RU2290641C1 - Способ проведения иммуноферментного анализа (ифа) - Google Patents

Способ проведения иммуноферментного анализа (ифа) Download PDF

Info

Publication number
RU2290641C1
RU2290641C1 RU2005109217/13A RU2005109217A RU2290641C1 RU 2290641 C1 RU2290641 C1 RU 2290641C1 RU 2005109217/13 A RU2005109217/13 A RU 2005109217/13A RU 2005109217 A RU2005109217 A RU 2005109217A RU 2290641 C1 RU2290641 C1 RU 2290641C1
Authority
RU
Russia
Prior art keywords
elisa
immobilized
suspension
specific antibodies
iron oxide
Prior art date
Application number
RU2005109217/13A
Other languages
English (en)
Other versions
RU2005109217A (ru
Inventor
Дмитрий Витальевич Ефременко (RU)
Дмитрий Витальевич Ефременко
Ирина Викторовна Жарникова (RU)
Ирина Викторовна Жарникова
Анна Александровна Ефременко (RU)
Анна Александровна Ефременко
Ирина Владимировна Гаркуша (RU)
Ирина Владимировна Гаркуша
Елена Владимировна Жданова (RU)
Елена Владимировна Жданова
Ирина Владимировна Юркина (RU)
Ирина Владимировна Юркина
Елена Васильевна Алиева (RU)
Елена Васильевна Алиева
Екатерина Евгеньевна Афанасьева (RU)
Екатерина Евгеньевна Афанасьева
Original Assignee
Российская Федерация в лице Федерального государственного учреждения здравоохранения - Ставропольский научно-исследовательский противочумный институт Федерального агентства по надзору в сфере защиты прав потребителей и благополучия населения
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация в лице Федерального государственного учреждения здравоохранения - Ставропольский научно-исследовательский противочумный институт Федерального агентства по надзору в сфере защиты прав потребителей и благополучия населения filed Critical Российская Федерация в лице Федерального государственного учреждения здравоохранения - Ставропольский научно-исследовательский противочумный институт Федерального агентства по надзору в сфере защиты прав потребителей и благополучия населения
Priority to RU2005109217/13A priority Critical patent/RU2290641C1/ru
Publication of RU2005109217A publication Critical patent/RU2005109217A/ru
Application granted granted Critical
Publication of RU2290641C1 publication Critical patent/RU2290641C1/ru

Links

Abstract

Изобретение относится к иммунологии. Предложен способ иммуноферментного анализа с использованием оксида железа Fe2О3 с иммобилизованными специфическими антителами в качестве магноиммуносорбента. К 0,2 мл 10% суспензии оксида железа Fe2O3 с иммобилизованными специфическими антителами вносят по 1 мл взвеси соответствующего антигена и инкубируют смесь в течение 30-60 мин при температуре 22±4°С. Затем проводят отмывку 0,1 М фосфатно-солевым буфером с 0,5% твин-20 с помощью постоянного магнита. Вносят 200 мкл рабочего разведения пероксидазного конъюгата. Инкубируют при температуре 22±4°С в течение 15 мин. Проводят повторную отмывку. Вносят 200 мкл хромогенной смеси и через 1-2 мин переносят содержимое флаконов в микропланшеты и останавливают реакцию внесением по 50 мкл 2 М раствора серной кислоты. Далее проводят учет результатов на спектрофотометре. Использование изобретения позволяет сократить время проведения исследований и повысить срок годности иммобилизованной твердой фазы при высокой чувствительности и специфичности.

