RU2293359C2 - Способ селекции движущейся цели - Google Patents

Способ селекции движущейся цели Download PDF

Info

Publication number
RU2293359C2
RU2293359C2 RU2004130517/09A RU2004130517A RU2293359C2 RU 2293359 C2 RU2293359 C2 RU 2293359C2 RU 2004130517/09 A RU2004130517/09 A RU 2004130517/09A RU 2004130517 A RU2004130517 A RU 2004130517A RU 2293359 C2 RU2293359 C2 RU 2293359C2
Authority
RU
Russia
Prior art keywords
reflected
signal
signals
frequency
emitted
Prior art date
Application number
RU2004130517/09A
Other languages
English (en)
Other versions
RU2004130517A (ru
Inventor
Николай Александрович Макаров (RU)
Николай Александрович Макаров
Original Assignee
Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" filed Critical Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор"
Priority to RU2004130517/09A priority Critical patent/RU2293359C2/ru
Publication of RU2004130517A publication Critical patent/RU2004130517A/ru
Application granted granted Critical
Publication of RU2293359C2 publication Critical patent/RU2293359C2/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к гидроакустике. Технический результат заключается в повышении разрешающей способности при измерении радиальной скорости цели. Для этого излучают частотно-модулированный (ЧМ) сигнал, принимают отраженный от цели ЧМ сигнал, вычисляют комплексные частотные спектры излученного и отраженного сигналов, из полученных комплексных спектров определяют фазовые спектры и непрерывные функции фазового угла, нормируют непрерывные функции фазового угла на максимум, по нормированным непрерывным функциям фазового угла определяют частоты, соответствующие максимуму этих функций, по разности полученных частот определяют доплеровское смещение спектра отраженного ЧМ сигнала, которое и позволяет определить радиальную скорость цели. 2 з.п. ф-лы, 8 ил.

