.
Задачей, на решение которой направлено предлагаемое изобретение, является создание матрицы для кондиционирования РАО со стабильной радиационной, термической и химической стойкостью в процессе длительного хранения и захоронения, а также сокращение объема кондиционированных РАО за счет использования в матрице вместо дорогостоящих флюсующих добавок собственных компонентов РАО.
Для решения поставленной задачи предложена силикатная матрица для кондиционирования радиоактивных отходов, содержащая SiO2, Na2O, K2O, CaO, Fe2O3, Cr2О3, NiO, Al2О3, ZrO2, оксиды компонентов радиоактивных отходов, в том числе продуктов деления ядерного топлива, U и трансурановых элементов, причем она содержит указанные компоненты в следующем соотношении, мол.%:
SiO2 60-68
Сумма Na2O, K2O, Cs2O 11-18
Сумма CaO, SrO, BaO 3-6
Сумма Fe2O3, Cr2O3, NiO 2-4
Al2O3 1-3
ZrO2 4-7
Сумма оксидов редкоземельных
элементов, U и трансурановых элементов 1,5
Остальное до 3
«Остальное» включает оксиды платиноидов, марганца, гадолиния, галлия, молибдена, теллура, серебра, титана и т.п. компонентов радиоактивных отходов.
В соответствии с изобретением оксиды компонентов РАО и флюсующих добавок объединены по группам в соответствии с их химическими свойствами. Этот принцип позволяет максимально использовать практически все компоненты радиоактивных отходов для синтеза матрицы стекла, сократить количество вводимых флюсующих добавок и тем самым минимизировать объем получаемых отвержденных отходов.
Примеры осуществления изобретения приведены в таблицах 1-3.
Номера столбцов 1-6 соответствуют следующим типам радиоактивных отходов: 1, 6, 7 и 8 - фракция лантанидов и актинидов, 2 и 5 - фракция актинидов, 3 - фракция актинидов и высокоактивные отходы, 4 - фракции Cs-Sr и актинидов.
В табл.1 приведены химические составы предлагаемой матрицы для соответствующих типов РАО.
В табл.2 приведены режимы синтеза матрицы стекла и некоторые свойства расплавов.
В табл.3 приведены основные свойства полученных монолитных блоков.
Как видно из представленных данных, требуется сравнительно небольшое количество недефицитных и недорогих флюсующих добавок, главным образом оксида кремния.
Большинство соединений металлов, содержащихся в РАО, в процессе остекловывания превращаются в оксиды, которые входят в структуру матрицы стекла.
Исходная синтезированная матрица характеризуется низкой выщелачиваемостью радионуклидов, которая сохраняется при длительной термообработке и после гамма-облучения.
Характерной особенностью предлагаемой матрицы является то, что в процессе длительного хранения структура матрицы распадается с образованием еще более химически устойчивых кристаллических фаз, аккумулирующих в себе токсичные и радиоактивные элементы РАО, что предотвращает их выход в биосферу.
В предложенной матрице модифицирующие структуру стекла соединения (Fe2O3 и Gd2O3) являются радиопротекторами, увеличивающими в процессе хранения и захоронения радиационную и термическую устойчивость матрицы.
На фиг.1-3 представлена микроструктура образцов предложенной силикатной матрицы.