Description

Изобретение относится к микробиологии и может быть использовано для выявления возбудителей особо опасных инфекций с низкой концентрацией с помощью модифицированного иммуноферментного анализа (ИФА).
Чувствительность и специфичность ИФА обусловлена не только степенью чистоты и активности используемых ингредиентов, но и свойствами твердой фазы, которая должна сохранять иммунологические свойства и стабильность в иммобилизованном состоянии, обладать минимальной активностью неспецифически связывать компоненты анализируемой системы и быть удобной при разделении фаз [1]. В качестве твердой фазы используется поливинил, дакрил и другие синтетические полимеры, из которых изготавливают пробирки [2], микропланшеты из оптически прозрачного полистирола [3]. Известно применение магнитных частиц [4], магнитных бус [5].
Известен способ диагностики с помощью иммуноферментного анализа при использовании полистироловых планшет. Однако, наряду с достоинствами, данная твердая фаза имеет ряд проблем. Микропланшеты обладают не одинаковыми сорбционными свойствами, что существенно влияет на достоверность и воспроизводимость полученных результатов [6]. Количество антител (антигенов), используемое для образования иммунного комплекса, ограничено возможностями твердой фазы [7]. Недостаточная концентрация антител (антигенов) ограничивает чувствительность ИФА. Повышение концентрации иммуноглобулинов на твердой фазе приводит к адсорбции свободно связанных антител, которые элюируют на последующих этапах инкубирования, отмывки и тем самым снижают чувствительность и специфичность метода. Процесс сорбции обратим и, следовательно, сенсибилизированные планшеты, полученные сорбционным путем, не подлежат длительному хранению (срок хранения 20 дней на холоде при герметизации) [8, 9].
Известен способ диагностики с помощью иммуносорбента, полученного путем активации аминопропилсилохрома глутаровым альдегидом в концентрации 12-13% в течение 2 ч при комнатной температуре и рН 8,0 с последующим ковалентным связыванием белка А и промывкой (а.с. СССР №1517545, G 01 N 33/53, 15.12.93, Бюл.№45).
Используемый в качестве активирующего агента глутаровый альдегид гидролизуется в водной среде, что приводит к неспецифической сорбции и снижению стабильности в биоспецифических процессах.
Наиболее близким к заявляемому является способ диагностики с помощью иммуносорбента, полученного эмульсионной полимеризацией смеси сомономеров полиакриламида и катализатора с обработанным магнитным порошком. Подготовленный магносорбент активируют 5% глутаровым альдегидом в течение 18-20 ч и иммобилизуют специфическими иммуноглобулинами в растворе ФСБ при инкубации в течение 18-20 ч [10].
Недостатками способа диагностики является применение в качестве твердой фазы магноиммуносорбента, при получении которого использованы дорогостоящие импортные высокотоксичные реактивы, ухудшающие экологические условия процесса.
Целью изобретения является усовершенствование постановки ИФА за счет применения разработанной твердой фазы с иммобилизованными иммуноглобулинами.
Технический результат изобретения, заключающийся в упрощении, сокращении времени постановки ИФА, повышении срока годности иммобилизованной твердой фазы при высокой чувствительности и специфичности, достигается тем, что в качестве твердой фазы используются иммуноглобулиновые магноиммуносорбенты (полученые путем связывания 7,5% оксида железа (Fe2О3) в 0,1 М фосфатно-солевом буферном растворе рН 7,2 с 10 мг иммуноглобулинов, 2 часовой инкубации, отмывании от несвязавшихся компонентов), взаимодействующие с антигеном (Аг) 30-60 мин при температуре (22±4)°С, отмытые с помощью постоянного магнита от несвязавшегося Аг 10-кратным объемом 0,1 М фосфатно-солевого буферного раствора с 0,5% твин-20, взаимодействующие с рабочим разведением иммуноглобулинового пероксидазного конъюгата 15 мин при температуре (22±4)°С, отмытые от несвязавшегося конъюгата 60-кратным объемом по вышеописанному способу и учета реакции после ферментспецифического субстрата.
В качестве твердой фазы выбран оксид железа (Fe2О3) в связи с тем, что ионы металлов в металлопротеинах несут двойную функцию: первая из них - ориентировочный или матричный эффект, а вторая - эффект концентрирования на участке протекания реакции. Сам пептид имеет слабожесткую структуру и не обладает каталитическими свойствами. Если ион металла связан с пептидом, то последний приобретает активность, благодаря эффекту оттягивания электронной плотности положительно заряженными электронами металла [11]. Таким образом, введение магнитного материала значительно повышает специфическую активность и упрощает, ускоряет анализ.