Description

Изобретение относится к гидроакустике.
Известен способ селекции движущихся целей [1], основанный на излучении тонального сигнала, приеме отраженного эхосигнала, определении модуля спектра отраженного сигнала, определении доплеровского смещения частоты отраженного сигнала относительно излученного и селекции движущихся целей по их радиальной скорости.
При увеличении длительности излученного тонального сигнала данный способ позволяет повысить разрешение по доплеровскому сдвигу частоты и соответственно по радиальной скорости целей. Однако при увеличении длительности излученного тонального сигнала уменьшается разрешение по дистанции.
Известно, что использование в излучении сложных сигналов с гиперболическим законом модуляции частоты, инвариантных к доплеровскому сдвигу частоты при согласованной (корреляционной) обработке излученного и отраженного сигналов, позволяет получить высокое разрешение по дистанции до цели. Однако искажение модуля спектра отраженного сигнала при распространении в среде не позволяет достоверно определять доплеровский сдвиг спектра отраженного эхосигнала и оценивать радиальную скорость целей в практических случаях.
Известен способ селекции движущихся целей [2], основанный на облучении исследуемого объема пространства (исследуемой акватории) сигналом с гиперболической частотной модуляцией (ГЧМ), приеме отраженного эхосигнала цели, измерении разности фаз излученного и отраженного ГЧМ сигналов, вычислении радиальной скорости целей по известной скорости звука в среде и разности фаз и принятии решения по результатам сравнения радиальных скоростей целей.
Данный способ позволяет повысить разрешающую способность по радиальной скорости движущихся целей при излучении ГЧМ сигналов. Однако, поскольку этот способ основан на сравнении радиальных скоростей целей, в исследуемом объеме пространства (исследуемой акватории) должна быть хотя бы одна цель с априори известной нулевой радиальной скоростью. Либо должно быть известно точное значение скорости звука по пути распространения излученного и отраженного сигналов, что практически нереализуемо.
Техническим результатом изобретения является расширение области применения способа путем учета различий фазовой структуры излученного и отраженного ЧМ сигналов.
Для обеспечения указанного технического результата в способ селекции движущейся цели, основанный на облучении исследуемого объема пространства (исследуемой акватории) частотно-модулированными (ЧМ) сигналом излучения и приеме отраженного ЧМ сигнала, введены новые признаки, а именно: вычисляют комплексные частотные спектры излученного и отраженного ЧМ сигналов размерности N/k, где N=Tm/Td, Tm - длительность модуляции частоты, Тd - период дискретизации сигналов, k=2n, n=0,1,2..., определяют фазовые спектры и непрерывные фазовые функции излученного и отраженного ЧМ сигналов в доплеровской полосе частот, нормируют непрерывные фазовые функции излученного и отраженного ЧМ сигналов на свой экстремум, в полученных нормированных непрерывных фазовых функциях излученного и отраженного ЧМ сигналов определяют их максимальные значения и соответствующие им значения частот, по разности частот, соответствующих максимальным значениям нормированных непрерывных фазовых функций излученного и отраженного ЧМ сигналов, определяют доплеровское смещение спектра отраженного ЧМ сигнала и производят селекцию движущихся целей по их радиальной скорости, определяемой доплеровским смещением спектра отраженного ЧМ сигнала.
В случае ЧМ сигнала излучения, имеющего возрастающий закон модуляции частоты, непрерывную фазовую функцию излученного и отраженного ЧМ сигналов нормируют на ее минимальное значение.
В случае ЧМ сигнала излучения, имеющего спадающий закон модуляции частоты, непрерывную фазовую функцию излученного и отраженного ЧМ сигналов нормируют на ее максимальное значение.
Под фазовой структурой частотно-модулированного (ЧМ) сигнала понимается следующее.
Известно, что комплексный спектр сложного сигнала может быть представлен в виде
Figure 00000002
где A(f) - амплитудный спектр,
Figure 00000003
Ф(f) - фазовый спектр сигнала, определяемый как
Figure 00000004
Значения Ф(f) определены в пределах ±π, т.е. фазовый спектр ЧМ сигнала имеет разрывы (скачки) при переходе фазы от -π к +π и наоборот.
