RU2288190C1 - Способ получения питьевой воды - Google Patents

Способ получения питьевой воды Download PDF

Info

Publication number
RU2288190C1
RU2288190C1 RU2005118035/15A RU2005118035A RU2288190C1 RU 2288190 C1 RU2288190 C1 RU 2288190C1 RU 2005118035/15 A RU2005118035/15 A RU 2005118035/15A RU 2005118035 A RU2005118035 A RU 2005118035A RU 2288190 C1 RU2288190 C1 RU 2288190C1
Authority
RU
Russia
Prior art keywords
water
ions
hydrogen peroxide
treatment
ammonia
Prior art date
Application number
RU2005118035/15A
Other languages
English (en)
Inventor
Владимир Владимирович Гутенев (RU)
Владимир Владимирович Гутенев
Алевтин Иванович Юнак (RU)
Алевтин Иванович Юнак
Валентин Васильевич Найденко (RU)
Валентин Васильевич Найденко
Сергей Юрьевич Осадчий (RU)
Сергей Юрьевич Осадчий
Ирина Анатольевна Денисова (RU)
Ирина Анатольевна Денисова
Original Assignee
Владимир Владимирович Гутенев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Владимирович Гутенев filed Critical Владимир Владимирович Гутенев
Priority to RU2005118035/15A priority Critical patent/RU2288190C1/ru
Application granted granted Critical
Publication of RU2288190C1 publication Critical patent/RU2288190C1/ru

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Physical Water Treatments (AREA)

