RU2295119C2 - Дифференциальный датчик давления с симметричной погрешностью - Google Patents

Дифференциальный датчик давления с симметричной погрешностью Download PDF

Info

Publication number
RU2295119C2
RU2295119C2 RU2005105318/28A RU2005105318A RU2295119C2 RU 2295119 C2 RU2295119 C2 RU 2295119C2 RU 2005105318/28 A RU2005105318/28 A RU 2005105318/28A RU 2005105318 A RU2005105318 A RU 2005105318A RU 2295119 C2 RU2295119 C2 RU 2295119C2
Authority
RU
Russia
Prior art keywords
membrane
volume
chamber
coefficient
thermal expansion
Prior art date
Application number
RU2005105318/28A
Other languages
English (en)
Other versions
RU2005105318A (ru
Inventor
Дитфрид БУРЧИК (DE)
Дитфрид БУРЧИК
Вольфганг ДАНХАУЕР (DE)
Вольфганг ДАНХАУЕР
Original Assignee
Эндресс+Хаузер Гмбх+Ко. Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эндресс+Хаузер Гмбх+Ко. Кг filed Critical Эндресс+Хаузер Гмбх+Ко. Кг
Publication of RU2005105318A publication Critical patent/RU2005105318A/ru
Application granted granted Critical
Publication of RU2295119C2 publication Critical patent/RU2295119C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Конструктивно асимметричный дифференциальный датчик давления содержит измерительный механизм с первой полукамерой, содержащей первый объем и закрытой мембраной с первым показателем жесткости, и со второй полукамерой со вторым объемом закрытой второй разделительной мембраной со вторым показателем жесткости. Первая полукамера отделена от второй полукамеры воспринимающим давление элементом, в частности измерительной мембраной. Первая полукамера заполнена первой рабочей жидкостью с первым коэффициентом теплового расширения, а вторая полукамера заполнена второй рабочей жидкостью со вторым коэффициентом теплового расширения. Для симметрирования зависящей от температуры погрешности давления разделительной мембраны конструкция выполнена такой, чтобы первое произведение от умножения первого показателя жесткости мембраны на первый объем и на первый коэффициент теплового расширения в основном был равен второму произведению от умножения второго показателя жесткости мембраны на второй объем и на второй коэффициент теплового расширения. При этом по меньшей мере один множитель первого произведения конструктивно отличается от соответствующего множителя второго произведения. 6 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к датчику относительного давления или дифференциальному датчику давления, в частности, с гидравлической передачей давления. Такие датчики давления с гидравлической передачей давления содержат, как правило, измерительный механизм с двумя полукамерами, закрытыми разделительной мембраной и заполненными рабочей средой. На разделительные мембраны воздействует соответственно измерительное или эталонное давление, передаваемое через разделительные мембраны в соответствующую полукамеру. Между собой полукамеры разделены чувствительным элементом датчика, причем последний содержит воспринимающий давление элемент, в частности измерительную мембрану, на первую поверхность которой воздействует гидравлическое давление в первой полуячейке, и на ее вторую поверхность - гидравлическое давление во второй полуячейке.
Разделительные мембраны имеют конечную жесткость, за счет которой давление в полуячейках отличается на величину давления dPm от давления на разделительной мембране, при этом величина отклонения давления dPm зависит от прогиба разделительной мембраны.
Учитывая, что измерительный элемент чувствительного элемента датчика обычно является очень жестким, то прогибом разделительной мембраны под действием колебаний наружного давления можно в основном пренебречь. Значительные прогибания вызываются тепловым расширением рабочей среды внутри полукамер измерительного механизма.
Вследствие конструктивных краевых условий и технологических допусков представляется очень затруднительным и практически невозможным создание измерительного механизма с совершенными симметричными полукамерами. Т.е. сохраняются незначительные расхождения между объемами обеих полукамер, и жесткость обеих разделительных мембран не является абсолютно идентичной. Это приводит к тому, что, например, при нагреве рабочей жидкости в обеих полукамерах на измерительный механизм с его обеих воспринимающих давление сторон воздействует разное гидростатическое давление, хотя, например, снаружи на обе разделительные мембраны воздействует идентичное давление. В результате происходит обусловленное температурой смещение нулевой точки измерительного сигнала. Поэтому в основу настоящего изобретения положена задача создания датчика перепада давлений, в котором отсутствуют указанные недостатки.
Поставленная задача решается с помощью дифференциального датчика давления с признаками пункта 1 формулы изобретения. Другие преимущества и аспекты изобретения следуют из зависимых пунктов формулы изобретения, описания и чертежей.