Известный алгоритм вычисления непрерывной функции фазового угла [3] устраняет скачки фазового спектра. Расчет непрерывной функции фазового угла (НФФУ) для ГЧМ сигналов с возрастающей и спадающей модуляцией частоты имеет вид, представленный на фиг.1. Как видно из графиков (см.фиг.1), для ГЧМ сигналов с возрастающей модуляцией частоты НФФУ имеет минимум в области отрицательных значений, а для ГЧМ сигналов со спадающей модуляцией частоты - НФФУ имеет максимум в области положительных значений. При этом частоты, соответствующие этим экстремальным значениям, совпадают, если законы изменения частоты дуальные.
Таким образом, под фазовой структурой спектра сложного сигнала подразумевается характер зависимости от частоты НФФУ спектра или его непрерывная фазовая функция (НФФ). Наличие выраженного экстремума НФФУ ЧМ сигнала (изменение знака производной от НФФ) и зависимость частоты этого экстремума от доплеровского смещения спектра отраженного ЧМ сигнала позволяют однозначно судить о радиальной скорости цели даже в условиях существенного искажения спектра отраженного ЧМ сигнала помехами.
Сущность изобретения поясняется фиг.1-8, где на фиг.1 представлены графики НФФ ГЧМ сигналов с возрастающей и спадающей модуляцией частоты, на фиг.2 представлено устройство, реализующее предлагаемый способ, на фиг.3 представлены модули спектров и графики нормированных непрерывных фазовых функций (ННФФ) ГЧМ и ЛЧМ сигналов, на фиг.4 представлены временной процесс, спектр мощности, фазовый спектр и НФФУ ГЧМ сигнала с нулевым доплеровским сдвигом, на фиг.5 - то же для ГЧМ сигнала с доплеровским сдвигом спектра на 1%, на фиг.6 - временной процесс, модуль спектра и ННФФ экспериментально излученного ГЧМ сигнала, на фиг.7 - то же для ГЧМ сигнала, отраженного от цели с радиальной скоростью +2 узла, на фиг.8 - то же для ГЧМ сигнала, отраженного от цели с радиальной скоростью (-2) узла.
Устройство, реализующее способ (фиг.2), содержит генератор 1 ЧМ сигнала, излучатель 2, приемник 3, блок 4 обработки излученного сигнала (опорный канал), блок 5 обработки отраженного сигнала (приемный канал), устройство 6 индикации.
Каждый из блоков 4 и 5 содержит аналого-цифровой преобразователь 7, первое буферное запоминающее устройство 8, блок 9 вычисления преобразования Фурье, второе буферное запоминающее устройство 10, блок 11 вычисления фазового спектра, блок 12 вычисления непрерывной фазовой функции, блок 13 определения экстремума, делитель 14.
Предложенный способ имеет следующую последовательность операции.
Генератор 1 формирует ЧМ сигнал, который поступает на излучатель 2 и одновременно в блок 4 обработки излученного сигнала.
Излучатель 2 излучает ЧМ сигнал в исследуемый объем пространства.
Приемник 3 принимает отраженный сигнал от цели, находящейся в исследуемом объеме пространства. Принятый сигнал поступает через приемник 3 в блок 5 обработки отраженного сигнала. Излучатель 2 и приемник 3 могут быть выполнены как в виде одиночного пьезокерамического преобразователя, так и в виде многоэлементной гидроакустической антенны.
Структура блоков 4 и 5 одинаковая.
В первом буферном запоминающем устройстве 8 производят накопление N/К отсчетов сигнала, поступающего в блок 5(4) через АЦП 7, при этом
Figure 00000005
Тм - длительность модуляции частоты или длительность излученного сигнала, если они совпадают,
Тd - период дискретизации сигнала в АЦП.
Если выбрать n=0, то накапливаются N отсчетов сигнала, если n=1, то запоминается каждый 2-ой отсчет, если n=2, то запоминается каждый 4-й отсчет и т.д. Таким образом, прореживание временных отсчетов позволяет в необходимых случаях уменьшить размерность вычисления спектра.
Далее в блоке 9 производят вычисление комплексного спектра сигнала, например, с помощью преобразования Фурье размерности N/К. Из полученного спектра выбираются корректные отсчеты (от 0 до N/2K), в которых определяют доплеровскую полосу частот как разность между минимальной нижней частотой и максимальной верхней частотой спектра отраженного ЧМ сигнала, обусловленных максимально возможной радиальной скоростью предполагаемой цели и собственной скоростью излучателя (с учетом направлений векторов скоростей).
Отсчеты комплексного спектра S(f) в доплеровской полосе частот ΔfD из блока 9 передаются и запоминаются во втором буферном запоминающем устройстве 10, а затем поступают в блок 11 определения фазового спектра Ф(k) по формуле (3).
Полученный фазовый спектр поступает в блок 12 вычисления непрерывной фазовой функции [3]:
F(k)=UNWRAP(Ф(k)),
где k - номер частотной составляющей фазового спектра Ф(k) в доплеровской полосе частот.