Abstract

Изобретение относится к комбинированным методам получения питьевой воды в системах водоснабжения населенных пунктов при помощи пероксида водорода, УФ-облучения и ионов тяжелых металлов. Способ включает введение на первой стадии с использованием диспергаторов водного раствора, содержащего соли меди и цинка при массовом соотношении ионов Cu2+:Zn2+, равном 1:5-10, далее после выдержки в течение 0,5-1,0 часа воду обрабатывают пероксидом водорода, после чего выдерживают 0,3-0,4 часа и пропускают через устройство УФ-излучения, в которое одновременно через диспергаторы вводят водный раствор соли серебра или водный раствор соли серебра и аммиачную воду в количестве, соответственно равном 0,0005-0,001 мг/л в пересчете на Ag4+ и 1-1,5 мг/л в пересчете на аммиак. Предпочтительно, обработку ведут при температуре 5-50°С, суммарной концентрации ионов Cu2+ и Zn2+ на первой стадии обработки 0,6-1,7 мг/л, пероксида водорода 1-3 мг/л. Оптимально УФ-обработку ведут при частоте излучения 0,8-1 Гц и удельных энергозатратах 0,8-1 кДж/м3. Способ обеспечивает экологически приемлемый эффективный метод обеззараживания воды с доведением ее до питьевого качества при использовании небольших количеств бактерицидных препаратов (при их концентрации ниже установленных ПДК), обеспечивающих возможность работы в условиях относительно низких и повышенных температур. 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к комбинированным методам обработки воды окислением при помощи пероксида водорода, УФ-облучения и ионами тяжелых металлов. Оно может быть использовано для обеззараживания питьевой воды в системах водоснабжения населенных пунктов.
Известен способ, который предусматривает обработку воды путем ее пропускания через электролизер с электродами из сплава меди и серебра, предпочтительно содержащими 97% меди и 3% серебра (US 4680114, С 02 F 1/46, 1987 г.). Данный метод позволяет эффективно устранять в воде бактерии и другие микроорганизмы, однако, в большинстве случаев содержание ионов меди и серебра превосходит установленные для питьевой воды предельно допустимые концентрации (0,05 мг/л для серебра и 1,0 мг/л для меди: ГОСТ 2874-82 «Вода питьевая»). Кроме того, для осуществления способа требуется предварительно изготавливать электроды посредством сплавления соответствующих металлов в определенном соотношении, что сопровождается значительными энергозатратами.
Другой известный способ обеззараживания воды заключается в совместном действии пероксида водорода и 0,05-1,0 мг/л ионов меди. Последние, проявляя бактерицидные свойства, одновременно служат катализатором разложения пероксида водорода (Савлук О.С. и др. Антимикробные свойства меди. Химия и технология воды, 1986, т.8, №6, с.65-67). Тем не менее, эффективность этого метода недостаточно высока.
Из литературы известны высокие антибактериальные свойства ультрафиолетового (УФ) излучения (см., например, Л.А.Кульский. Основы химии и технологии воды. Киев: Наукова думка, 1991).
Известно также усиление бактерицидных свойств при одновременном использовании ультрафиолетового излучения и ионов серебра и меди (Потапченко Н.Г., Савлук О.С., Илляшенко В.В. Сочетанное действие УФ-излучения (λ=254 нм) и ионов меди и серебра на выживаемость E.coli. Химия и технология воды, 1992, т.14, №12, с.935-935).
Наиболее близким аналогом заявленного изобретения является способ обеззараживания питьевой воды (RU 2188170, 2003 г.), включающий ее обработку пероксидом водорода с последующим введением ионов серебра и меди, полученных при растворении их солей. Пероксид водорода вводят в воду в количестве 1-3 мг/л, затем воду выдерживают в течение 0,4-2 часов и со скоростью 0,1-0,5 м3/ч пропускают через реактор, содержащий импульсные ксеноновые лампы сплошного спектра, преимущественно вырабатывающие УФ-лучи длиной волны 200-400 нм, при частоте 1-1,3 Гц, удельных энергозатратах 1-3 кДж/м3 и плотности потока 1-3 кВт/м2. После облучения в обрабатываемую воду вводят раствор соли серебра до достижения концентрации ионов Ag+ в воде, равной 0,001-0,005 мг/л, а затем добавляют раствор соли меди до достижения концентрации Cu2+, равной 0,01-0,2 мг/л. Данный способ является относительно эффективным, однако имеет ограничения по применению при повышенных и пониженных температурах воды.
Технической задачей, на решение которой направлено настоящее изобретение, являлась разработка экологически приемлемого, эффективного способа обеззараживания воды с доведением ее до питьевого качества при использовании небольших количеств бактерицидных препаратов (при их концентрации ниже установленных ПДК), обеспечивающих возможность работы в условиях относительно низких и повышенных температур.