Дифференциальный датчик давления согласно изобретению содержит измерительный механизм с первой полукамерой с первым объемом V1, закрытой мембраной с первым показателем жесткости E1, и второй полукамерой со вторым объемом V2, закрытой второй разделительной мембраной со вторым показателем жесткости Е2, при этом первая полукамера отделена от второй полукамеры воспринимающим давление элементом, в частности измерительной мембраной, первая полукамера заполнена первой рабочей жидкостью с первым коэффициентом теплового расширения α1, вторая полукамера заполнена второй рабочей жидкостью со вторым коэффициентом теплового расширения α2, причем первое произведение от умножения первого показателя жесткости мембраны на первый объема и первый коэффициент теплового расширения в основном равен второму произведению от умножения второго показателя жесткости мембраны на второй объем и второй коэффициент теплового расширения (E1·V1·α12·V2·α2), при этом, по меньшей мере, один множитель первого произведения конструктивно отличается от соответствующего множителя второго произведения.
Абсолютное равенство обоих произведений, соответствующими множителями которых выступают технические параметры, при технической реализации практически никогда не достигается, хотя к нему и следует стремиться.
Выражение «в основном равные» означает, что произведения не должны различаться между собой более чем на 1%, предпочтительно более чем на 0,3% и особо предпочтительно более чем на 0,1%. Равенство произведений до указанных величин расхождения должно обеспечиваться при температуре 20°С, предпочтительно от 0 до 40°С, более предпочтительно от -20 до 60°С и особо предпочтительно от -40 до 80°С.
Согласно предпочтительному варианту выполнения измерительный механизм содержит, по меньшей мере, одну регулируемую насадку, изменяющую объем первой и второй полукамер настолько, что заданные произведения согласно изобретению становятся идентичными. В качестве опции обе полукамеры содержат регулируемую насадку.
Вместо описываемой регулируемой насадки или насадок, в качестве которых могут применяться, например, плунжеры, винты или поршни, способные постоянно изменять объем полукамер, возможны также решения, при которых несколько насадок располагают в соответствующем гнезде, сообщенном с одной из полукамер. Этими насадками могут служить, например, цилиндры или диски, которые в достаточном количестве вставляются в соответствующее сверление до тех пор, пока объем соответствующей полукамеры не будет соответствовать требуемой величине. Для предохранения насадок может использоваться, например, нажимная пружина, которая сама служит насадкой и аксиально зажимается между цилиндрами или дисками и запором, герметично отсекающим соответствующую полукамеру.
В нормальном случае в обеих полукамерах используется одинаковая гидравлическая рабочая среда, за счет чего первый коэффициент теплового расширения α1 равен второму коэффициенту теплового расширения α2. Как правило, возможно также выбирать коэффициент теплового расширения, по меньшей мере одной рабочей жидкости таким образом, чтобы достигалась требуемая идентичность произведений согласно изобретению. В смеси, например, силиконового и минерального масел коэффициент теплового расширения является функцией соответствующих долей этих масел. Таким образом требуемый коэффициент теплового расширения может быть задан соответствующим смешением масел. Также возможно задавать коэффициент теплового расширения смешением силиконовых масел с разным молекулярным весом. Такая альтернатива показана особенно в том случае, когда конструктивная свобода ограничена в отношении других параметров, т.е. когда объем можно варьировать только в жестких пределах, и когда объемы первой и второй полукамер отличаются между собой настолько, что это отличие не удается оптимально компенсировать подгонкой жесткости мембраны.
В предпочтительном варианте первый показатель жесткости мембраны отличается от второго показателя жесткости. Само собой разумеется, что и жесткость разделительных мембран является параметром, задаваемым при имеющемся диаметре и материале мембраны как через толщину мембраны, так и через величину ее волнистости.
Поэтому для осуществления настоящего изобретения в конструктивных краевых условиях, которые принудительно делают необходимыми разные объемы в первой и второй полукамерах, конструктивное уравнивание может достигаться за счет регулировки жесткости мембран. В предпочтительном варианте выполнения произведение от умножения первого показателя жесткости мембраны на первый объем равно произведению от умножения второго показателя жесткости мембраны на второй объем. Если в данном случае не удается достигнуть равенства названных произведений, то может проводиться дополнительное уравнивание выбором рабочих сред с соответствующим коэффициентом теплового расширения. Если описываемая регулировка производится конструктивным способом и обычно относится ко всей технологической серии датчиков давления, то в заключение может выполняться дополнительная точная регулировка объемов полукамер описанным способом с помощью насадок для компенсации индивидуальных тепловых колебаний нулевой точки на основе технологических допусков.
Ниже изобретение описывается с помощью вариантов выполнения, показанных на чертежах.
При этом изображено на:
фиг.1 - дифференциальный датчик давления с гидростатически закрепляемой измерительной ячейкой, поперечный разрез;
фиг.2 - датчик относительного давления асимметричной конструкции;
фиг.3а - детальный вид первого варианта выполнения устройства для контроля объема в полукамере;
фиг.3b - детальный вид второго варианта выполнения устройства для контроля объема в полукамере.