По отношению к прототипу заявляемый способ имеет следующие преимущества: постановка ИФА проходит на твердой фазе, при получении которой используются доступные реактивы, способ обеспечивает экологически безопасную технологию получения магноиммуносорбентов с сокращением трудовых (отпала необходимость в инкубации носителя с активаторами) и материальных затрат (нет необходимости в импортных реактивах) при увеличении срока годности иммобилизованной твердой фазы до 3 лет (срок наблюдения).
Постановка ИФА заключалась в следующем: внесение во флаконы с 0,2 мл 10% суспензии иммуноглобулиновых магноиммуносорбентов по 1 мл взвеси соответствующей концентрации антигена, инкубация в течение 30-60 мин при температуре (22±4)°С, отмывка с помощью постоянного магнита от несвязавшихся антигенов 10-кратным объемом 0,1 М фосфатно-солевого буферного раствора с 0,5% твин-20, внесение по 200 мкл рабочего разведения иммуноглобулинового пероксидазного конъюгата, инкубация при температуре (22±4)°С в течение 15 мин, отмывка 60-кратным объемом по вышеописанному способу и внесение во флаконы по 200 мкл хромогенной смеси, остановка реакции через 1-2 мин, внесение по 50 мкл стоп-реагента (2 М раствором серной кислоты) и учет реакции фотометрически при длине волны 492 нм или визуально. Ответ считали положительным при превышении оптической плотности опытного раствора над контрольным (без контакта с антигеном) в 2 и более раза.
Определена специфическая активность иммуноферментного анализа (ИФА). В результате установлено, что чувствительность анализа в 1000 раз выше (50-100 м.к./мл), чем в традиционном ИФА (с полистироловыми планшетами).
Магнитные свойства твердой фазы ИФА (магносорбентов) исследованы по методике и с использованием технических средств, предложенных В.И.Ефременко с соавт.[12]. В динамике на протяжении 24 часов была изучена стабильность удерживания магноиммуносорбента в магнитной ловушке при пропускании через нее проточной воды (при скорости пропускания 3 л в 1 мин). Обнаружен 100% эффект удерживания МИС в модельной системе, при отсутствии десорбции антител.
Вторым способом определения стабильности твердой фазы (отсутствие десорбции антител) являлся следующий: в емкость с 1 л водопроводной воды помещали 0,5 мл МИС туляремийных на трое суток, помешивая 3-4 раза в день. На четвертые сутки при постановке ИФА с МИС туляремийными чувствительность анализа не снизилась и составила 1×102 м.к./мл.
Устойчивость комплекса антител с магнитным материалом, вероятно, обусловлена образованием прочной химической связи между ними (электрический фактор стабилизации), возникающей благодаря взаимодействию электрических полей создаваемых электронами и ядрами атомов, участвующих в образовании веществ (магнитный материал имеет заряд и антитела, т.к. их рН, в данном случае, выше изоэлектрической точки).
Нами разработан способ диагностики особо опасных инфекций, при постановке которого в качестве твердой фазы выступают магносорбенты с иммобилизованными антителами, и сконструированы диагностические тест-системы для проведения сочетанного метода детекции микроорганизмов в иммуноферментном анализе, подобраны условия постановки ИФА с МИС. ИФА с применением МИС обладает селективным концентрированием, высокой чувствительностью (1×102-5×101 м.к. в пробе), быстротой постановки реакции (50-60 мин), что подтверждено многочисленными испытаниями. При этом отпадает необходимость использования сенсибилизированных микропланшет.
Высокую чувствительность ИФА с применением магноиммуносорбентов можно объяснить еще и тем, что для таких ферментов как пероксидаза (мы ее используем при изготовлении иммуноферментного конъюгата), металлы повышают каталитическую функцию [13].
Возможность практического применения изобретения иллюстрируется примерами его конкретного выполнения с использованием совокупности заявляемых признаков.
Пример 1. Постановка иммуноферментного анализа (ИФА) на твердом носителе - магноиммуносорбенте.