Поставленная задача решается тем, что способ получения питьевой воды, включающий обработку исходной воды пероксидом водорода, ультрафиолетовым (УФ) излучением с длиной волны 200-400 нм и ионами металлов, отличается тем, что на первой стадии с использованием диспергаторов в воду вводят водный раствор, содержащий соли меди и цинка при массовом соотношении ионов Cu2+:Zn2+, равном 1:5-10, далее после выдержки в течение 0,5 -1,0 часа воду обрабатывают пероксидом водорода, после чего выдерживают 0,3-0,4 часа и пропускают через устройство УФ-излучения, в которое одновременно через диспергаторы вводят водный раствор соли серебра или водный раствор соли серебра и аммиачную воду в количестве, соответственно равном 0,0005-0,001 мг/л в пересчете на Ag+ и 1-1,5 мг/л в пересчете на аммиак.
Предпочтительно, обработку исходной воды ведут при температуре 5-50°С.
Оптимально суммарная концентрация ионов Cu2+ и Zn2+ на первой стадии обработки составляет 0,6-1,7 мг/л, а пероксид водорода вводят до его содержания 1-3 мг/л. Также оптимально УФ-обработку ведут при частоте излучения 0,8-1 Гц и удельных энергозатратах 0,8-1 кДж/м3.
Предлагаемые нами для реализации способы обеззараживания воды концентрации ионов тяжелых металлов существенно ниже их ПДК. Согласно ГОСТ 2874-82 «Вода питьевая» ПДК для меди составляет 1 мг/л, для цинка - 5 мг/л, для серебра - 0,05 составляет 5 мг/л.
Совместная обработка воды в последовательности ионы меди + ионы цинка → пероксид водорода → УФ-излучение + ионы серебра дает следующие преимущества перед известным (RU 2188170) способом: 1) возможность работы при температурах 5÷50°С и более широком интервале рН 5,7÷9,8; 2) снижение дозы применяемого серебра; 3) обеспечение длительной бактериологической стойкости обработанной воды. Ионы меди и цинка при совместном использовании в предложенном оптимальном соотношении дают синергетический бактерицидный эффект (т.е. неадекватное усиление). Отметим, кроме того, что введенные в воду на первой стадии обработки ионы меди и цинка, выполнив функцию активаторов бактерицидных свойств пероксида водорода и ультрафиолетового излучения, беспрепятственно проходят через реактор с пероксидом и устройство УФ-излучения и в сочетании с введенными на последней из упомянутых стадий (УФ-излучение) ионами серебра способствуют существенному увеличению времени сохранности воды. Особенно этот показатель возрастает при одновременном введении ионов серебра и аммиака (в виде аммиачной воды). Это обусловлено образованием аммиачных комплексных катионов: [Ag(NH3)2]+, [Cu(NH3)4]2+ и [Zn(NH3)4]2+, которые стабилизируют серебро, медь и цинк в состоянии, проявляющем максимальные бактерицидные свойства. Введение в исходную воду раствора солей меди, цинка и серебра через диспергаторы способствует ускорению распределения ионов Cu2+, Zn2+ и Ag+ в воде и их воздействия на патогенные микроорганизмы.
Предложенные параметры процесса и концентрации реагентов являются оптимальными для данной схемы обеззараживания воды.
Ниже приведены примеры осуществления предложенного способа.
Пример 1.
Природная вода с рН=7,1 была искусственно заражена санитарно-показательными микроорганизмами E.coli из расчета 1,5·105 кл/см3 и охлаждена до 5°С. Далее в воду через диспергаторы ввели водный раствор, содержащий сульфат меди и сульфат цинка, в количестве, соответствующем содержанию ионов Cu2+ 0,2 мг/л и ионов Zn2+ 1 мг/л (массовое соотношение Cu2+:Zn2+=1:5), выдержали 0,5 часа, обработали пероксидом водорода (2 мг/л) и выдержали 0,3 часа. Затем воду пропустили со скоростью 5 л/мин (0,3 м3/ч) через установку УФ-обработки, содержащую размещенные в слое воды импульсные ксеноновые лампы сплошного спектра, преимущественно излучающие в диапазоне 200-400 нм при частоте импульсов 1 Гц, плотности потока 1 кВт/см2 и удельных энергозатратах 1 Дж/см3 воды. Одновременно с обработкой ультрафиолетовым излучением через диспергаторы подали водный раствор Ag2SO4 с тем, чтобы концентрация Ag+ в воде составила 0,001 мг/л.
После 3-часовой выдержки обработанной воды провели анализ по определению числа выживших микроорганизмов. Результаты испытаний представлены в таблице.
Пример 2.
Исследования выполнены аналогично примеру 1. Отличие состояло в температуре, которая поддерживалась равной 30°С±1°С. Результаты испытаний представлены в таблице.
Пример 3.
Исследования выполнены аналогично примеру 1. Отличие состояло в температуре, равной 50°С±2°С. Результаты испытаний представлены в таблице.
Пример 4.
Исследования выполнены аналогично примеру 3, но исходная величина рН воды составляла 5,7. Результаты испытаний представлены в таблице.
Пример 5.
Исследования выполнены аналогично примеру 3, но исходная величина рН воды составляла 8,2. Результаты испытаний представлены в таблице.
Пример 6.