Изображенный на фиг.1 дифференциальный датчик давления содержит измерительный механизм 1 с цилиндрической основной частью 6, на обеих торцевых сторонах которой выполнена мембранная опора. Над мембранной опорой, с левой стороны фигуры, расположена разделительная мембрана 3, закрепленная своим краем на торцевой поверхности основной части 6. Также над мембранной опорой закреплена на противоположной торцевой поверхности основной части 6 разделительная мембрана 2. От торцевых поверхностей напорный канал 4, 5 проходит аксиально внутрь основной части, при этом в данном варианте выполнения оба напорных канала врезаны в участок секционной камеры, занимающий почти все поперечное сечение основной части 6. Между обоими участками 10, 11 секционной камеры расположена перегрузочная мембрана 8, выполненная значительно более жесткой по сравнению с обеими разделительными мембранами 2, 3. От обоих участков 10, 11 секционной камеры проходит канал 12, 13 к стороне высокого давления или стороне низкого давления измерительной мембраны 7 чувствительного элемента датчика, расположенного в корпусе 9, смонтированном на боковой поверхности основной части. Таким образом измерительная мембрана разделяет полукамеры между собой. Чувствительный элемент датчика располагается в корпусе 9 изостатически, т.е. на него воздействует давление рабочих жидкостей не только на участке измерительной мембраны, но также и на участке боковой поверхности. При этом давление на стороне высокого давления воздействует на наружную поверхность измерительной мембраны 7 и на наружные поверхности чувствительного элемента датчика через канал 12. Давление на стороне низкого давления воздействует по каналу 13 на внутреннюю поверхность измерительной мембраны 7 и на внутренние поверхности чувствительного элемента датчика. Совершенно очевидно, что при изостатическом закреплении описанного чувствительного элемента датчика не сразу происходит выравнивание объемов на сторонах высокого и низкого давлений. За счет соответствующего расположения каналов, т.е. за счет выбора длины каналов и их диаметра, могут быть снова достигнуты одинаковые объемы. Особенно для дифференциального датчика давления требуется применять в идеальном случае одинаковые разделительные мембраны на сторонах высокого и низкого давлений. Также желательно использовать на сторонах высокого и низкого давлений одинаковые рабочие жидкости, так как наряду с идентичными коэффициентами теплового расширения они обладают и идентичной вязкостью. Т.е. по возможности следует предпочесть решение, при котором объемы в секционных камерах выравниваются за счет конструкции. Для этого показанный на фиг.1 дифференциальный датчик давления может дополнительно оснащаться регулируемой насадкой при необходимости оптимизации объемов в первой и второй секционных камерах. Подробности относительно точной регулировки объемов поясняются ниже на примере фигур 3а и 3b. Если уравнивание объемов на основе конструктивных краевых условий не представляется возможным, то при существенно одинаковой жесткости мембран необходимо применять рабочие среды с разными коэффициентами теплового расширения.
На фиг.2 изображен датчик давления согласно изобретению, в частности, датчик относительного давления. Измерительный механизм 21 содержит основную часть 26 с существенно осесимметричной структурой, причем на первой торцевой стороне основной части 26 выполнено мембранное основание, над которым располагается разделительная мембрана 22, закрепленная своим краем на основной части 26. От мембранного основания проходит канал 24 для измерения давления в камеру 30, внутри которой расположен чувствительный элемент 27 датчика. В основной части выполнен также наполнительный канал 31, сообщающийся с напорной камерой 30 и герметично закрываемый посредством запорного элемента 28. В изображенном варианте выполнения этим запорным элементом служит стальной шарик, размещаемый на заданном уровне в наполнительном канале 31, однако для этого могут также применяться запорные элементы иных форм, о которых речь пойдет ниже в связи с фигурами 3а и 3b. Чувствительный элемент датчика своей базовой поверхностью герметично установлен в напорной камере 30 и изостатически закреплен. Первая полукамера измерительного механизма содержит объем, заключенный между разделительной мембраной 22 и мембранным основанием, канал 24 для измерения давления, объем камеры 30 датчика, расположенный вокруг чувствительного элемента 27 датчика, и наполнительный канал 31, простирающийся до запорного элемента 28. В связи с тем, что данный датчик относительного давления должен обладать температурной компенсацией, то атмосферное давление воздействует не прямо на обратную сторону измерительной мембраны чувствительного элемента 27 датчика, а происходит гидравлическая передача атмосферного давления, воздействующего через трубку 33 на расположенную на стороне атмосферы разделительную мембрану 23, закрепленную выше мембранного основания на второй торцевой стороне основной части 26. Ниже расположенной на стороне атмосферы разделительной мембраны 23 проходит от мембранного основания канал 25 эталонного давления до обратной стороны мембраны чувствительного элемента 27 датчика. От канала 25 эталонного давления располагается в радиальном направлении до боковой поверхности основной части 26 наполнительный канал 32, причем канал перекрыт запорным элементом 29, который для контроля за объемом может позиционироваться на любом уровне. Вместо показанного в виде шарика запорного элемента 29 возможно применение и других запорных элементов, о которых речь пойдет ниже в связи с фигурами 3а и 3b.