Алгоритм вычисления функции UNWRAP(.) является встроенной процедурой - функцией библиотеки программ MATLAB и приведен в Приложении.
Далее в блоке 13 производят поиск экстремума непрерывной фазовой функции, причем, если излученный ЧМ сигнал имеет возрастающую модуляцию частоты, то определяют минимальное значение непрерывной фазовой функции F(k), а если спадающую модуляцию, то определяют максимальное значение F(k).
Далее в делителе 14 производят деление массива непрерывной фазовой функции на ее экстремум и на выходе делителя 14 получают нормированную (на экстремум) фазовую функцию сигнала, которая поступает на устройство 6 индикации.
В устройстве 6 индикации при одновременном отображении нормированных фазовых функции излученного и отраженного сигналов по максимальным значениям функции определяют значения соответствующих им частот и по разности частот определяют доплеровское смещение спектра отраженного сигнала ДР и наличие радиальной скорости цели, по которой производится селекция движущейся цели в исследуемом объеме пространства.
Таким образом, достигнутым техническим результатом изобретения является расширение области применения способа путем учета различий фазовой структуры излученного и отраженного ЧМ сигналов, так как в предлагаемом способе не требуется знание скорости звука в среде и наличие каких-либо целей с априори нулевой радиальной скоростью.
Дополнительным преимуществом предлагаемого способа является возможность учета собственной скорости излучателя. Например, путем смещения доплеровской полосы излучаемого сигнала на величину
Figure 00000006
где int[.] - операция округления до целого,
Кmax - номер частотной составляющей в спектре излученного сигнала, соответствующий максимуму нормированной непрерывной фазовой функции,
θ - угол между направлением вектора скорости излучателя и направлением на исследуемый объем пространства относительно излучателя,
Vи - скорость излучателя,
с - среднее значение скорости звука в среде.
Необходимо отметить, что предлагаемый способ реализуется независимо от методов облучения исследуемого объема пространства. То есть может быть выполнено ненаправленное (или секторное) излучение и прием на направленную антенну в некотором телесном угле, в котором осуществляется селекция по времени (по дистанции). Либо может быть выполнено направленное излучение в узком телесном угле и прием на ненаправленный приемник с последующей селекцией во времени. Также может быть выполнено направленное излучение и секторный прием или наоборот.
Предлагаемый способ может быть реализован как для ГЧМ сигналов, так и для сигналов с линейной частотной модуляцией (ЛЧМ). На фиг.3 приведены модули спектров и нормированные непрерывные фазовые функции ГЧМ и ЛЧМ сигналов. Как видно из фиг.3, при одинаковых полосах спектра нормированные фазовые функции имеют максимум, но на разных частотах, т.е. фазовые структуры ГЧМ и ЛЧМ сигналов различны.
Работоспособность предлагаемого способа подтверждается моделированием и практическими измерениями в реальных условиях.
На фиг.4 и 5 показаны результаты моделирования ГЧМ сигнала с доплеровским сдвигом частоты на +1%. По результатам моделирования сдвиг непрерывной фазовой функции составил +0,92%.
На фиг.6 приведены: временной процесс, модуль спектра и нормированная фазовая функция излученного сигнала в реальных условиях.
На фиг.7 приведены: временной процесс, модуль спектра и нормированная фазовая функция отраженного сигнала от приближающейся цели с радиальной скоростью 2 узла. Сравнения фиг.6 и 7 показывают, что спектр отраженного сигнала искажается, и оценка доплеровского смещения по спектру не состоятельна. В то же время смещение частотных составляющих максимальных значений непрерывных фазовых функций излученного и отраженного сигналов равно 2(12-10), что составляет +2,2 узла.
На фиг.8 приведены аналогичные характеристики отраженного сигнала для цели, удаляющейся с радиальной скоростью -2 узла. Как следует из сравнения фиг.6 и 8 смещение частотных составляющих равно -2(8-10), т.е. -2,2 узла.
Таким образом, в данном случае ошибка оценки радиальной скорости цели составила 10%, что обусловлено дискретностью вычисления спектра сигнала.
Источники информации
1. Бакулев П.А., Степин В.М. Методы и устройства селекции движущихся целей. М., Радио и связь, 1986.
2. Патент РФ №2058033, кл. G 01 S 15/00.
3. Потемкин В.Г. Система MATLAB. Справочное пособие. - М., ДИАЛОГ-МИФИ, 1997, с.226.