Из культур туляремийного микроба готовили взвеси с концентрациями от 1×101 до 1×109 м.к. в 1 мл. Во флаконы вносили по 1 мл взвеси соответствующей концентрации и по 0,2 мл 10% суспензии туляремийного магноиммуносорбента, инкубировали в течение 30-60 мин при комнатной температуре, затем тщательно отмывали и вносили по 200 мкл рабочего разведения пероксидазного туляремийного конъюгата, инкубировали при температуре (37±1)°С в течение 15-20 мин. Промывали 0,1 М фосфатно-солевым буфером с твин-20 не менее 6 раз, используя постоянный магнит. После чего во флаконы вносили по 200 мкл хромогенной смеси. Через 1-2 мин (когда надосадочная жидкость слегка желтела в отрицательном контроле) содержимое флаконов переносили в микропланшеты и останавливали реакцию 50 мкл стоп-реагента (2 М раствором серной кислоты). Для учета результатов производили измерение оптической плотности на приборе "Мультискан" при длине волны 492 нм. Ответ считали положительным при превышении оптической плотности опытного раствора над контрольным (без контакта с антигеном) в 2 и более раза.
В результате установлено, что чувствительность их в 1000 раз выше, чем в традиционном ИФА и составляет 100 м.к./мл.
Для контроля специфичности использовали штаммы культур гетерологичных микроорганизмов, из которых готовили взвеси с концентрацией 1×105 до 1×107 м.к. в пробе. В результате установлено, что при постановке ИФА не отмечалось перекрестных реакций с исследуемыми микроорганизмами.
При проведении статистической обработки по методу Е.П.Тамбовцева с соавт.(1969), в серии опытов титр ИФА
Figure 00000001
равен 0,9×102 м.к./мл (+14,1%; -12,3%).
При селективном концентрировании микроорганизмов на магносорбентах с иммобилизированными на их поверхности специфическими антителами значительно повышается надежность и чувствительность индикации микроорганизмов за счет реакции антиген-антитело.
Пример 2. ИФА проводили аналогично примеру 1, только в качестве исследуемого материала использовали взвесь чумного микроба. Чувствительность в ИФА составила 50 м.к./мл.
Пример 3. ИФА проводили аналогично примеру 1, только в качестве исследуемого материала использовали взвесь туберкулезного микроба. Чувствительность в ИФА составила 50 м.к./мл.
Пример 4. ИФА проводили аналогично примеру 1, только в качестве исследуемого материала использовали взвесь кампилобактерий. Чувствительность в ИФА составила 50 м.к./мл.
Пример 5. ИФА проводили аналогично примеру 1, только в качестве исследуемого материала использовали антиген вируса крымско-геммарогической лихорадки (КГЛ). Чувствительность модифицированного ИФА более чем в 100 раз превышала чувствительность традиционного ИФА на полистироловых планшетах.
Таким образом, изобретение практически осуществимо, его использование позволяет организовать эффективную диагностику особо опасных инфекций, используя в качестве твердой фазы иммобилизованный магносорбент, полученный по экологически безопасной технологии.
Источники информации
1. Дмитриев Г.А., Киселева Т.А. Применение ИФА для серодиагностики сифилиса // Актуальные вопросы дерм. и венер.: Сб.тр. юбил конф., посвящ. 5-летию созд. кож. и вен. болезней педиатр. фак. РГМУ - М., 1997. - С.36-37.
2. Bushway R.J., Perkins L.B., Hurst H.L., Ferguson B.S. // Food chemistry. - 1992. - V.43. - P.283.
3. Voller A., Sidwell D.E., Bartlett A. et al. A microplate enzyme immunoassay for toxoplasma antibody // J. Clin. Pathol. - 1976. - V.29, N 2. - P.150-153.
4. Ефременко В.И., Климова И.М., Трофимов Е.Н. Магнитный иммуноферментный анализ антигенов чумного микроба // Журн. микробиол. - 1989. - №7. - С.62-66.
5. Camargo Z., Guesdon J.L., Drouhet E. Magnetic enzyme-linked immunosorbent assay (Melisa) for determination of specific IgG in paracoccidiodomycosis // Sabouraudia. - 1984. - V.22, N 4. - P.291-299
6. Шаханина К.Л., Соколенко А.А., Павлова И.П. Выбор критериев пригодности твердофазных носителей на основе полистирола для проведения иммуноферментного анализа // Журн. микробиол. - 1987. - N9 - С.86-89.
7. Ометов В.К., Моргуль М.П., Уразовская Е.В. и др. О применении иммуноферментного анализа в диагностике сифилиса // Вестн. дермат. - 1997. - №3. - С.24-35.
8. Калинина О.А., Емельянова И.В., Локтионова М.А. ИФА в серодиагностике сифилиса // Совр. вопр. дермато-венерологии: Сб. юбил науч. тр., посвящ. 70-летию обл.кож.- вен. дисп. г.Курска. - Курск. - 1997. - С.65-67.
9. Киселева И.Н., Беднова В.Н., Дмитриев Г.А. Постановка ИФА для серодиагностики сифилиса // Вести, дерматол. - 1998. - №1. - С.36-42.
10. Ефременко В.И., Климова И.М., Трофимов Е.Н. Магнитный иммуноферментный анализ антигенов чумного микроба // Журн. микробиол. - 1989. - №7. - С.62-66.
11. Дюга Г., Пенни К. Биоорганическая химия. - М., 1983. - С.348, 352.
12. Ефременко В.И., Шаппо С.А., Нарбутович Н.И. и др. Новый метод выделения возбудителя холеры из воды // Особо опасные инфекционные заболевания: диагностика, профилактика и биологические свойства возбудителей: Сб. науч. работ. - Волгоград, 1990. - Вып.4. - С.213-219.
13. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М., 1982. - С.92.