Объем, заключенный между расположенной со стороны атмосферы разделительной мембраной 23 и обратной стороной измерительной мембраны чувствительного элемента 27 датчика, образует вторую полукамеру. Поскольку при этом варианте выполнения конструктивные краевые условия усложняют полное уравнивание произведений от умножения показателя жесткости мембраны на соответствующий объем, то при необходимости в таком случае следует выбирать соответствующие силиконовые масла с разными коэффициентами теплового расширения для компенсации расхождений.
Пригодными являются, например, силиконовые масла из ряда АК, выпускаемые "Wacker Chemie". Приведенные в нижеследующей таблице силиконовые масла (диметилполисилоксаны) имеют одинаковую основную структуру и различаются между собой только длиной цепи.
Обозначение Вязкость Коэффициент теплового расширения
АК 10 10 мм2 10.0 см3/(см3 °C)×104
АК 20 20 мм2 9,7 см3/(см3 °C)×104
АК 35 35 мм2 9,5 см3/(см3 °С)×104
АК 100 100 мм2 9,4 см3/(см3 °C)×104
АК 500 500 мм2 9,25 см3/(см3 °C)×104
В идеальном случае конструкция должна быть выполнена такой, чтобы соотношение между произведениями от умножения показателя жесткости мембраны на соответствующий объем соответствовало соотношению между коэффициентами теплового расширения масел обоих сортов. Здесь необходимо иметь в виду, что вязкость силиконовых масел с низким коэффициентом теплового расширения ограничивает свободу выбора. Теоретически для точного регулирования должны смешиваться силиконовые масла с разными коэффициентами теплового расширения для получения средней величины коэффициента теплового расширения. Однако в настоящее время в технологическом отношении предпочтение отдается больше точной регулировке объемов с помощью настраиваемых насадок или запорных элементов, чем адаптацией коэффициента теплового расширения рабочей жидкости смешением.
С помощью фигур 3а и 3b поясняются два устройства точной регулировки объемов полукамер. На фиг.3а показан детальный разрез по основной части 36 измерительного механизма на участке его боковой поверхности. От боковой поверхности проходит наполнительный канал 42 радиально внутрь и входит в канал 43, являющийся составной частью одной из обеих полукамер. Непосредственно перед вхождением в канал 43 наполнительный канал 42 имеет суженное поперечное сечение, благодаря которому образуется осевая упорная поверхность 41, на которую могут устанавливаться элементы 39, 40 насадки. Элементы 39, 40 насадки имеют заданный объем, который может регулироваться, например, при постоянной высоте и постоянном наружном диаметре путем изменения диаметра центрального сверления с помощью насадки. Выбором соответствующих насадок могут компенсироваться даже минимальные расхождения между произведениями от умножения указанных величин. В своей позиции насадки удерживаются нажимной пружиной 38, аксиально расположенной между насадками и винтовым запором 37.
Само собой разумеется, что пружина 38 одновременно служит и насадкой. Преимуществом описанной компоновки является то, что вытесняемая насадками рабочая жидкость может вытекать из отверстия, в котором располагаются насадки. При таком решении не требуется более дополнительного отверстия в корпусе, так как уже имеется отверстие для заполнения секционных камер. Однако такое решение является дорогостоящим настолько, насколько необходимо иметь в наличии в зависимости от требуемой точности регулировки большое количество насадок или обеспечить индивидуальное изготовление насадки с заданным объемом.
На фиг.3b показан вариант устройства регулировки объема секционной камеры, при котором не требуется набор разных насадок и совершенно отпадает необходимость в их индивидуальном изготовлении. В этом варианте основная часть 46 содержит сверление 51 с мелкой резьбой, сообщенное с каналом 52, являющимся частью полукамеры. С помощью мелкой резьбы завинчивается поршень 50, при этом резьба на поршне нарезана таким образом и входит в резьбу сверления 51 настолько плотно, что по ходам резьбы поршня рабочая жидкость практически не вытекает. Альтернативно боковая поверхность поршня может иметь покрытие из уплотнительной массы, которая при необходимости может быть термически отверждена. От канала 52 проходит наполнительный канал 55 до боковой поверхности основной части 46, при этом наполнительный канал 55 имеет на первом участке диаметр меньший, чем на втором участке, смежном с первым участком и простирающимся до боковой поверхности основной части 46. Поэтому между вторым и первым участками выполнена ступень, на которую аксиально опирается стальной шарик 53, диаметр которого меньше второго участка и больше первого участка. С помощью просверленного винта 54, взаимодействующего с резьбой стенки второго участка, шарик герметично прижимается к осевой упорной поверхности. Для точной регулировки объема сначала ослабляют просверленный винт 54, затем для корректировки объема поршень 50 завинчивают в сверление 51, при этом вытесняемая рабочая жидкость может вытекать по выходному каналу 55 около шарика 53 через просверленный винт 54. После установления необходимого объема винт 54 снова прочно затягивают. Для фиксации поршня 50 может применяться в случае необходимости заливка 48. Кроме того, сверление 51 может закрываться на боковой поверхности основной части 46 перекрывающим винтом 47 для предупреждения случайного изменения объема.