На фиг.1 представлена микроструктура силикатной матрицы после расстекловывания при температуре 1200°С, × 150.
На фиг.2 представлена микроструктура силикатной матрицы, поверхность после термообработки 800°С, 500 час, × 150.
На фиг.3 представлена микроструктура силикатной матрицы, × 250.
На фоне серой аморфной фазы стекла видны светлые кристаллические включения с аккумулированными радионуклидами - силикаты РЗЭ (фиг.1 и 2) и оксид циркония (фиг.3).
Таким образом, в предложенной силикатной матрице радионуклиды оказываются включенными в двойную защитную против вымывания структуру сначала стекла, а затем при расстекловывании в процессе длительного хранения в кристаллическую.
Термическая обработка при 1200°С, имитирующая тепловое воздействие распадающихся радионуклидов при длительном хранении и захоронении матрицы, приводит к образованию в структуре стекла обогащенных радионуклидами химически устойчивых кристаллических фаз.
При синтезе стекла предлагаемого состава, кроме оксида кремния, требуется добавлять соединения циркония. Цирконий образуется в ядерном топливе как продукт деления и в процессе переработки топлива накапливается в радиоактивных отходах, однако количество осколочного циркония недостаточно для формирования силикатной матрицы предлагаемого состава. В качестве цирконийсодержащих добавок возможно применять дешевые технические материалы с содержанием примесей до 5 мас.% или кондиционированные до соединений ZrO2 или ZrO (NO3)2 отходы оболочек облученных твэлов.
Таблица 1
Компонент Содержание, мол. %*
1 2 3 4 5 6 7 8 Прототип
Na2O 17,2 16,1 16,9 11,4 15,8 16,0 17,9 15,8 10,6
Li2O - - - - - - - - 4,4
CaO 4,9 5,2 5,1 0,8 4,2 3,5 3,3 3,1 4,8
SrO - - 0,5 3,1 0,4 - - - 0,2
BaO - - 0,3 2,0 0,3 - - - 0,3
ZnO - - - - - - - - 2,1
Fe2O3 3,0 3,3 2,9 2,4 2,6 2,6 3,7 3,5 1,2
Al2O3 2,3 2,4 1,7 1,7 - 2,1 2,9 1,3 3,4
SiO2 63,5 65,4 63,3 66,3 66,7 64,8 60,2 68,0 53,4
ZrO2 5,0 5,4 4,8 6,4 6,6 6,5 6,8 4,2 0,6
B2O3 - - - - - - - - 14,2
Оксиды РЗЭ, U и ТУЭ 3,9 1,9 2,9 3,3 3,1 4,2 5,0 1,2 2,4
Остальное 0,3 0,3 1,6 2,6 0,3 0,3 0,2 2,9 1,8
* - Состав матрицы-прототипа в пересчете на мол.%.
Таблица 2
Температура синтеза, °С (вязкость расплава 20-70 дПа·с) 1450-1500
Температура, соответствующая вязкости 100 дПа·с, °С 1300-1400
Электропроводность расплава при 1300-1500°С, См/м 2,0-6,5
Таблица 3
Измерения Исходная матрица Матрица после обработки
Термообработка, (800°С, 500 ч) Гамма-облучение (108, 109, 1010 Гр) Расстекловывание (1200°С)
Скорость Na-10-7
выщелачива Cs-<10-9
ния, Sr-10-8 Без изменения Без изменения Без изменения
г·см-2·д-1 Ва- 10-8
Ln-<10-9
Рентгено-диффрактометрия, оптическая микроскопия, СЭМ/МРС* анализы микроструктуры Аморфная структура Поверхностный слой - 0,3 мм обогащен силикатами Na, Ca и Ln. Объем - без изменения (см. фиг.2) Без изменения Стекло (20-90%) и кристаллические фазы: Са2(Ln)3(SiO4)3О, (см. фиг.1); ZrO2 (см. фиг.3)
* - Сканирующая электронная микроскопия с микрорентгеноспектральным анализатором