Природная вода рН=6,0 при температуре 10°С была заражена E.coli в количестве 1,45·105 кл/см3. Далее в воду через диспергаторы ввели водный раствор, содержащий сульфат меди и сульфат цинка при их массовом соотношении, соответственно равном 1:10 до достижения в воде концентрации 0,15 мг Cu2+/л и 1,5 мг Zn2+/л. После выдержки в течение 1 часа воду обработали пероксидом водорода (3 мг/л), выдержали в течение 0,4 часа и подвергли УФ-облучению в соответствии с примером 1, за исключением того, что частота импульсов составляла 0,8 Гц и удельные энергозатраты - 0,8 Дж/см3 воды, концентрация Ag+ (вводили в виде раствора азотнокислого серебра) составляла 0,0005 мг/л. После 3-часовой выдержки проводили анализ по определению числа выживших микроорганизмов. Результаты представлены в таблице.
Пример 7.
Природная вода имела рН=9,8, зараженность 1,45·105 кл/см3, температуру 40±2°С. Далее обработку воды вели по примеру 6. Результаты представлены в таблице. Конечная величина рН составляла 7,9.
Пример 8.
Природная вода с рН=9,8 и зараженностью 1,3·105 кл/см3 при температуре 15°С прошла обработку: введение через диспергаторы водного раствора, содержащего хлорид меди и хлорид цинка при массовом соотношении 1:5 (из расчета 0,25 мг Cu2+/л и 1,25 мг Zn2+/n), выдержку в течение 0,5 часа, обработку пероксидом водорода (3 мг/л), выдержку 0,5 часа, облучение ультрафиолетом (параметры по примеру 1) с одновременным введением через дипергаторы водного раствора сульфата серебра Ag2SO4 с тем, чтобы концентрация Ag+ составляла 0,001 мг/л. После 3-часовой выдержки провели анализ по определению числа выживших микроорганизмов. Результаты испытаний представлены в таблице.
Пример 9.
Способ осуществляли аналогично примеру 8. Отличия: рН исходной воды 5,7, вместе с раствором Ag2SO4 вводили аммиачную воду из расчета 1 мг NH3/л. Величина рН воды после обработки составляла 7,3.
Пример 10 (для сопоставления с аналогом по RU 2188170).
Природная вода - по примеру 7. Обработку воды проводили в соответствии с аналогом - RU 2188170: в воду вводили пероксид водорода в количестве 2 мг/л, выдерживали в течение 1 ч, после этого воду пропускали со скоростью 5 л/мин (0,3 м3/ч) через установку УФ-обработки, содержащую размещенные в слое воды импульсные ксеноновые лампы сплошного спектра, преимущественно излучающие в диапазоне 200-400 нм при частоте импульсов 1 Гц, плотности потока 1 кВт/см2 и удельных энергозатратах 1 Дж/см3 воды. Затем в воду в течение 10 мин вводили при помощи дозатора предварительно приготовленный в отдельной емкости раствор AgNO3 до концентрации Ag+, равной 0,005 мг/л. По прошествии 10 мин в воду дозировали предварительно приготовленный в другой емкости раствор CuSO4·5H2O до достижения концентрации Cu2+, равной 0,2 мг/л. Результаты испытаний представлены в таблице.
Воду, обработанную по всем примерам, проверяли на антибактериальную устойчивость. Для этого воду выдерживали в предварительно стерилизованной таре с периодическим отбором проб на анализ. Из табличных данных следует, что вода в широком диапазоне температур и рН, обработанная предложенным способом, оставалась безопасной в санитарно-гигиеническом отношении в течение 3-х месяцев (примеры 1-9). В случае примера 9 вода сохраняла антибактериальную устойчивость в течение 6-ти месяцев. В то же время известный способ обеззараживания воды (RU 2188170) не обеспечил ей надлежащую устойчивость: уже через 1 месяц вода превысила порог санитарной безопасности.
Таким образом, предложенный способ обеззараживания воды является эффективным, относительно простым и доступным. Наиболее целесообразно использовать его для подготовки питьевой воды в чрезвычайных ситуациях, например в целях предотвращения эпидемий, а также когда велика опасность вторичного бактериального загрязнения воды, прежде всего в жаркое время года.
Таблица.
Пример Число микроорганизмов, кл/см3 Стадии обработки, реактивы Температура рН (исходный) Число выживших организмов, кл/л
через 3 часа через 1 месяц через 3 месяца
1 1,5·105 0,2 мг/л Cu2++1 мг/л Zn2+,
2 мг/л Н2O2, УФ+0,001 мг/л Ag+
5°С 7,1 не обн. 1 3
2 1,5·105 аналогично примеру 1 30±1°С 7,1 не обн. не обн. 2
3 1,5·105 аналогично примеру 1 50±2°С 7.1 не обн. не обн. не обн.
4 1,5·105 аналогично примеру 1 50±2°С 5,7 не обн. не обн. не обн.
5 1,5·105 аналогично примеру 1 50±2°С 8,2 не обн. не обн. не обн.
6 1,45·105 0,15 мг/л Cu2++1,5 мг/л Zn2+, 3 мг/л Н2O2, УФ +0,0005 Ag+мг/л 10°С 6,0 1 1 3
7 1,45·105 аналогично примеру 6 40±2°С 9,8 не обн. не обн. 1
8 1,3·105 0,25 мг/л Cu2++1,25 мг/л Zn2+, 3 мг/л Н2O2, УФ+0,001 мг/л Ag 15°С 9,8 1 2 3
9 1,3·105 0,25 мг/л Cu2++1,25 мг/л Zn2+, 3 мг/л Н2O2, УФ+0,001 мг/л Ag++1 мг/л NH3 15°С 5,7 не обн. 1 не обн.
10 1,45·105 аналогично примеру 7 40±2°С 9,8 3 12 ~5·102