Claims (7)

1. Дифференциальный датчик давления или датчик относительного давления, содержащий
измерительный механизм (1) с первой полукамерой (4), содержащей первый объем и закрытой первой разделительной мембраной (2) с первым показателем жесткости, и второй полукамерой (5), содержащей второй объем и закрытой второй разделительной мембраной (3) со вторым показателем жесткости, при этом первая полукамера (4) отделена от второй полукамеры (5) измерительной мембраной (7), первая полукамера (4) заполнена рабочей жидкостью с первым коэффициентом теплового расширения, а вторая полукамера (5) заполнена второй рабочей жидкостью со вторым коэффициентом теплового расширения, отличающийся тем, что первое произведение от умножения первого показателя жесткости мембраны на первый объем и на первый коэффициент теплового расширения в основном равен второму произведению от умножения второго показателя жесткости мембраны на второй объем и на второй коэффициент теплового расширения, причем по меньшей мере один множитель первого произведения конструктивно отличается от соответствующего множителя второго произведения.
2. Датчик давления по п.1, причем первый показатель жесткости мембраны отличается от второго показателя жесткости.
3. Датчик давления по п.1, причем первый объем отличается от второго объема.
4. Датчик давления по п.1, причем первый коэффициент теплового расширения отличается от второго коэффициента теплового расширения.
5. Датчик давления по п.2 или 3, причем первый коэффициент теплового расширения равен второму коэффициенту теплового расширения.
6. Датчик давления по любому из пп.1-4, содержащий дополнительно по меньшей мере одно устройство для точной регулировки объема в одной из полукамер.
7. Датчик давления по п.5, причем для обеих полукамер предусмотрено устройство для точной регулировки объема в полукамере.
RU2005105318/28A 2002-07-30 2003-07-18 Дифференциальный датчик давления с симметричной погрешностью RU2295119C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10234754A DE10234754A1 (de) 2002-07-30 2002-07-30 Differenzdrucksensor mit symmetrischem Trennkörperfehler
DE10234754.9 2002-07-30

Publications (2)