Claims (3)

1. Способ селекции движущейся цели, основанный на облучении исследуемого объема пространства (исследуемой акватории) частотно-модулированным (ЧМ) сигналом излучения и приеме отраженного ЧМ сигнала, отличающийся тем, что вычисляют комплексные частотные спектры излученного и отраженного ЧМ сигналов размерности N/k, где N=Tm/Td, Tm - длительность модуляции частоты, Td - период дискретизации сигналов, k=2n, n=0, 1, 2..., определяют фазовые спектры и непрерывные фазовые функции излученного и отраженного ЧМ сигналов в доплеровской полосе частот, нормируют непрерывные фазовые функции излученного и отраженного ЧМ сигналов на свой экстремум, в полученных нормированных непрерывных фазовых функциях излученного и отраженного ЧМ сигналов определяют их максимальные значения и соответствующие им значения частот, по разности частот, соответствующих максимальным значениям нормированных непрерывных фазовых функций излученного и отраженного ЧМ сигналов, определяют доплеровское смещение спектра отраженного ЧМ сигнала и производят селекцию движущихся целей по их радиальной скорости, определяемой доплеровским смещением спектра отраженного ЧМ сигнала.
2.Способ по п.1, отличающийся тем, что для ЧМ сигнала излучения, имеющего возрастающий закон модуляции частоты, непрерывную фазовую функцию излученного и отраженного ЧМ сигналов нормируют на ее минимальное значение.
3.Способ по п.1, отличающийся тем, что для ЧМ сигнала излучения, имеющего спадающий закон модуляции частоты, непрерывную фазовую функцию излученного и отраженного ЧМ сигналов нормируют на ее максимальное значение.
RU2004130517/09A 2004-10-18 2004-10-18 Способ селекции движущейся цели RU2293359C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004130517/09A RU2293359C2 (ru) 2004-10-18 2004-10-18 Способ селекции движущейся цели

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004130517/09A RU2293359C2 (ru) 2004-10-18 2004-10-18 Способ селекции движущейся цели

Publications (2)

Publication Number Publication Date
RU2004130517A RU2004130517A (ru) 2006-03-20
RU2293359C2 true RU2293359C2 (ru) 2007-02-10

Family

ID=36117073

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004130517/09A RU2293359C2 (ru) 2004-10-18 2004-10-18 Способ селекции движущейся цели

Country Status (1)

Country Link
RU (1) RU2293359C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658649C1 (ru) * 2017-01-10 2018-06-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ и устройство передачи дискретной информации для быстродвижущихся объектов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2658649C1 (ru) * 2017-01-10 2018-06-22 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" Способ и устройство передачи дискретной информации для быстродвижущихся объектов

Also Published As

Publication number Publication date
RU2004130517A (ru) 2006-03-20

Similar Documents

Publication Publication Date Title
US7106656B2 (en) Sonar system and process
US6594200B2 (en) Synthetic aperture sonar and synthetic aperture processing method
KR102204839B1 (ko) 레이더를 이용한 표적 검출 장치 및 표적을 검출하는 방법
EP1735637B1 (en) System and method for radar detection of an object
US20160131742A1 (en) Angle-resolving fmcw radar sensor
US20150323667A1 (en) Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing
JP5871559B2 (ja) レーダ装置
JP6179940B2 (ja) ドップラーイメージング信号送信装置、ドップラーイメージング信号受信装置、ドップラーイメージングシステム及び方法
JP2021513657A (ja) 自動車用の角度分解型で広帯域のレーダセンサ
JP3367462B2 (ja) アクティブソーナー及びその目標検出方法
US8400875B2 (en) Active sonar system and active sonar method using a pulse sorting transform
RU2535238C1 (ru) Способ синхронизации функций излучения и приема в бистатическом гидролокаторе
JP2009014405A (ja) 車載用レーダ装置
US7149148B2 (en) Localization of high speed vehicles using continuous transmit waves
EP2317335B1 (en) Improved beamforming method for analysing signals received by a transducer arrray, and relative detection system
JP6809674B2 (ja) 到来波角度推定方法、および、到来波角度推定装置
RU2293359C2 (ru) Способ селекции движущейся цели
CN112654894A (zh) 一种雷达探测方法及相关装置
RU2510608C1 (ru) Способ измерения толщины льда с подводного носителя
US11187801B2 (en) Spiral sonar
RU2309425C2 (ru) Способ калибровки радиопеленгатора-дальномера
RU2158431C1 (ru) Гидроакустическая синхронная дальномерная навигационная система для мелкого моря
RU2735929C1 (ru) Гидролокационный способ классификации с использованием псевдошумового сигнала
Tidwell et al. Designing linear fm active sonar waveforms for continuous line source transducers to maximize the fisher information at a desired bearing
RU2770564C1 (ru) Гидроакустический комплекс для обнаружения движущегося подводного источника звука и измерения его координат

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191019