Claims (1)

  1. Силикатная матрица для кондиционирования радиоактивных отходов, содержащая SiO2, Na2O, К2О, СаО, Fe2О3, Cr2O3, NiO, Al2О3, ZrO2, оксиды компонентов радиоактивных отходов, в том числе продуктов деления ядерного топлива, U и трансурановых элементов, отличающаяся тем, что она содержит указанные компоненты в следующем соотношении, мол.%: SiO2 60-68; сумма Na2O, K2O, Cs2O 11-18; сумма СаО, SrO, BaO 3-6; сумма Fe2O3, Cr2O3, NiO 2-4; Al2О3 1-3; ZrO2 4-7; сумма оксидов редкоземельных элементов, U и трансурановых элементов 1-5; остальное до 3.
RU2005125884/06A 2005-08-15 2005-08-15 Силикатная матрица для кондиционирования радиоактивных отходов RU2302048C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005125884/06A RU2302048C2 (ru) 2005-08-15 2005-08-15 Силикатная матрица для кондиционирования радиоактивных отходов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005125884/06A RU2302048C2 (ru) 2005-08-15 2005-08-15 Силикатная матрица для кондиционирования радиоактивных отходов

Publications (2)

Publication Number Publication Date
RU2005125884A RU2005125884A (ru) 2007-02-20
RU2302048C2 true RU2302048C2 (ru) 2007-06-27

Family

ID=37863242

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005125884/06A RU2302048C2 (ru) 2005-08-15 2005-08-15 Силикатная матрица для кондиционирования радиоактивных отходов

Country Status (1)

Country Link
RU (1) RU2302048C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524930C1 (ru) * 2013-03-15 2014-08-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина" Композиция для долговременного хранения трансурановых элементов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПОЛЯКОВ А.С. и др. Опыт эксплуатации керамического плавителя ЭП-500/1Р по остекловыванию жидких высокоактивных отходов. Атомная энергия, т.76, в.3, 1994, с.183-188. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524930C1 (ru) * 2013-03-15 2014-08-10 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина" Композиция для долговременного хранения трансурановых элементов

Also Published As

Publication number Publication date
RU2005125884A (ru) 2007-02-20

Similar Documents

Publication Publication Date Title
Crum et al. Multi‐phase glass‐ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals
Stefanovsky et al. Nuclear waste forms
US4314909A (en) Highly refractory glass-ceramics suitable for incorporating radioactive wastes
US8575415B2 (en) Process and composition for the immobilization of high alkaline radioactive and hazardous wastes in silicate-based glasses
US20150348661A1 (en) Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes
US9922741B2 (en) Method for the pre-calcining treatment of an aqueous nitric solution comprising at least one radionuclide and optionally ruthenium
Ezz-Eldin Leaching and mechanical properties of cabal glasses developed as matrices for immobilization high-level wastes
RU2302048C2 (ru) Силикатная матрица для кондиционирования радиоактивных отходов
Bishay Gamma‐Ray Induced Coloring of Some Phosphate Glasses
Langowski et al. Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing
RU2668605C1 (ru) Алюмофосфатное стекло для иммобилизации радиоактивных отходов
US3149234A (en) High density, soft phosphate glass, method, and gamma radiation shielding window
US5875407A (en) Method for synthesizing pollucite from chabazite and cesium chloride
US3305371A (en) Glass compositions
JP3109795B2 (ja) 中性子遮蔽ガラス
Taylor et al. Liquid immiscibility in complex borosilicate glasses
RU2386182C2 (ru) Силикофосфатное стекло для иммобилизации радиоактивных отходов
JPS5999399A (ja) 放射性核廃棄物処理方法
Harrison et al. Survey of potential glass compositions for the immobilisation of the UK's separated plutonium stocks
Hussein et al. Chemical durability and shielding study of borosilicate glass systems from solid municipal waste ash for radiation shielding applications
RU2701869C1 (ru) Алюмофосфатное стекло для иммобилизации радиоактивных отходов
Guber et al. Preparation and characterization of an improved high level radioactive waste (HAW) borosilicate glass
RU2479499C1 (ru) Стекло для активной части источников ионизирующего излучения на основе цезия-137 и способ его изготовления
JP7032697B2 (ja) 放射線検出用ガラスの製造方法
DE2614185A1 (de) Verwendung von gadoliniumhaltigen glaesern, glaskeramiken und keramiken