Claims (1)

  1. Способ иммуноферментного анализа (ИФА) с использованием магноиммуносорбента (МИС) с иммобилизованными специфическими антителами, отличающийся тем, что в качестве МИС с иммобилизованными специфическими антителами используют оксид железа Fe2О3 с иммобилизованными специфическими антителами, при этом к 0,2 мл 10% суспензии оксида железа Fe2О3 с иммобилизованными специфическими антителами вносят по 1 мл взвеси соответствующего антигена, инкубируют в течение 30-60 мин, при температуре 22±4°С, проводят отмывку 0,1 М фосфатно-солевым буфером с 0,5% твин-20 с помощью постоянного магнита, вносят 200 мкл рабочего разведения пероксидазного конъюгата, инкубируют при температуре 22±4°С в течение 15 мин, далее проводят повторную отмывку, вносят 200 мкл хромогенной смеси, через 1-2 мин переносят содержимое флаконов в микропланшеты и останавливают реакцию внесением по 50 мкл 2 М раствора серной кислоты, проводят учет результатов на спектрофотометре.
RU2005109217/13A 2005-03-30 2005-03-30 Способ проведения иммуноферментного анализа (ифа) RU2290641C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005109217/13A RU2290641C1 (ru) 2005-03-30 2005-03-30 Способ проведения иммуноферментного анализа (ифа)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005109217/13A RU2290641C1 (ru) 2005-03-30 2005-03-30 Способ проведения иммуноферментного анализа (ифа)

Publications (2)

Publication Number Publication Date
RU2005109217A RU2005109217A (ru) 2006-09-10
RU2290641C1 true RU2290641C1 (ru) 2006-12-27

Family

ID=37112547

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005109217/13A RU2290641C1 (ru) 2005-03-30 2005-03-30 Способ проведения иммуноферментного анализа (ифа)

Country Status (1)