Publication Number Publication Date
RU2005105318A RU2005105318A (ru) 2006-01-20
RU2295119C2 true RU2295119C2 (ru) 2007-03-10

Family

ID=30469211

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005105318/28A RU2295119C2 (ru) 2002-07-30 2003-07-18 Дифференциальный датчик давления с симметричной погрешностью

Country Status (8)

Country Link
US (1) US7278318B2 (ru)
EP (1) EP1525444B1 (ru)
CN (1) CN100343643C (ru)
AT (1) ATE313065T1 (ru)
AU (1) AU2003250990A1 (ru)
DE (2) DE10234754A1 (ru)
RU (1) RU2295119C2 (ru)
WO (1) WO2004013594A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645442C1 (ru) * 2016-12-27 2018-02-21 Акционерное общество "Научно-исследовательский институт теплоэнергетического приборостроения" АО "НИИТеплоприбор" Датчик дифференциального давления

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20311320U1 (de) * 2003-07-22 2003-10-09 Endress & Hauser Gmbh & Co Kg Dynamischer Druckmittler
DE102004028381A1 (de) * 2004-06-14 2005-12-29 Endress + Hauser Gmbh + Co. Kg Differenzdruckaufnehmer
ATE434172T1 (de) * 2005-03-05 2009-07-15 Grundfos Management As Differenzdrucksensor-anordnung und zugehöriger differenzdrucksensor
DE102005018685B4 (de) * 2005-04-21 2009-04-09 Endress + Hauser Gmbh + Co. Kg Hydraulischer Druckmittler
DE102005062147B4 (de) * 2005-12-22 2017-02-09 Endress + Hauser Gmbh + Co. Kg Vorrichtung und Verfahren zur Befüllung eines Druckmessaufnehmers mit einer Druck übertragenden Flüssigkeit
DE102006057828A1 (de) * 2006-12-06 2008-06-12 Endress + Hauser Gmbh + Co. Kg Differenzdruckmeßaufnehmer
US7454975B2 (en) * 2007-04-06 2008-11-25 Rosemount Inc. Expansion chamber for use with a pressure transmitter
US8142362B2 (en) * 2008-04-24 2012-03-27 Pacesetter, Inc. Enhanced pressure sensing system and method
US7568394B1 (en) * 2008-04-24 2009-08-04 Cardiometrix, Inc. Enhanced diaphragm for pressure sensing system and method
JP4986165B2 (ja) * 2008-04-28 2012-07-25 国立大学法人 東京大学 変位変換装置
CN102175384B (zh) * 2011-01-20 2012-10-03 青岛石大石仪科技有限责任公司 隔离限压保护压力采集装置
DE102011017265A1 (de) * 2011-04-15 2012-10-18 Armaturenbau Gmbh Referenzdruckmanometer
CN102506681B (zh) * 2011-11-25 2013-02-27 西安交通大学 检测管道内运动清蜡小球的压电式压差传感器
DE102012113033A1 (de) 2012-12-21 2014-06-26 Endress + Hauser Gmbh + Co. Kg Mechanische Stabilisierung und elektrische sowie hydraulische Adaptierung eines Silizium Chips durch Keramiken
US9683675B2 (en) * 2014-11-24 2017-06-20 General Electric Company Pressure modulator
CN105157907A (zh) * 2015-07-13 2015-12-16 南京盛业达电子有限公司 一种具有过载保护功能的差压传感器
DE102016124025A1 (de) * 2016-12-12 2018-06-14 Endress+Hauser SE+Co. KG Drucksensor zur Ermittlung eines Differenzdruckes
CN107389232B (zh) * 2017-06-15 2020-11-24 华南理工大学 一种生物基非对称柔性力敏传感材料及其制备方法
CN209326840U (zh) 2018-12-27 2019-08-30 热敏碟公司 压力传感器及压力变送器
JP7401249B2 (ja) * 2019-10-09 2023-12-19 アズビル株式会社 センサ素子
TWI753713B (zh) * 2020-12-21 2022-01-21 財團法人工業技術研究院 具校正功能之壓力感測器及其校正方法
DE102021133183A1 (de) 2021-12-15 2023-06-15 Endress+Hauser SE+Co. KG Relativdruckmessaufnehmer zur Bestimmung eines ersten Drucks eines Mediums