Claims (4)

1. Способ получения питьевой воды, включающий обработку исходной воды пероксидом водорода, ультрафиолетовым (УФ) излучением с длиной волны 200-400 нм и ионами металлов, отличающийся тем, что на первой стадии с использованием диспергаторов в воду вводят водный раствор, содержащий соли меди и цинка при массовом соотношении ионов Cu2+:Zn2+, равном 1:5-10, далее после выдержки в течение 0,5-1,0 ч воду обрабатывают пероксидом водорода, после чего выдерживают 0,3-0,4 ч и пропускают через устройство УФ-излучения, в которое вводят водный раствор соли серебра или водный раствор соли серебра и аммиачную воду в количестве, соответственно равном 0,0005-0,001 мг/л в пересчете на Ag+ и 1-1,5 мг/л в пересчете на аммиак.
2. Способ по п.1, отличающийся тем, что его проводят при температуре воды 5-50°С.
3. Способ по п.1 или 2, отличающийся тем, что суммарная концентрация ионов Cu+ и Zn+ на первой стадии обработки составляет 0,6-1,7 мг/л, а пероксид водорода вводят до его содержания 1-3 мг/л.
4. Способ по любому из п.1 или 2, отличающийся тем, что УФ-обработку ведут при частоте излучения 0,8-1 Гц и удельных энергозатратах 0,8-1 кДж/м3.
RU2005118035/15A 2005-06-14 2005-06-14 Способ получения питьевой воды RU2288190C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005118035/15A RU2288190C1 (ru) 2005-06-14 2005-06-14 Способ получения питьевой воды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005118035/15A RU2288190C1 (ru) 2005-06-14 2005-06-14 Способ получения питьевой воды

Publications (1)

Publication Number Publication Date
RU2288190C1 true RU2288190C1 (ru) 2006-11-27

Family

ID=37664401

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005118035/15A RU2288190C1 (ru) 2005-06-14 2005-06-14 Способ получения питьевой воды

Country Status (1)

Country Link
RU (1) RU2288190C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524944C2 (ru) * 2012-11-09 2014-08-10 Василий Васильевич Покшин Способ обеззараживания воды

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524944C2 (ru) * 2012-11-09 2014-08-10 Василий Васильевич Покшин Способ обеззараживания воды

Similar Documents

Publication Publication Date Title
Polo-López et al. Solar disinfection of fungal spores in water aided by low concentrations of hydrogen peroxide
Rubio et al. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV–Vis/H2O2/Fe2+, 3+) in the Escherichia coli inactivation in artificial seawater
Popova et al. Simultaneous atrazine degradation and E. coli inactivation by UV/S2O82-/Fe2+ process under KrCl excilamp (222 nm) irradiation
Ortega-Gómez et al. Water disinfection using photo-Fenton: Effect of temperature on Enterococcus faecalis survival
Fisher et al. Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli
JP5135600B2 (ja) 船舶バラスト水の処理方法
Lund et al. Ultraviolet irradiated water containing humic substances inhibits bacterial metabolism
US20080142452A1 (en) Apparatus and method for preventing biological regrowth in water
Rodríguez-Chueca et al. Inactivation of Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli present in treated urban wastewater by coagulation—flocculation and photo-Fenton processes
JPH05146785A (ja) 水の消毒のための方法及び組成物
US9981862B2 (en) Reactor usable for decontamination of fluids and method of use
Suvorov et al. Electrochemical and Electrostatic Decomposition Technologies As A Means of Improving the Efficiency and Safety of Agricultural and Water Technologies.
US10597315B2 (en) Method of disinfection of drinking water using ozone and silver cations
CN102167464A (zh) 一种紫外线催化双氧水协同氯/氯胺的水处理消毒方法
Alam et al. Role of hydrogen peroxide and hydroxyl radical in producing the residual effect of ultraviolet radiation
RU2288190C1 (ru) Способ получения питьевой воды
ITVR20010110A1 (it) Procedimento di sterilizzazione microbiologica dell'acqua mediante agenti fotoattivabili.
Kuznetsova et al. Photodynamic water disinfection
RU2288191C1 (ru) Комбинированный способ обеззараживания воды
AU2003243202B2 (en) Catalytic oxidation of peroxy salts
RU2182128C1 (ru) Способ получения питьевой воды
RU2188170C1 (ru) Способ обеззараживания питьевой воды
US20200308024A1 (en) Method for the ultraviolet stabilization of chlorine dioxide in aqueous systems
RU2288188C1 (ru) Способ обеззараживания воды с использованием озона и ионов меди и цинка
Thanh-Loc et al. Enhancement of water disinfection efficiency using UV radiation with the aid of a liquid-film-forming device

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070615