Country Link
RU (1) RU2290641C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468371C2 (ru) * 2010-11-23 2012-11-27 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Министерства здравоохранения Российской Федерации (ФГБУ "НИИЛ" Минздрава России) Способ выявления антител к mycobacterium leprae на твердом носителе
RU2523583C2 (ru) * 2012-10-15 2014-07-20 Федеральное государственное бюджетное учреждение науки Центр "Биоинженерия" Российской академии наук Способ получения полифункциональных магнитных наночастиц на основе магнетосом бактериального происхождения
RU2535070C1 (ru) * 2013-07-10 2014-12-10 Федеральное казённое учреждение здравоохранения Ставропольский научно-исследовательский противочумный институт Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Способ элюции патогена с иммобилизованной магнитной матрицы
RU2575840C2 (ru) * 2013-10-31 2016-02-20 Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН) Способ проведения иммунохроматографического анализа, основанный на обратимой иммобилизации иммунореагентов в магнитном поле
RU2652231C1 (ru) * 2017-02-02 2018-04-25 Федеральное казённое учреждение здравоохранения Ставропольский научно-исследовательский противочумный институт Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Способ получения стандартного образца магнитного сорбента для конструирования медицинских иммунобиологических препаратов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Иммуноферментный анализ. Под ред. Т.Т.Нго, Г.Ленхоффа. - М.: Мир, 1988, с.378-384. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2468371C2 (ru) * 2010-11-23 2012-11-27 Федеральное государственное бюджетное учреждение "Научно-исследовательский институт по изучению лепры" Министерства здравоохранения Российской Федерации (ФГБУ "НИИЛ" Минздрава России) Способ выявления антител к mycobacterium leprae на твердом носителе
RU2523583C2 (ru) * 2012-10-15 2014-07-20 Федеральное государственное бюджетное учреждение науки Центр "Биоинженерия" Российской академии наук Способ получения полифункциональных магнитных наночастиц на основе магнетосом бактериального происхождения
RU2535070C1 (ru) * 2013-07-10 2014-12-10 Федеральное казённое учреждение здравоохранения Ставропольский научно-исследовательский противочумный институт Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Способ элюции патогена с иммобилизованной магнитной матрицы
RU2575840C2 (ru) * 2013-10-31 2016-02-20 Федеральное государственное учреждение "Федеральный исследовательский центр "Фундаментальные основы биотехнологии" Российской академии наук" (ФИЦ Биотехнологии РАН) Способ проведения иммунохроматографического анализа, основанный на обратимой иммобилизации иммунореагентов в магнитном поле
RU2652231C1 (ru) * 2017-02-02 2018-04-25 Федеральное казённое учреждение здравоохранения Ставропольский научно-исследовательский противочумный институт Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Способ получения стандартного образца магнитного сорбента для конструирования медицинских иммунобиологических препаратов

Also Published As

Publication number Publication date
RU2005109217A (ru) 2006-09-10

Similar Documents

Publication Publication Date Title
CA2112603C (en) Assay method for detecting the presence of bacteria
EP0415792B1 (en) Colony blotting method and device
JP5675022B2 (ja) 磁性粒子を用いた、微生物を迅速に検出するためのプロセス
US20070054341A1 (en) Immunoassay and reagents and kits for performing the same
EP0330688B1 (en) Detection methods
JPH0312705B2 (ru)
US5415997A (en) Method for detecting low levels of microorganisms
US5132205A (en) High ph extraction composition and its use to determine a chlamydial, gonococcal or herpes antigen
US5075220A (en) Determination of a chlamydial or gonococcal antigen using a positively-charged ionically binding support
US5098827A (en) Novel bacterial markers for pathogenic group B streptococci
RU2290641C1 (ru) Способ проведения иммуноферментного анализа (ифа)
US4617264A (en) Pretreatment method and composition
US6004766A (en) Method for detecting low levels of microorganisms
Mazenko et al. Filtration capture immunoassay for bacteria: optimization and potential for urinalysis
US4808524A (en) Test kit and method for the determination of Streptococcus A antigen
EP0241140B1 (en) Assay method with a multivalently labelled reagent, and means therefor
USRE33850E (en) Test kit and method for the determination of Streptococcus A antigen
WO2004048975A1 (ja) 黄色ブドウ球菌の検査方法
EP1565745A2 (en) Isolation and confirmation of analytes from test devices
EP0280557B1 (en) Test kit, extraction device and method for the determination of streptococcus a antigen
Wyatt Antibody‐based detection of microbiological analytes in food: aspects of development
WO1990002336A1 (en) Immunoassay for determining a chlamydial antigen comprising pretreatment of the sample with a chelating agent
Chorti Bioassays for In-Field Detection of Disease Biomarkers and Pathogen Contaminants
JP2000037199A (ja) 病原微生物及び微量成分の高感度測定法
WO1989010974A1 (en) Enzyme immunoassay system

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070331