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU506224A1 (ru) * 1973-06-18 1982-09-30 Государственный научно-исследовательский институт теплоэнергетического приборостроения Измерительный преобразователь разности давлений
US4086815A (en) * 1975-07-24 1978-05-02 Fuji Electric Co., Ltd. Device for use in sensing pressures
JPS5950328A (ja) * 1982-09-16 1984-03-23 Toshiba Corp 差圧伝送器
JPS5956139A (ja) * 1982-09-25 1984-03-31 Yamatake Honeywell Co Ltd 差圧発信器
US4612812A (en) * 1985-08-15 1986-09-23 Rosemount Inc. Stress reducing stop for unstretched pressure sensing diaphragm
JPH043244Y2 (ru) * 1985-11-29 1992-02-03
DE3621795A1 (de) * 1986-06-28 1988-01-07 Eckardt Ag Differenzdruckgeber
JPH01141328A (ja) * 1987-11-27 1989-06-02 Hitachi Ltd 差圧伝送器
JPH0652213B2 (ja) * 1988-09-02 1994-07-06 株式会社日立製作所 差圧伝送路
DE19608310C1 (de) * 1996-02-22 1997-07-17 Hartmann & Braun Ag Differenzdruckmeßumformereinheit mit einem Überlastschutzsystem
DE59914223D1 (de) * 1999-07-01 2007-04-12 Endress & Hauser Gmbh & Co Kg Relativdrucksensor
DE10031120A1 (de) * 2000-06-30 2002-01-17 Grieshaber Vega Kg Druckmittler
US6807865B2 (en) * 2002-02-04 2004-10-26 Dwyer Instruments, Inc. Pressure sensor with a radially tensioned metal diaphragm
US7171851B2 (en) * 2004-12-28 2007-02-06 Schlumberger Technology Corporation Temperature compensated strain measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2645442C1 (ru) * 2016-12-27 2018-02-21 Акционерное общество "Научно-исследовательский институт теплоэнергетического приборостроения" АО "НИИТеплоприбор" Датчик дифференциального давления

Also Published As

Publication number Publication date
WO2004013594A1 (de) 2004-02-12
EP1525444A1 (de) 2005-04-27
CN1672025A (zh) 2005-09-21
ATE313065T1 (de) 2005-12-15
CN100343643C (zh) 2007-10-17
AU2003250990A1 (en) 2004-02-23
DE50301951D1 (de) 2006-01-19
EP1525444B1 (de) 2005-12-14
DE10234754A1 (de) 2004-02-19
US7278318B2 (en) 2007-10-09
US20060162445A1 (en) 2006-07-27
RU2005105318A (ru) 2006-01-20

Similar Documents

Publication Publication Date Title
RU2295119C2 (ru) Дифференциальный датчик давления с симметричной погрешностью
US4949581A (en) Extended measurement capability transmitter having shared overpressure protection means
US5022270A (en) Extended measurement capability transmitter having shared overpressure protection means
US11526181B2 (en) Mass flow controller with absolute and differential pressure transducer
US9816889B2 (en) Differential pressure sensing device with overload protection
CA1225255A (en) Pressure transducer
EP0105017B1 (en) Flow control device
EP0183330A2 (en) Liquid chromatograph
US7062974B2 (en) Pressure transmitter
JP2009205701A (ja) マイクロ流体回路におけるより高い圧力を制御するプログラム可能追跡圧力レギュレータ
EP3479887A1 (en) Hollow fiber degassing module, and method of degassing liquid using said hollow fiber degassing module
JPH0863235A (ja) 差圧式質量流量コントロール装置
CN1938572A (zh) 具有动态超载保护的压差传感器
US9759625B2 (en) Differential pressure transducer assembly with overload protection
CA2901784C (en) Bearing
US5055857A (en) Device for receiving a combination of two variable volume chambers and a plurality of valves for a supply circuit of an ink jet printing head
JP3844418B2 (ja) 容積式送液装置
US6701791B2 (en) Modular piston gauge method and apparatus
US7461557B1 (en) Dynamic pressure transmitter
US3583423A (en) Dosing device for gaseous or liquid substances
US11621471B2 (en) Resonator with a dielectric element including first and second chambers therein connected by a channel, wherein a liquid crystal having an adjustable level fills the first and second chambers and the channel
CN215987043U (zh) 一种并行流体压力控制器
JPS6045364B2 (ja) 液封入式差圧伝送器
KR102088257B1 (ko) 유량 측정 장치
JP2001502056A (ja) 差圧を電気信号へと変換するためのセル

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160719